diff mbox series

[v3,2/2] mm: fix initialization of struct page for holes in memory layout

Message ID 20210111194017.22696-3-rppt@kernel.org (mailing list archive)
State New, archived
Headers show
Series mm: fix initialization of struct page for holes in memory layout | expand

Commit Message

Mike Rapoport Jan. 11, 2021, 7:40 p.m. UTC
From: Mike Rapoport <rppt@linux.ibm.com>

There could be struct pages that are not backed by actual physical memory.
This can happen when the actual memory bank is not a multiple of
SECTION_SIZE or when an architecture does not register memory holes
reserved by the firmware as memblock.memory.

Such pages are currently initialized using init_unavailable_mem() function
that iterates through PFNs in holes in memblock.memory and if there is a
struct page corresponding to a PFN, the fields if this page are set to
default values and the page is marked as Reserved.

init_unavailable_mem() does not take into account zone and node the page
belongs to and sets both zone and node links in struct page to zero.

On a system that has firmware reserved holes in a zone above ZONE_DMA, for
instance in a configuration below:

	# grep -A1 E820 /proc/iomem
	7a17b000-7a216fff : Unknown E820 type
	7a217000-7bffffff : System RAM

unset zone link in struct page will trigger

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

because there are pages in both ZONE_DMA32 and ZONE_DMA (unset zone link in
struct page) in the same pageblock.

Update init_unavailable_mem() to use zone constraints defined by an
architecture to properly setup the zone link and use node ID of the
adjacent range in memblock.memory to set the node link.

Fixes: 73a6e474cb37 ("mm: memmap_init: iterate over memblock regions rather that check each PFN")
Reported-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
---
 mm/page_alloc.c | 84 +++++++++++++++++++++++++++++--------------------
 1 file changed, 50 insertions(+), 34 deletions(-)

