@@ -1317,6 +1317,8 @@ vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
try_to_free_swap(page);
if (page_count(page) == 1) {
pmd_t entry;
+
+ page_move_anon_rmap(page, vma);
entry = pmd_mkyoung(orig_pmd);
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
@@ -3307,6 +3307,7 @@ static vm_fault_t do_wp_page(struct vm_fault *vmf)
* and the page is locked, it's dark out, and we're wearing
* sunglasses. Hit it.
*/
+ page_move_anon_rmap(page, vma);
unlock_page(page);
wp_page_reuse(vmf);
return VM_FAULT_WRITE;
We want to mark anonymous pages exclusive, and when using page_move_anon_rmap() we know that we are the exclusive user, as properly documented. This is a preparation for marking anonymous pages exclusive in page_move_anon_rmap(). In both instances, we're holding page lock and are sure that we're the exclusive owner (page_count() == 1). hugetlb already properly uses page_move_anon_rmap() in the write fault handler. Note that in case of a PTE-mapped THP, we'll only end up calling this function if the whole THP is only referenced by the single PTE mapping a single subpage (page_count() == 1); consequently, it's fine to modify the compound page mapping inside page_move_anon_rmap(). Signed-off-by: David Hildenbrand <david@redhat.com> --- mm/huge_memory.c | 2 ++ mm/memory.c | 1 + 2 files changed, 3 insertions(+)