From patchwork Fri Nov 5 20:41:20 2021 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Andrew Morton X-Patchwork-Id: 12605619 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id D5D1EC433F5 for ; Fri, 5 Nov 2021 20:41:23 +0000 (UTC) Received: from kanga.kvack.org (kanga.kvack.org [205.233.56.17]) by mail.kernel.org (Postfix) with ESMTP id 726A06126A for ; Fri, 5 Nov 2021 20:41:23 +0000 (UTC) DMARC-Filter: OpenDMARC Filter v1.4.1 mail.kernel.org 726A06126A Authentication-Results: mail.kernel.org; dmarc=none (p=none dis=none) header.from=linux-foundation.org Authentication-Results: mail.kernel.org; spf=pass smtp.mailfrom=kvack.org Received: by kanga.kvack.org (Postfix) id 0D91694007A; Fri, 5 Nov 2021 16:41:23 -0400 (EDT) Received: by kanga.kvack.org (Postfix, from userid 40) id 087E694007C; Fri, 5 Nov 2021 16:41:23 -0400 (EDT) X-Delivered-To: int-list-linux-mm@kvack.org Received: by kanga.kvack.org (Postfix, from userid 63042) id EA05394007A; Fri, 5 Nov 2021 16:41:22 -0400 (EDT) X-Delivered-To: linux-mm@kvack.org Received: from forelay.hostedemail.com (smtprelay0002.hostedemail.com [216.40.44.2]) by kanga.kvack.org (Postfix) with ESMTP id D582794007C for ; Fri, 5 Nov 2021 16:41:22 -0400 (EDT) Received: from smtpin29.hostedemail.com (10.5.19.251.rfc1918.com [10.5.19.251]) by forelay01.hostedemail.com (Postfix) with ESMTP id 9F9A01855931E for ; Fri, 5 Nov 2021 20:41:22 +0000 (UTC) X-FDA: 78776046804.29.29BE85D Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by imf01.hostedemail.com (Postfix) with ESMTP id 695AC508FA64 for ; Fri, 5 Nov 2021 20:41:10 +0000 (UTC) Received: by mail.kernel.org (Postfix) with ESMTPSA id 05346611C0; Fri, 5 Nov 2021 20:41:20 +0000 (UTC) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=linux-foundation.org; s=korg; t=1636144881; bh=d1qjORPaX5VHzrZw4UVxUevVVCj0RjbXre/+HHENDmA=; h=Date:From:To:Subject:In-Reply-To:From; b=XVIq5Z9iDcnrbSUna4lVx1fB5+2RT/V73ZTPGpAPsGkxW06SMvWIWwqoM0sWEUzMl snv8WqyzgI/ekpDAT8MuHSfKSUKUPsuK5QWIsUr87cmnojZVOBhp85tDMywhgSmHSY xiozl3LCAqyF8g9rYMlnJXxUtzGik+oMQac+vYKw= Date: Fri, 05 Nov 2021 13:41:20 -0700 From: Andrew Morton To: akpm@linux-foundation.org, aneesh.kumar@linux.ibm.com, david@redhat.com, linux-mm@kvack.org, mhocko@suse.com, mike.kravetz@oracle.com, mm-commits@vger.kernel.org, naoya.horiguchi@linux.dev, nghialm78@gmail.com, osalvador@suse.de, rientjes@google.com, songmuchun@bytedance.com, torvalds@linux-foundation.org, ziy@nvidia.com Subject: [patch 128/262] hugetlb: add demote hugetlb page sysfs interfaces Message-ID: <20211105204120.C6nNZAF1p%akpm@linux-foundation.org> In-Reply-To: <20211105133408.cccbb98b71a77d5e8430aba1@linux-foundation.org> User-Agent: s-nail v14.8.16 Authentication-Results: imf01.hostedemail.com; dkim=pass header.d=linux-foundation.org header.s=korg header.b=XVIq5Z9i; dmarc=none; spf=pass (imf01.hostedemail.com: domain of akpm@linux-foundation.org designates 198.145.29.99 as permitted sender) smtp.mailfrom=akpm@linux-foundation.org X-Rspamd-Server: rspam02 X-Rspamd-Queue-Id: 695AC508FA64 X-Stat-Signature: n1a6pbwnsz31ncrzfcx5pjqjs66oj78a X-HE-Tag: 1636144870-925016 X-Bogosity: Ham, tests=bogofilter, spamicity=0.000000, version=1.2.4 Sender: owner-linux-mm@kvack.org Precedence: bulk X-Loop: owner-majordomo@kvack.org List-ID: From: Mike Kravetz Subject: hugetlb: add demote hugetlb page sysfs interfaces Patch series "hugetlb: add demote/split page functionality", v4. The concurrent use of multiple hugetlb page sizes on a single system is becoming more common. One of the reasons is better TLB support for gigantic page sizes on x86 hardware. In addition, hugetlb pages are being used to back VMs in hosting environments. When using hugetlb pages to back VMs, it is often desirable to preallocate hugetlb pools. This avoids the delay and uncertainty of allocating hugetlb pages at VM startup. In addition, preallocating huge pages minimizes the issue of memory fragmentation that increases the longer the system is up and running. In such environments, a combination of larger and smaller hugetlb pages are preallocated