diff mbox series

[mm,v6,4/4] mm: automatically penalize tasks with high swap use

Message ID 20200527195846.102707-5-kuba@kernel.org (mailing list archive)
State New, archived
Headers show
Series memcg: Slow down swap allocation as the available space gets depleted | expand

Commit Message

Jakub Kicinski May 27, 2020, 7:58 p.m. UTC
Add a memory.swap.high knob, which can be used to protect the system
from SWAP exhaustion. The mechanism used for penalizing is similar
to memory.high penalty (sleep on return to user space).

That is not to say that the knob itself is equivalent to memory.high.
The objective is more to protect the system from potentially buggy
tasks consuming a lot of swap and impacting other tasks, or even
bringing the whole system to stand still with complete SWAP
exhaustion. Hopefully without the need to find per-task hard
limits.

Slowing misbehaving tasks down gradually allows user space oom
killers or other protection mechanisms to react. oomd and earlyoom
already do killing based on swap exhaustion, and memory.swap.high
protection will help implement such userspace oom policies more
reliably.

We can use one counter for number of pages allocated under
pressure to save struct task space and avoid two separate
hierarchy walks on the hot path. The exact overage is
calculated on return to user space, anyway.

Take the new high limit into account when determining if swap
is "full". Borrowing the explanation from Johannes:

  The idea behind "swap full" is that as long as the workload has plenty
  of swap space available and it's not changing its memory contents, it
  makes sense to generously hold on to copies of data in the swap
  device, even after the swapin. A later reclaim cycle can drop the page
  without any IO. Trading disk space for IO.

  But the only two ways to reclaim a swap slot is when they're faulted
  in and the references go away, or by scanning the virtual address space
  like swapoff does - which is very expensive (one could argue it's too
  expensive even for swapoff, it's often more practical to just reboot).

  So at some point in the fill level, we have to start freeing up swap
  slots on fault/swapin. Otherwise we could eventually run out of swap
  slots while they're filled with copies of data that is also in RAM.

  We don't want to OOM a workload because its available swap space is
  filled with redundant cache.

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
--
v6:
 - adjust commit message
 - remove stale comments
 - update comment in try_charge() to the text from Johannes
 - remove use of page_counter_is_above_high()
v4:
 - add a comment on using a single counter for both mem and swap pages
v3:
 - count events for all groups over limit
 - add doc for high events
 - remove the magic scaling factor
 - improve commit message
v2:
 - add docs
 - improve commit message
---
 Documentation/admin-guide/cgroup-v2.rst | 20 ++++++
 include/linux/memcontrol.h              |  1 +
 mm/memcontrol.c                         | 88 +++++++++++++++++++++++--
 3 files changed, 102 insertions(+), 7 deletions(-)

Comments

Johannes Weiner May 27, 2020, 8:05 p.m. UTC | #1
On Wed, May 27, 2020 at 12:58:46PM -0700, Jakub Kicinski wrote:
> Add a memory.swap.high knob, which can be used to protect the system
> from SWAP exhaustion. The mechanism used for penalizing is similar
> to memory.high penalty (sleep on return to user space).
> 
> That is not to say that the knob itself is equivalent to memory.high.
> The objective is more to protect the system from potentially buggy
> tasks consuming a lot of swap and impacting other tasks, or even
> bringing the whole system to stand still with complete SWAP
> exhaustion. Hopefully without the need to find per-task hard
> limits.
> 
> Slowing misbehaving tasks down gradually allows user space oom
> killers or other protection mechanisms to react. oomd and earlyoom
> already do killing based on swap exhaustion, and memory.swap.high
> protection will help implement such userspace oom policies more
> reliably.
> 
> We can use one counter for number of pages allocated under
> pressure to save struct task space and avoid two separate
> hierarchy walks on the hot path. The exact overage is
> calculated on return to user space, anyway.
> 
> Take the new high limit into account when determining if swap
> is "full". Borrowing the explanation from Johannes:
> 
>   The idea behind "swap full" is that as long as the workload has plenty
>   of swap space available and it's not changing its memory contents, it
>   makes sense to generously hold on to copies of data in the swap
>   device, even after the swapin. A later reclaim cycle can drop the page
>   without any IO. Trading disk space for IO.
> 
>   But the only two ways to reclaim a swap slot is when they're faulted
>   in and the references go away, or by scanning the virtual address space
>   like swapoff does - which is very expensive (one could argue it's too
>   expensive even for swapoff, it's often more practical to just reboot).
> 
>   So at some point in the fill level, we have to start freeing up swap
>   slots on fault/swapin. Otherwise we could eventually run out of swap
>   slots while they're filled with copies of data that is also in RAM.
> 
>   We don't want to OOM a workload because its available swap space is
>   filled with redundant cache.
> 
> Signed-off-by: Jakub Kicinski <kuba@kernel.org>

This looks great to me now, thanks Jakub!

Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Michal Hocko June 4, 2020, 3:57 p.m. UTC | #2
On Wed 27-05-20 12:58:46, Jakub Kicinski wrote:
> Add a memory.swap.high knob, which can be used to protect the system
> from SWAP exhaustion. The mechanism used for penalizing is similar
> to memory.high penalty (sleep on return to user space).
> 
> That is not to say that the knob itself is equivalent to memory.high.
> The objective is more to protect the system from potentially buggy
> tasks consuming a lot of swap and impacting other tasks, or even
> bringing the whole system to stand still with complete SWAP
> exhaustion. Hopefully without the need to find per-task hard
> limits.
> 
> Slowing misbehaving tasks down gradually allows user space oom
> killers or other protection mechanisms to react. oomd and earlyoom
> already do killing based on swap exhaustion, and memory.swap.high
> protection will help implement such userspace oom policies more
> reliably.
> 
> We can use one counter for number of pages allocated under
> pressure to save struct task space and avoid two separate
> hierarchy walks on the hot path. The exact overage is
> calculated on return to user space, anyway.
> 
> Take the new high limit into account when determining if swap
> is "full". Borrowing the explanation from Johannes:
> 
>   The idea behind "swap full" is that as long as the workload has plenty
>   of swap space available and it's not changing its memory contents, it
>   makes sense to generously hold on to copies of data in the swap
>   device, even after the swapin. A later reclaim cycle can drop the page
>   without any IO. Trading disk space for IO.
> 
>   But the only two ways to reclaim a swap slot is when they're faulted
>   in and the references go away, or by scanning the virtual address space
>   like swapoff does - which is very expensive (one could argue it's too
>   expensive even for swapoff, it's often more practical to just reboot).
> 
>   So at some point in the fill level, we have to start freeing up swap
>   slots on fault/swapin. Otherwise we could eventually run out of swap
>   slots while they're filled with copies of data that is also in RAM.
> 
>   We don't want to OOM a workload because its available swap space is
>   filled with redundant cache.
> 
> Signed-off-by: Jakub Kicinski <kuba@kernel.org>

I am sorry for being late here but thanks for adding clarifications
which make the semantic much more clear now! Also thanks for simplifying 
the throttling implementation. If a different scaling is needed then
this can be added later on.

I do not see any other problems with the patch.

Thanks!
diff mbox series

Patch

diff --git a/Documentation/admin-guide/cgroup-v2.rst b/Documentation/admin-guide/cgroup-v2.rst
index fed4e1d2a343..1536deb2f28e 100644
--- a/Documentation/admin-guide/cgroup-v2.rst
+++ b/Documentation/admin-guide/cgroup-v2.rst
@@ -1373,6 +1373,22 @@  PAGE_SIZE multiple when read back.
 	The total amount of swap currently being used by the cgroup
 	and its descendants.
 
+  memory.swap.high
+	A read-write single value file which exists on non-root
+	cgroups.  The default is "max".
+
+	Swap usage throttle limit.  If a cgroup's swap usage exceeds
+	this limit, all its further allocations will be throttled to
+	allow userspace to implement custom out-of-memory procedures.
+
+	This limit marks a point of no return for the cgroup. It is NOT
+	designed to manage the amount of swapping a workload does
+	during regular operation. Compare to memory.swap.max, which
+	prohibits swapping past a set amount, but lets the cgroup
+	continue unimpeded as long as other memory can be reclaimed.
+
+	Healthy workloads are not expected to reach this limit.
+
   memory.swap.max
 	A read-write single value file which exists on non-root
 	cgroups.  The default is "max".
@@ -1386,6 +1402,10 @@  PAGE_SIZE multiple when read back.
 	otherwise, a value change in this file generates a file
 	modified event.
 
+	  high
+		The number of times the cgroup's swap usage was over
+		the high threshold.
+
 	  max
 		The number of times the cgroup's swap usage was about
 		to go over the max boundary and swap allocation
diff --git a/include/linux/memcontrol.h b/include/linux/memcontrol.h
index 4c6da7eadaa7..bbf624a7f5a6 100644
--- a/include/linux/memcontrol.h
+++ b/include/linux/memcontrol.h
@@ -42,6 +42,7 @@  enum memcg_memory_event {
 	MEMCG_MAX,
 	MEMCG_OOM,
 	MEMCG_OOM_KILL,
+	MEMCG_SWAP_HIGH,
 	MEMCG_SWAP_MAX,
 	MEMCG_SWAP_FAIL,
 	MEMCG_NR_MEMORY_EVENTS,
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index db5dc875addf..ebbcfbf479f4 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -2335,6 +2335,22 @@  static u64 mem_find_max_overage(struct mem_cgroup *memcg)
 	return max_overage;
 }
 
