@@ -219,13 +219,11 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
This is an easy way to test page migration, too.
-9.5 mkdir/rmdir
----------------
+9.5 nested cgroups
+------------------
- When using hierarchy, mkdir/rmdir test should be done.
- Use tests like the following::
+ Use tests like the following for testing nested cgroups::
- echo 1 >/opt/cgroup/01/memory/use_hierarchy
mkdir /opt/cgroup/01/child_a
mkdir /opt/cgroup/01/child_b
@@ -77,6 +77,8 @@ Brief summary of control files.
memory.soft_limit_in_bytes set/show soft limit of memory usage
memory.stat show various statistics
memory.use_hierarchy set/show hierarchical account enabled
+ This knob is deprecated and shouldn't be
+ used.
memory.force_empty trigger forced page reclaim
memory.pressure_level set memory pressure notifications
memory.swappiness set/show swappiness parameter of vmscan
@@ -495,16 +497,13 @@ cgroup might have some charge associated with it, even though all
tasks have migrated away from it. (because we charge against pages, not
against tasks.)
-We move the stats to root (if use_hierarchy==0) or parent (if
-use_hierarchy==1), and no change on the charge except uncharging
+We move the stats to parent, and no change on the charge except uncharging
from the child.
Charges recorded in swap information is not updated at removal of cgroup.
Recorded information is discarded and a cgroup which uses swap (swapcache)
will be charged as a new owner of it.
-About use_hierarchy, see Section 6.
-
5. Misc. interfaces
===================
@@ -527,8 +526,6 @@ About use_hierarchy, see Section 6.
write will still return success. In this case, it is expected that
memory.kmem.usage_in_bytes == memory.usage_in_bytes.
- About use_hierarchy, see Section 6.
-
5.2 stat file
-------------
@@ -675,31 +672,20 @@ hierarchy::
d e
In the diagram above, with hierarchical accounting enabled, all memory
-usage of e, is accounted to its ancestors up until the root (i.e, c and root),
-that has memory.use_hierarchy enabled. If one of the ancestors goes over its
-limit, the reclaim algorithm reclaims from the tasks in the ancestor and the
-children of the ancestor.
-
-6.1 Enabling hierarchical accounting and reclaim
-------------------------------------------------
-
-A memory cgroup by default disables the hierarchy feature. Support
-can be enabled by writing 1 to memory.use_hierarchy file of the root cgroup::
+usage of e, is accounted to its ancestors up until the root (i.e, c and root).
+If one of the ancestors goes over its limit, the reclaim algorithm reclaims
+from the tasks in the ancestor and the children of the ancestor.
- # echo 1 > memory.use_hierarchy
-
-The feature can be disabled by::
+6.1 Hierarchical accounting and reclaim
+---------------------------------------
- # echo 0 > memory.use_hierarchy
+Hierarchical accounting is enabled by default. Disabling the hierarchical
+accounting is deprecated. An attempt to do it will result in a failure
+and a warning printed to dmesg.
-NOTE1:
- Enabling/disabling will fail if either the cgroup already has other
- cgroups created below it, or if the parent cgroup has use_hierarchy
- enabled.
+For compatibility reasons writing 1 to memory.use_hierarchy will always pass::
-NOTE2:
- When panic_on_oom is set to "2", the whole system will panic in
- case of an OOM event in any cgroup.
+ # echo 1 > memory.use_hierarchy
7. Soft limits
==============