in anticipation of backing VMs of various sizes. Over time, the preallocated pool of smaller hugetlb pages may become depleted while larger hugetlb pages still remain. In such situations, it is desirable to convert larger hugetlb pages to smaller hugetlb pages. Converting larger to smaller hugetlb pages can be accomplished today by first freeing the larger page to the buddy allocator and then allocating the smaller pages. For example, to convert 50 GB pages on x86: gb_pages=`cat .../hugepages-1048576kB/nr_hugepages` m2_pages=`cat .../hugepages-2048kB/nr_hugepages` echo $(($gb_pages - 50)) > .../hugepages-1048576kB/nr_hugepages echo $(($m2_pages + 25600)) > .../hugepages-2048kB/nr_hugepages On an idle system this operation is fairly reliable and results are as expected. The number of 2MB pages is increased as expected and the time of the operation is a second or two. However, when there is activity on the system the following issues arise: 1) This process can take quite some time, especially if allocation of the smaller pages is not immediate and requires migration/compaction. 2) There is no guarantee that the total size of smaller pages allocated will match the size of the larger page which was freed. This is because the area freed by the larger page could quickly be fragmented. In a test environment with a load that continually fills the page cache with clean pages, results such as the following can be observed: Unexpected number of 2MB pages allocated: Expected 25600, have 19944 real 0m42.092s user 0m0.008s sys 0m41.467s To address these issues, introduce the concept of hugetlb page demotion. Demotion provides a means of 'in place' splitting of a hugetlb page to pages of a smaller size. This avoids freeing pages to buddy and then trying to allocate from buddy. Page demotion is controlled via sysfs files that reside in the per-hugetlb page size and per node directories. - demote_size Target page size for demotion, a smaller huge page size. File can be written to chose a smaller huge page size if multiple are available. - demote Writable number of hugetlb pages to be demoted To demote 50 GB huge pages, one would: cat .../hugepages-1048576kB/free_hugepages /* optional, verify free pages */ cat .../hugepages-1048576kB/demote_size /* optional, verify target size */ echo 50 > .../hugepages-1048576kB/demote Only hugetlb pages which are free at the time of the request can be demoted. Demotion does not add to the complexity of surplus pages and honors reserved huge pages. Therefore, when a value is written to the sysfs demote file, that value is only the maximum number of pages which will be demoted. It is possible fewer will actually be demoted. The recently introduced per-hstate mutex is used to synchronize demote operations with other operations that modify hugetlb pools. Real world use cases -------------------- The above scenario describes a real world use case where hugetlb pages are used to back VMs on x86. Both issues of long allocation times and not necessarily getting the expected number of smaller huge pages after a free and allocate cycle have been experienced. The occurrence of these issues is dependent on other activity within the host and can not be predicted. This patch (of 5): Two new sysfs files are added to demote hugtlb pages. These files are both per-hugetlb page size and per node. Files are: demote_size - The size in Kb that pages are demoted to. (read-write) demote - The number of huge pages to demote. (write-only) By default, demote_size is the next smallest huge page size. Valid huge page sizes less than huge page size may be written to this file. When huge pages are demoted, they are demoted to this size. Writing a value to demote will result in an attempt to demote that number of hugetlb pages to an appropriate number of demote_size pages. NOTE: Demote interfaces are only provided for huge page sizes if there is a smaller target demote huge page size. For example, on x86 1GB huge pages will have demote interfaces. 