+static u64 swap_find_max_overage(struct mem_cgroup *memcg)
+{
+	u64 overage, max_overage = 0;
+
+	do {
+		overage = calculate_overage(page_counter_read(&memcg->swap),
+					    READ_ONCE(memcg->swap.high));
+		if (overage)
+			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
+		max_overage = max(overage, max_overage);
+	} while ((memcg = parent_mem_cgroup(memcg)) &&
+		 !mem_cgroup_is_root(memcg));
+
+	return max_overage;
+}
+
 /*
  * Get the number of jiffies that we should penalise a mischievous cgroup which
  * is exceeding its memory.high by checking both it and its ancestors.
@@ -2396,6 +2412,9 @@  void mem_cgroup_handle_over_high(void)
 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
 					       mem_find_max_overage(memcg));
 
+	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
+						swap_find_max_overage(memcg));
+
 	/*
 	 * Clamp the max delay per usermode return so as to still keep the
 	 * application moving forwards and also permit diagnostics, albeit
@@ -2586,13 +2605,32 @@  static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
 	 * reclaim, the cost of mismatch is negligible.
 	 */
 	do {
-		if (page_counter_read(&memcg->memory) >
-		    READ_ONCE(memcg->memory.high)) {
-			/* Don't bother a random interrupted task */
-			if (in_interrupt()) {
+		bool mem_high, swap_high;
+
+		mem_high = page_counter_read(&memcg->memory) >
+			READ_ONCE(memcg->memory.high);
+		swap_high = page_counter_read(&memcg->swap) >
+			READ_ONCE(memcg->swap.high);
+
+		/* Don't bother a random interrupted task */
+		if (in_interrupt()) {
+			if (mem_high) {
 				schedule_work(&memcg->high_work);
 				break;
 			}
+			continue;
+		}
+
+		if (mem_high || swap_high) {
+			/*
+			 * The allocating tasks in this cgroup will need to do
+			 * reclaim or be throttled to prevent further growth
+			 * of the memory or swap footprints.
+			 *
+			 * Target some best-effort fairness between the tasks,
+			 * and distribute reclaim work and delay penalties
+			 * based on how much each task is actually allocating.
+			 */
 			current->memcg_nr_pages_over_high += batch;
 			set_notify_resume(current);
 			break;
@@ -5009,6 +5047,7 @@  mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
 
 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
 	memcg->soft_limit = PAGE_COUNTER_MAX;
+	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
 	if (parent) {
 		memcg->swappiness = mem_cgroup_swappiness(parent);
 		memcg->oom_kill_disable = parent->oom_kill_disable;
@@ -5162,6 +5201,7 @@  static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
 	page_counter_set_low(&memcg->memory, 0);
 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
 	memcg->soft_limit = PAGE_COUNTER_MAX;
+	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
 	memcg_wb_domain_size_changed(memcg);
 }
 
@@ -6989,10 +7029,13 @@  bool mem_cgroup_swap_full(struct page *page)
 	if (!memcg)
 		return false;
 
-	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
-		if (page_counter_read(&memcg->swap) * 2 >=
-		    READ_ONCE(memcg->swap.max))
+	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
+		unsigned long usage = page_counter_read(&memcg->swap);
+
+		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
+		    usage * 2 >= READ_ONCE(memcg->swap.max))
 			return true;
+	}
 
 	return false;
 }
@@ -7015,6 +7058,29 @@  static u64 swap_current_read(struct cgroup_subsys_state *css,
 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
 }
 
+static int swap_high_show(struct seq_file *m, void *v)
+{
+	return seq_puts_memcg_tunable(m,
+		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
+}
+
+static ssize_t swap_high_write(struct kernfs_open_file *of,
+			       char *buf, size_t nbytes, loff_t off)
+{
+	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+	unsigned long high;
+	int err;
+
+	buf = strstrip(buf);
+	err = page_counter_memparse(buf, "max", &high);
+	if (err)
+		return err;
+
+	page_counter_set_high(&memcg->swap, high);
+
+	return nbytes;
+}
+
 static int swap_max_show(struct seq_file *m, void *v)
 {
 	return seq_puts_memcg_tunable(m,
@@ -7042,6 +7108,8 @@  static int swap_events_show(struct seq_file *m, void *v)
 {
 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
 
+	seq_printf(m, "high %lu\n",
+		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
 	seq_printf(m, "max %lu\n",
 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
 	seq_printf(m, "fail %lu\n",
@@ -7056,6 +7124,12 @@  static struct cftype swap_files[] = {
 		.flags = CFTYPE_NOT_ON_ROOT,
 		.read_u64 = swap_current_read,
 	},
+	{
+		.name = "swap.high",
+		.flags = CFTYPE_NOT_ON_ROOT,
+		.seq_show = swap_high_show,
+		.write = swap_high_write,
+	},
 	{
 		.name = "swap.max",
 		.flags = CFTYPE_NOT_ON_ROOT,