Comments

David Hildenbrand Feb. 1, 2021, 9:14 a.m. UTC | #1
On 11.01.21 20:40, Mike Rapoport wrote:
> From: Mike Rapoport <rppt@linux.ibm.com>
> 
> There could be struct pages that are not backed by actual physical memory.
> This can happen when the actual memory bank is not a multiple of
> SECTION_SIZE or when an architecture does not register memory holes
> reserved by the firmware as memblock.memory.
> 
> Such pages are currently initialized using init_unavailable_mem() function
> that iterates through PFNs in holes in memblock.memory and if there is a
> struct page corresponding to a PFN, the fields if this page are set to
> default values and the page is marked as Reserved.
> 
> init_unavailable_mem() does not take into account zone and node the page
> belongs to and sets both zone and node links in struct page to zero.
> 
> On a system that has firmware reserved holes in a zone above ZONE_DMA, for
> instance in a configuration below:
> 
> 	# grep -A1 E820 /proc/iomem
> 	7a17b000-7a216fff : Unknown E820 type
> 	7a217000-7bffffff : System RAM
> 
> unset zone link in struct page will trigger
> 
> 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
> 
> because there are pages in both ZONE_DMA32 and ZONE_DMA (unset zone link in
> struct page) in the same pageblock.
> 
> Update init_unavailable_mem() to use zone constraints defined by an
> architecture to properly setup the zone link and use node ID of the
> adjacent range in memblock.memory to set the node link.
> 
> Fixes: 73a6e474cb37 ("mm: memmap_init: iterate over memblock regions rather that check each PFN")
> Reported-by: Andrea Arcangeli <aarcange@redhat.com>
> Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
> ---
>   mm/page_alloc.c | 84 +++++++++++++++++++++++++++++--------------------
>   1 file changed, 50 insertions(+), 34 deletions(-)
> 
> diff --git a/mm/page_alloc.c b/mm/page_alloc.c
> index bdbec4c98173..0b56c3ca354e 100644
> --- a/mm/page_alloc.c
> +++ b/mm/page_alloc.c
> @@ -7077,23 +7077,26 @@ void __init free_area_init_memoryless_node(int nid)
>    * Initialize all valid struct pages in the range [spfn, epfn) and mark them
>    * PageReserved(). Return the number of struct pages that were initialized.
>    */
> -static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
> +static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn,
> +					 int zone, int nid)
>   {
> -	unsigned long pfn;
> +	unsigned long pfn, zone_spfn, zone_epfn;
>   	u64 pgcnt = 0;
>   
> +	zone_spfn = arch_zone_lowest_possible_pfn[zone];
> +	zone_epfn = arch_zone_highest_possible_pfn[zone];
> +
> +	spfn = clamp(spfn, zone_spfn, zone_epfn);
> +	epfn = clamp(epfn, zone_spfn, zone_epfn);
> +
>   	for (pfn = spfn; pfn < epfn; pfn++) {
>   		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
>   			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
>   				+ pageblock_nr_pages - 1;
>   			continue;
>   		}
> -		/*
> -		 * Use a fake node/zone (0) for now. Some of these pages
> -		 * (in memblock.reserved but not in memblock.memory) will
> -		 * get re-initialized via reserve_bootmem_region() later.
> -		 */
> -		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
> +
> +		__init_single_page(pfn_to_page(pfn), pfn, zone, nid);
>   		__SetPageReserved(pfn_to_page(pfn));
>   		pgcnt++;
>   	}
> @@ -7102,51 +7105,64 @@ static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
>   }
>   
>   /*
> - * Only struct pages that are backed by physical memory are zeroed and
> - * initialized by going through __init_single_page(). But, there are some
> - * struct pages which are reserved in memblock allocator and their fields
> - * may be accessed (for example page_to_pfn() on some configuration accesses
> - * flags). We must explicitly initialize those struct pages.
> + * Only struct pages that correspond to ranges defined by memblock.memory
> + * are zeroed and initialized by going through __init_single_page() during
> + * memmap_init().
> + *
> + * But, there could be struct pages that correspond to holes in
> + * memblock.memory. This can happen because of the following reasons:
> + * - phyiscal memory bank size is not necessarily the exact multiple of the
> + *   arbitrary section size
> + * - early reserved memory may not be listed in memblock.memory
> + * - memory layouts defined with memmap= kernel parameter may not align
> + *   nicely with memmap sections
>    *
> - * This function also addresses a similar issue where struct pages are left
> - * uninitialized because the physical address range is not covered by
> - * memblock.memory or memblock.reserved. That could happen when memblock
> - * layout is manually configured via memmap=, or when the highest physical
> - * address (max_pfn) does not end on a section boundary.
> + * Explicitly initialize those struct pages so that:
> + * - PG_Reserved is set
> + * - zone link is set accorging to the architecture constrains
> + * - node is set to node id of the next populated region except for the
> + *   trailing hole where last node id is used
>    */
> -static void __init init_unavailable_mem(void)
> +static void __init init_zone_unavailable_mem(int zone)
>   {
> -	phys_addr_t start, end;
> -	u64 i, pgcnt;
> -	phys_addr_t next = 0;
> +	unsigned long start, end;
> +	int i, nid;
> +	u64 pgcnt;
> +	unsigned long next = 0;
>   
>   	/*
> -	 * Loop through unavailable ranges not covered by memblock.memory.
> +	 * Loop through holes in memblock.memory and initialize struct
> +	 * pages corresponding to these holes
>   	 */
>   	pgcnt = 0;
> -	for_each_mem_range(i, &start, &end) {
> +	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
>   		if (next < start)
> -			pgcnt += init_unavailable_range(PFN_DOWN(next),
> -							PFN_UP(start));
> +			pgcnt += init_unavailable_range(next, start, zone, nid);
>   		next = end;
>   	}
>   
>   	/*
> -	 * Early sections always have a fully populated memmap for the whole
> -	 * section - see pfn_valid(). If the last section has holes at the
> -	 * end and that section is marked "online", the memmap will be
> -	 * considered initialized. Make sure that memmap has a well defined
> -	 * state.
> +	 * Last section may surpass the actual end of memory (e.g. we can
> +	 * have 1Gb section and 512Mb of RAM pouplated).
> +	 * Make sure that memmap has a well defined state in this case.
>   	 */
> -	pgcnt += init_unavailable_range(PFN_DOWN(next),
> -					round_up(max_pfn, PAGES_PER_SECTION));
> +	end = round_up(max_pfn, PAGES_PER_SECTION);
> +	pgcnt += init_unavailable_range(next, end, zone, nid);
>   
>   	/*
>   	 * Struct pages that do not have backing memory. This could be because
>   	 * firmware is using some of this memory, or for some other reasons.
>   	 */
>   	if (pgcnt)
> -		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
> +		pr_info("Zone %s: zeroed struct page in unavailable ranges: %lld pages", zone_names[zone], pgcnt);
> +}
> +
> +static void __init init_unavailable_mem(void)
> +{
> +	int zone;
> +
> +	for (zone = 0; zone < ZONE_MOVABLE; zone++)
> +		init_zone_unavailable_mem(zone);

Why < ZONE_MOVABLE?