2MB huge pages will not have demote interfaces. This patch does not provide full demote functionality. It only provides the sysfs interfaces. It also provides documentation for the new interfaces. [mike.kravetz@oracle.com: n_mask initialization does not need to be protected by the mutex] Link: https://lkml.kernel.org/r/0530e4ef-2492-5186-f919-5db68edea654@oracle.com Link: https://lkml.kernel.org/r/20211007181918.136982-2-mike.kravetz@oracle.com Link: https://lkml.kernel.org/r/20211007181918.136982-2-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz Reviewed-by: Oscar Salvador Cc: David Hildenbrand Cc: Michal Hocko Cc: Zi Yan Cc: Muchun Song Cc: Naoya Horiguchi Cc: David Rientjes Cc: "Aneesh Kumar K . V" Cc: Nghia Le Cc: Mike Kravetz Signed-off-by: Andrew Morton --- Documentation/admin-guide/mm/hugetlbpage.rst | 30 +++ include/linux/hugetlb.h | 1 mm/hugetlb.c | 155 ++++++++++++++++- 3 files changed, 183 insertions(+), 3 deletions(-) --- a/Documentation/admin-guide/mm/hugetlbpage.rst~hugetlb-add-demote-hugetlb-page-sysfs-interfaces +++ a/Documentation/admin-guide/mm/hugetlbpage.rst @@ -234,8 +234,12 @@ will exist, of the form:: hugepages-${size}kB -Inside each of these directories, the same set of files will exist:: +Inside each of these directories, the set of files contained in ``/proc`` +will exist. In addition, two additional interfaces for demoting huge +pages may exist:: + demote + demote_size nr_hugepages nr_hugepages_mempolicy nr_overcommit_hugepages @@ -243,7 +247,29 @@ Inside each of these directories, the sa resv_hugepages surplus_hugepages -which function as described above for the default huge page-sized case. +The demote interfaces provide the ability to split a huge page into +smaller huge pages. For example, the x86 architecture supports both +1GB and 2MB huge pages sizes. A 1GB huge page can be split into 512 +2MB huge pages. Demote interfaces are not available for the smallest +huge page size. The demote interfaces are: + +demote_size + is the size of demoted pages. When a page is demoted a corresponding + number of huge pages of demote_size will be created. By default, + demote_size is set to the next smaller huge page size. If there are + multiple smaller huge page sizes, demote_size can be set to any of + these smaller sizes. Only huge page sizes less than the current huge + pages size are allowed. + +demote + is used to demote a number of huge pages. A user with root privileges + can write to this file. It may not be possible to demote the + requested number of huge pages. To determine how many pages were + actually demoted, compare the value of nr_hugepages before and after + writing to the demote interface. demote is a write only interface. + +The interfaces which are the same as in ``/proc`` (all except demote and +demote_size) function as described above for the default huge page-sized case. .. _mem_policy_and_hp_alloc: --- a/include/linux/hugetlb.h~hugetlb-add-demote-hugetlb-page-sysfs-interfaces +++ a/include/linux/hugetlb.h @@ -586,6 +586,7 @@ struct hstate { int next_nid_to_alloc; int next_nid_to_free; unsigned int order; + unsigned int demote_order; unsigned long mask; unsigned long max_huge_pages; unsigned long nr_huge_pages; --- a/mm/hugetlb.c~hugetlb-add-demote-hugetlb-page-sysfs-interfaces +++ a/mm/hugetlb.c @@ -2986,7 +2986,7 @@ free: static void __init hugetlb_init_hstates(void) { - struct hstate *h; + struct hstate *h, *h2; for_each_hstate(h) { if (minimum_order > huge_page_order(h)) @@ -2995,6 +2995,22 @@ static void __init hugetlb_init_hstates( /* oversize hugepages were init'ed in early boot */ if (!hstate_is_gigantic(h)) hugetlb_hstate_alloc_pages(h); + + /* + * Set demote order for each hstate. Note that + * h->demote_order is initially 0. + * - We can not demote gigantic pages if runtime freeing + * is not supported, so skip this. + */ + if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) + continue; + for_each_hstate(h2) { + if (h2 == h) + continue; + if (h2->order < h->order && + h2->order > h->demote_order) + h->demote_order = h2->order; + } } VM_BUG_ON(minimum_order == UINT_MAX); } @@ -3235,9 +3251,31 @@ out: return 0; } +static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) + __must_hold(&hugetlb_lock) +{ + int rc = 0; + + lockdep_assert_held(&hugetlb_lock); + + /* We should never get here if no demote order */ + if (!h->demote_order) { + pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); + return -EINVAL; /* internal error */ + } + + /* + * TODO - demote fucntionality will be added in subsequent patch + */ + return rc; +} + #define HSTATE_ATTR_RO(_name) \ static struct kobj_attribute _name##_attr = __ATTR_RO(_name) +#define HSTATE_ATTR_WO(_name) \ + static struct kobj_attribute _name##_attr = __ATTR_WO(_name) + #define HSTATE_ATTR(_name) \ static struct kobj_attribute _name##_attr = \ __ATTR(_name, 0644, _name##_show, _name##_store) @@ -3433,6 +3471,105 @@ static ssize_t surplus_hugepages_show(st } HSTATE_ATTR_RO(surplus_hugepages); +static ssize_t demote_store(struct kobject *kobj, + struct kobj_attribute *attr, const char *buf, size_t len) +{ + unsigned long nr_demote; + unsigned long nr_available; + nodemask_t nodes_allowed, *n_mask; + struct hstate *h; + int err = 0; + int nid; + + err = kstrtoul(buf, 10, &nr_demote); + if (err) + return err; + h = kobj_to_hstate(kobj, &nid); + + if (nid != NUMA_NO_NODE) { + init_nodemask_of_node(&nodes_allowed, nid); + n_mask = &nodes_allowed; + } else { + n_mask = &node_states[N_MEMORY]; + } + + /* Synchronize with other sysfs operations modifying huge pages */ + mutex_lock(&h->resize_lock); + spin_lock_irq(&hugetlb_lock); + + while (nr_demote) { + /* + * Check for available pages to demote each time thorough the + * loop as demote_pool_huge_page will drop hugetlb_lock. + * + * NOTE: demote_pool_huge_page does not yet drop hugetlb_lock + * but will when full demote functionality is added in a later + * patch. + */ + if (nid != NUMA_NO_NODE) + nr_available = h->free_huge_pages_node[nid]; + else + nr_available = h->free_huge_pages; + nr_available -= h->resv_huge_pages; + if (!nr_available) + break; + + err = demote_pool_huge_page(h, n_mask); + if (err) + break; + + nr_demote--; + } + + spin_unlock_irq(&hugetlb_lock); + mutex_unlock(&h->resize_lock); + + if (err) + return err; + return len; +} +HSTATE_ATTR_WO(demote); + +static ssize_t demote_size_show(struct kobject *kobj, + struct kobj_attribute *attr, char *buf) +{ + int nid; + struct hstate *h = kobj_to_hstate(kobj, &nid); + unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; + + return sysfs_emit(buf, "%lukB\n", demote_size); +} + +static ssize_t demote_size_store(struct kobject *kobj, + struct kobj_attribute *attr, + const char *buf, size_t count) +{ + struct hstate *h, *demote_hstate; + unsigned long demote_size; + unsigned int demote_order; + int nid; + + demote_size = (unsigned long)memparse(buf, NULL); + + demote_hstate = size_to_hstate(demote_size); + if (!demote_hstate) + return -EINVAL; + demote_order = demote_hstate->order; + + /* demote order must be smaller than hstate order */ + h = kobj_to_hstate(kobj, &nid); + if (demote_order >= h->order) + return -EINVAL; + + /* resize_lock synchronizes access to demote size and writes */ + mutex_lock(&h->resize_lock); + h->demote_order = demote_order; + mutex_unlock(&h->resize_lock); + + return count; +} +HSTATE_ATTR(demote_size); + static struct attribute *hstate_attrs[] = { &nr_hugepages_attr.attr, &nr_overcommit_hugepages_attr.attr, @@ -3449,6 +3586,16 @@ static const struct attribute_group hsta .attrs = hstate_attrs, }; +static struct attribute *hstate_demote_attrs[] = { + &demote_size_attr.attr, + &demote_attr.attr, + NULL, +}; + +static const struct attribute_group hstate_demote_attr_group = { + .attrs = hstate_demote_attrs, +}; + static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, struct kobject **hstate_kobjs, const struct attribute_group *hstate_attr_group) @@ -3466,6 +3613,12 @@ static int hugetlb_sysfs_add_hstate(stru hstate_kobjs[hi] = NULL; } + if (h->demote_order) { + if (sysfs_create_group(hstate_kobjs[hi], + &hstate_demote_attr_group)) + pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); + } + return retval; }