@@ -1359,7 +1359,7 @@ static int __wait_on_page_locked_async(s
else
ret = PageLocked(page);
/*
- * If we were succesful now, we know we're still on the
+ * If we were successful now, we know we're still on the
* waitqueue as we're still under the lock. This means it's
* safe to remove and return success, we know the callback
* isn't going to trigger.
@@ -2391,7 +2391,7 @@ static void __split_huge_page_tail(struc
* Clone page flags before unfreezing refcount.
*
* After successful get_page_unless_zero() might follow flags change,
- * for exmaple lock_page() which set PG_waiters.
+ * for example lock_page() which set PG_waiters.
*/
page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
page_tail->flags |= (head->flags &
@@ -1275,7 +1275,7 @@ static int khugepaged_scan_pmd(struct mm
* PTEs are armed with uffd write protection.
* Here we can also mark the new huge pmd as
* write protected if any of the small ones is
- * marked but that could bring uknown
+ * marked but that could bring unknown
* userfault messages that falls outside of
* the registered range. So, just be simple.
*/
@@ -871,7 +871,7 @@ int __init_memblock memblock_physmem_add
* @base: base address of the region
* @size: size of the region
* @set: set or clear the flag
- * @flag: the flag to udpate
+ * @flag: the flag to update
*
* This function isolates region [@base, @base + @size), and sets/clears flag
*
@@ -2594,7 +2594,7 @@ static bool migrate_vma_check_page(struc
* will bump the page reference count. Sadly there is no way to
* differentiate a regular pin from migration wait. Hence to
* avoid 2 racing thread trying to migrate back to CPU to enter
- * infinite loop (one stoping migration because the other is
+ * infinite loop (one stopping migration because the other is
* waiting on pte migration entry). We always return true here.
*
* FIXME proper solution is to rework migration_entry_wait() so
@@ -34,7 +34,7 @@
*
* The need callback is used to decide whether extended memory allocation is
* needed or not. Sometimes users want to deactivate some features in this
- * boot and extra memory would be unneccessary. In this case, to avoid
+ * boot and extra memory would be unnecessary. In this case, to avoid
* allocating huge chunk of memory, each clients represent their need of
* extra memory through the need callback. If one of the need callbacks
* returns true, it means that someone needs extra memory so that