I remember we can have memory holes inside the movable zone when messing 
with "movablecore" cmdline parameter.
Baoquan He Feb. 1, 2021, 9:39 a.m. UTC | #2
On 02/01/21 at 10:14am, David Hildenbrand wrote:
> On 11.01.21 20:40, Mike Rapoport wrote:
> > From: Mike Rapoport <rppt@linux.ibm.com>
> > 
> > There could be struct pages that are not backed by actual physical memory.
> > This can happen when the actual memory bank is not a multiple of
> > SECTION_SIZE or when an architecture does not register memory holes
> > reserved by the firmware as memblock.memory.
> > 
> > Such pages are currently initialized using init_unavailable_mem() function
> > that iterates through PFNs in holes in memblock.memory and if there is a
> > struct page corresponding to a PFN, the fields if this page are set to
> > default values and the page is marked as Reserved.
> > 
> > init_unavailable_mem() does not take into account zone and node the page
> > belongs to and sets both zone and node links in struct page to zero.
> > 
> > On a system that has firmware reserved holes in a zone above ZONE_DMA, for
> > instance in a configuration below:
> > 
> > 	# grep -A1 E820 /proc/iomem
> > 	7a17b000-7a216fff : Unknown E820 type
> > 	7a217000-7bffffff : System RAM
> > 
> > unset zone link in struct page will trigger
> > 
> > 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
> > 
> > because there are pages in both ZONE_DMA32 and ZONE_DMA (unset zone link in
> > struct page) in the same pageblock.
> > 
> > Update init_unavailable_mem() to use zone constraints defined by an
> > architecture to properly setup the zone link and use node ID of the
> > adjacent range in memblock.memory to set the node link.
> > 
> > Fixes: 73a6e474cb37 ("mm: memmap_init: iterate over memblock regions rather that check each PFN")
> > Reported-by: Andrea Arcangeli <aarcange@redhat.com>
> > Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
> > ---
> >   mm/page_alloc.c | 84 +++++++++++++++++++++++++++++--------------------
> >   1 file changed, 50 insertions(+), 34 deletions(-)
> > 
> > diff --git a/mm/page_alloc.c b/mm/page_alloc.c
> > index bdbec4c98173..0b56c3ca354e 100644
> > --- a/mm/page_alloc.c
> > +++ b/mm/page_alloc.c
> > @@ -7077,23 +7077,26 @@ void __init free_area_init_memoryless_node(int nid)
> >    * Initialize all valid struct pages in the range [spfn, epfn) and mark them
> >    * PageReserved(). Return the number of struct pages that were initialized.
> >    */
> > -static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
> > +static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn,
> > +					 int zone, int nid)
> >   {
> > -	unsigned long pfn;
> > +	unsigned long pfn, zone_spfn, zone_epfn;
> >   	u64 pgcnt = 0;
> > +	zone_spfn = arch_zone_lowest_possible_pfn[zone];
> > +	zone_epfn = arch_zone_highest_possible_pfn[zone];
> > +
> > +	spfn = clamp(spfn, zone_spfn, zone_epfn);
> > +	epfn = clamp(epfn, zone_spfn, zone_epfn);
> > +
> >   	for (pfn = spfn; pfn < epfn; pfn++) {
> >   		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
> >   			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
> >   				+ pageblock_nr_pages - 1;
> >   			continue;
> >   		}
> > -		/*
> > -		 * Use a fake node/zone (0) for now. Some of these pages
> > -		 * (in memblock.reserved but not in memblock.memory) will
> > -		 * get re-initialized via reserve_bootmem_region() later.
> > -		 */
> > -		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
> > +
> > +		__init_single_page(pfn_to_page(pfn), pfn, zone, nid);
> >   		__SetPageReserved(pfn_to_page(pfn));
> >   		pgcnt++;
> >   	}
> > @@ -7102,51 +7105,64 @@ static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
> >   }
> >   /*
> > - * Only struct pages that are backed by physical memory are zeroed and
> > - * initialized by going through __init_single_page(). But, there are some
