@@ -37,6 +37,34 @@ void accept_memory(phys_addr_t start, phys_addr_t end)
start -= unaccepted->phys_base;
end -= unaccepted->phys_base;
+ /*
+ * load_unaligned_zeropad() can lead to unwanted loads across page
+ * boundaries. The unwanted loads are typically harmless. But, they
+ * might be made to totally unrelated or even unmapped memory.
+ * load_unaligned_zeropad() relies on exception fixup (#PF, #GP and now
+ * #VE) to recover from these unwanted loads.
+ *
+ * But, this approach does not work for unaccepted memory. For TDX, a
+ * load from unaccepted memory will not lead to a recoverable exception
+ * within the guest. The guest will exit to the VMM where the only
+ * recourse is to terminate the guest.
+ *
+ * There are two parts to fix this issue and comprehensively avoid
+ * access to unaccepted memory. Together these ensure that an extra
+ * "guard" page is accepted in addition to the memory that needs to be
+ * used:
+ *
+ * 1. Implicitly extend the range_contains_unaccepted_memory(start, end)
+ * checks up to end+unit_size if 'end' is aligned on a unit_size
+ * boundary.
+ *
+ * 2. Implicitly extend accept_memory(start, end) to end+unit_size if
+ * 'end' is aligned on a unit_size boundary. (immediately following
+ * this comment)
+ */
+ if (!(end % unit_size))
+ end += unit_size;
+
/* Make sure not to overrun the bitmap */
if (end > unaccepted->size * unit_size * BITS_PER_BYTE)
end = unaccepted->size * unit_size * BITS_PER_BYTE;
@@ -84,6 +112,13 @@ bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end)
start -= unaccepted->phys_base;
end -= unaccepted->phys_base;
+ /*
+ * Also consider the unaccepted state of the *next* page. See fix #1 in
+ * the comment on load_unaligned_zeropad() in accept_memory().
+ */
+ if (!(end % unit_size))
+ end += unit_size;
+
/* Make sure not to overrun the bitmap */
if (end > unaccepted->size * unit_size * BITS_PER_BYTE)
end = unaccepted->size * unit_size * BITS_PER_BYTE;