> > - * struct pages which are reserved in memblock allocator and their fields
> > - * may be accessed (for example page_to_pfn() on some configuration accesses
> > - * flags). We must explicitly initialize those struct pages.
> > + * Only struct pages that correspond to ranges defined by memblock.memory
> > + * are zeroed and initialized by going through __init_single_page() during
> > + * memmap_init().
> > + *
> > + * But, there could be struct pages that correspond to holes in
> > + * memblock.memory. This can happen because of the following reasons:
> > + * - phyiscal memory bank size is not necessarily the exact multiple of the
> > + *   arbitrary section size
> > + * - early reserved memory may not be listed in memblock.memory
> > + * - memory layouts defined with memmap= kernel parameter may not align
> > + *   nicely with memmap sections
> >    *
> > - * This function also addresses a similar issue where struct pages are left
> > - * uninitialized because the physical address range is not covered by
> > - * memblock.memory or memblock.reserved. That could happen when memblock
> > - * layout is manually configured via memmap=, or when the highest physical
> > - * address (max_pfn) does not end on a section boundary.
> > + * Explicitly initialize those struct pages so that:
> > + * - PG_Reserved is set
> > + * - zone link is set accorging to the architecture constrains
> > + * - node is set to node id of the next populated region except for the
> > + *   trailing hole where last node id is used
> >    */
> > -static void __init init_unavailable_mem(void)
> > +static void __init init_zone_unavailable_mem(int zone)
> >   {
> > -	phys_addr_t start, end;
> > -	u64 i, pgcnt;
> > -	phys_addr_t next = 0;
> > +	unsigned long start, end;
> > +	int i, nid;
> > +	u64 pgcnt;
> > +	unsigned long next = 0;
> >   	/*
> > -	 * Loop through unavailable ranges not covered by memblock.memory.
> > +	 * Loop through holes in memblock.memory and initialize struct
> > +	 * pages corresponding to these holes
> >   	 */
> >   	pgcnt = 0;
> > -	for_each_mem_range(i, &start, &end) {
> > +	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
> >   		if (next < start)
> > -			pgcnt += init_unavailable_range(PFN_DOWN(next),
> > -							PFN_UP(start));
> > +			pgcnt += init_unavailable_range(next, start, zone, nid);
> >   		next = end;
> >   	}
> >   	/*
> > -	 * Early sections always have a fully populated memmap for the whole
> > -	 * section - see pfn_valid(). If the last section has holes at the
> > -	 * end and that section is marked "online", the memmap will be
> > -	 * considered initialized. Make sure that memmap has a well defined
> > -	 * state.
> > +	 * Last section may surpass the actual end of memory (e.g. we can
> > +	 * have 1Gb section and 512Mb of RAM pouplated).
> > +	 * Make sure that memmap has a well defined state in this case.
> >   	 */
> > -	pgcnt += init_unavailable_range(PFN_DOWN(next),
> > -					round_up(max_pfn, PAGES_PER_SECTION));
> > +	end = round_up(max_pfn, PAGES_PER_SECTION);
> > +	pgcnt += init_unavailable_range(next, end, zone, nid);
> >   	/*
> >   	 * Struct pages that do not have backing memory. This could be because
> >   	 * firmware is using some of this memory, or for some other reasons.
> >   	 */
> >   	if (pgcnt)
> > -		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
> > +		pr_info("Zone %s: zeroed struct page in unavailable ranges: %lld pages", zone_names[zone], pgcnt);
> > +}
> > +
> > +static void __init init_unavailable_mem(void)
> > +{
> > +	int zone;
> > +
> > +	for (zone = 0; zone < ZONE_MOVABLE; zone++)
> > +		init_zone_unavailable_mem(zone);
> 
> Why < ZONE_MOVABLE?
> 
> I remember we can have memory holes inside the movable zone when messing
> with "movablecore" cmdline parameter.

Maybe because we haven't initialized MOABLE zone info at this time.
Mike Rapoport Feb. 1, 2021, 2:12 p.m. UTC | #3
On Mon, Feb 01, 2021 at 05:39:58PM +0800, Baoquan He wrote:
> On 02/01/21 at 10:14am, David Hildenbrand wrote:
> > On 11.01.21 20:40, Mike Rapoport wrote:
> > > +
> > > +static void __init init_unavailable_mem(void)
> > > +{
> > > +	int zone;
> > > +
> > > +	for (zone = 0; zone < ZONE_MOVABLE; zone++)
> > > +		init_zone_unavailable_mem(zone);
> > 
> > Why < ZONE_MOVABLE?
> > 
> > I remember we can have memory holes inside the movable zone when messing
> > with "movablecore" cmdline parameter.
> 
> Maybe because we haven't initialized MOABLE zone info at this time.

We already have zone_movable_pfn initialized at this point. 
So if there is a possibility for holes in the movable zone, we should take
care of it.
diff mbox series

Patch

diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index bdbec4c98173..0b56c3ca354e 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -7077,23 +7077,26 @@  void __init free_area_init_memoryless_node(int nid)
  * Initialize all valid struct pages in the range [spfn, epfn) and mark them
  * PageReserved(). Return the number of struct pages that were initialized.
  */
-static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
+static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn,
+					 int zone, int nid)
 {
-	unsigned long pfn;
+	unsigned long pfn, zone_spfn, zone_epfn;
 	u64 pgcnt = 0;
 
+	zone_spfn = arch_zone_lowest_possible_pfn[zone];
+	zone_epfn = arch_zone_highest_possible_pfn[zone];
+
+	spfn = clamp(spfn, zone_spfn, zone_epfn);
+	epfn = clamp(epfn, zone_spfn, zone_epfn);
+
 	for (pfn = spfn; pfn < epfn; pfn++) {
 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
 				+ pageblock_nr_pages - 1;
 			continue;
 		}
-		/*
-		 * Use a fake node/zone (0) for now. Some of these pages
-		 * (in memblock.reserved but not in memblock.memory) will
-		 * get re-initialized via reserve_bootmem_region() later.
-		 */
-		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
+
+		__init_single_page(pfn_to_page(pfn), pfn, zone, nid);
 		__SetPageReserved(pfn_to_page(pfn));
 		pgcnt++;
 	}
@@ -7102,51 +7105,64 @@  static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
 }
 
 /*
- * Only struct pages that are backed by physical memory are zeroed and
- * initialized by going through __init_single_page(). But, there are some
- * struct pages which are reserved in memblock allocator and their fields
- * may be accessed (for example page_to_pfn() on some configuration accesses
- * flags). We must explicitly initialize those struct pages.
+ * Only struct pages that correspond to ranges defined by memblock.memory
+ * are zeroed and initialized by going through __init_single_page() during
+ * memmap_init().
+ *
+ * But, there could be struct pages that correspond to holes in
+ * memblock.memory. This can happen because of the following reasons:
+ * - phyiscal memory bank size is not necessarily the exact multiple of the
+ *   arbitrary section size
+ * - early reserved memory may not be listed in memblock.memory
+ * - memory layouts defined with memmap= kernel parameter may not align
+ *   nicely with memmap sections
  *
- * This function also addresses a similar issue where struct pages are left
- * uninitialized because the physical address range is not covered by
- * memblock.memory or memblock.reserved. That could happen when memblock
- * layout is manually configured via memmap=, or when the highest physical
- * address (max_pfn) does not end on a section boundary.
+ * Explicitly initialize those struct pages so that:
+ * - PG_Reserved is set
+ * - zone link is set accorging to the architecture constrains
+ * - node is set to node id of the next populated region except for the
+ *   trailing hole where last node id is used
  */
-static void __init init_unavailable_mem(void)
+static void __init init_zone_unavailable_mem(int zone)
 {
-	phys_addr_t start, end;
-	u64 i, pgcnt;
-	phys_addr_t next = 0;
+	unsigned long start, end;
+	int i, nid;
+	u64 pgcnt;
+	unsigned long next = 0;
 
 	/*
-	 * Loop through unavailable ranges not covered by memblock.memory.
+	 * Loop through holes in memblock.memory and initialize struct
+	 * pages corresponding to these holes
 	 */
 	pgcnt = 0;
-	for_each_mem_range(i, &start, &end) {
+	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
 		if (next < start)
-			pgcnt += init_unavailable_range(PFN_DOWN(next),
-							PFN_UP(start));
+			pgcnt += init_unavailable_range(next, start, zone, nid);
 		next = end;
 	}
 
 	/*
-	 * Early sections always have a fully populated memmap for the whole
-	 * section - see pfn_valid(). If the last section has holes at the
-	 * end and that section is marked "online", the memmap will be
-	 * considered initialized. Make sure that memmap has a well defined
-	 * state.
+	 * Last section may surpass the actual end of memory (e.g. we can
+	 * have 1Gb section and 512Mb of RAM pouplated).
+	 * Make sure that memmap has a well defined state in this case.
 	 */
-	pgcnt += init_unavailable_range(PFN_DOWN(next),
-					round_up(max_pfn, PAGES_PER_SECTION));
+	end = round_up(max_pfn, PAGES_PER_SECTION);
+	pgcnt += init_unavailable_range(next, end, zone, nid);
 
 	/*
 	 * Struct pages that do not have backing memory. This could be because
 	 * firmware is using some of this memory, or for some other reasons.
 	 */
 	if (pgcnt)
-		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
+		pr_info("Zone %s: zeroed struct page in unavailable ranges: %lld pages", zone_names[zone], pgcnt);
+}
+
+static void __init init_unavailable_mem(void)
+{
+	int zone;
+
+	for (zone = 0; zone < ZONE_MOVABLE; zone++)
+		init_zone_unavailable_mem(zone);
 }
 #else
 static inline void __init init_unavailable_mem(void)