diff mbox series

[v3,15/25] rust: alloc: implement kernel `Vec` type

Message ID 20240801000641.1882-16-dakr@kernel.org (mailing list archive)
State New
Headers show
Series Generic `Allocator` support for Rust | expand

Commit Message

Danilo Krummrich Aug. 1, 2024, 12:02 a.m. UTC
`Vec` provides a contiguous growable array type (such as `Vec`) with
contents allocated with the kernel's allocators (e.g. `Kmalloc`,
`Vmalloc` or `KVmalloc`).

In contrast to Rust's `Vec` type, the kernel `Vec` type considers the
kernel's GFP flags for all appropriate functions, always reports
allocation failures through `Result<_, AllocError>` and remains
independent from unstable features.

Signed-off-by: Danilo Krummrich <dakr@kernel.org>
---
 rust/kernel/alloc.rs      |   6 +
 rust/kernel/alloc/kbox.rs |  16 +-
 rust/kernel/alloc/kvec.rs | 583 ++++++++++++++++++++++++++++++++++++++
 rust/kernel/prelude.rs    |   2 +-
 4 files changed, 605 insertions(+), 2 deletions(-)
 create mode 100644 rust/kernel/alloc/kvec.rs

Comments

Alice Ryhl Aug. 1, 2024, 3:05 p.m. UTC | #1
On Thu, Aug 1, 2024 at 2:08 AM Danilo Krummrich <dakr@kernel.org> wrote:
>
> `Vec` provides a contiguous growable array type (such as `Vec`) with
> contents allocated with the kernel's allocators (e.g. `Kmalloc`,
> `Vmalloc` or `KVmalloc`).
>
> In contrast to Rust's `Vec` type, the kernel `Vec` type considers the
> kernel's GFP flags for all appropriate functions, always reports
> allocation failures through `Result<_, AllocError>` and remains
> independent from unstable features.
>
> Signed-off-by: Danilo Krummrich <dakr@kernel.org>
> ---
>  rust/kernel/alloc.rs      |   6 +
>  rust/kernel/alloc/kbox.rs |  16 +-
>  rust/kernel/alloc/kvec.rs | 583 ++++++++++++++++++++++++++++++++++++++
>  rust/kernel/prelude.rs    |   2 +-
>  4 files changed, 605 insertions(+), 2 deletions(-)
>  create mode 100644 rust/kernel/alloc/kvec.rs
>
> diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs
> index 4bddd023aa7f..bd93140f3094 100644
> --- a/rust/kernel/alloc.rs
> +++ b/rust/kernel/alloc.rs
> @@ -5,6 +5,7 @@
>  #[cfg(not(any(test, testlib)))]
>  pub mod allocator;
>  pub mod kbox;
> +pub mod kvec;
>  pub mod vec_ext;
>
>  #[cfg(any(test, testlib))]
> @@ -18,6 +19,11 @@
>  pub use self::kbox::KVBox;
>  pub use self::kbox::VBox;
>
> +pub use self::kvec::KVVec;
> +pub use self::kvec::KVec;
> +pub use self::kvec::VVec;
> +pub use self::kvec::Vec;
> +
>  /// Indicates an allocation error.
>  #[derive(Copy, Clone, PartialEq, Eq, Debug)]
>  pub struct AllocError;
> diff --git a/rust/kernel/alloc/kbox.rs b/rust/kernel/alloc/kbox.rs
> index 7074f00e07bc..39feaed4a8f8 100644
> --- a/rust/kernel/alloc/kbox.rs
> +++ b/rust/kernel/alloc/kbox.rs
> @@ -2,7 +2,7 @@
>
>  //! Implementation of [`Box`].
>
> -use super::{AllocError, Allocator, Flags};
> +use super::{AllocError, Allocator, Flags, Vec};
>  use core::fmt;
>  use core::marker::PhantomData;
>  use core::mem::ManuallyDrop;
> @@ -169,6 +169,20 @@ pub fn into_pin(b: Self) -> Pin<Self>
>      }
>  }
>
> +impl<T, A, const N: usize> Box<[T; N], A>
> +where
> +    A: Allocator,
> +{
> +    /// Convert a `Box<[T], A>` to a `Vec<T, A>`.
> +    pub fn into_vec(b: Self) -> Vec<T, A> {

This doc-comment seems wrong. [T] and [T; N] are not the same thing.

> +        let len = b.len();
> +        unsafe {
> +            let ptr = Self::into_raw(b);
> +            Vec::from_raw_parts(ptr as _, len, len)
> +        }
> +    }
> +}
> +
>  impl<T, A> Box<MaybeUninit<T>, A>
>  where
>      A: Allocator,
> diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs
> new file mode 100644
> index 000000000000..04cc85f7d92c
> --- /dev/null
> +++ b/rust/kernel/alloc/kvec.rs
> @@ -0,0 +1,583 @@
> +// SPDX-License-Identifier: GPL-2.0
> +
> +//! Implementation of [`Vec`].
> +
> +use super::{AllocError, Allocator, Flags};
> +use crate::types::Unique;
> +use core::{
> +    fmt,
> +    marker::PhantomData,
> +    mem::{ManuallyDrop, MaybeUninit},
> +    ops::Deref,
> +    ops::DerefMut,
> +    ops::Index,
> +    ops::IndexMut,
> +    slice,
> +    slice::SliceIndex,
> +};
> +
> +/// Create a [`Vec`] containing the arguments.
> +///
> +/// # Examples
> +///
> +/// ```
> +/// let mut v = kernel::kvec![];
> +/// v.push(1, GFP_KERNEL)?;
> +/// assert_eq!(v, [1]);
> +///
> +/// let mut v = kernel::kvec![1; 3]?;
> +/// v.push(4, GFP_KERNEL)?;
> +/// assert_eq!(v, [1, 1, 1, 4]);
> +///
> +/// let mut v = kernel::kvec![1, 2, 3]?;
> +/// v.push(4, GFP_KERNEL)?;
> +/// assert_eq!(v, [1, 2, 3, 4]);
> +///
> +/// # Ok::<(), Error>(())
> +/// ```
> +#[macro_export]
> +macro_rules! kvec {
> +    () => (
> +        {
> +            $crate::alloc::KVec::new()
> +        }
> +    );
> +    ($elem:expr; $n:expr) => (
> +        {
> +            $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
> +        }
> +    );
> +    ($($x:expr),+ $(,)?) => (
> +        {
> +            match $crate::alloc::KBox::new([$($x),+], GFP_KERNEL) {
> +                Ok(b) => Ok($crate::alloc::KBox::into_vec(b)),
> +                Err(e) => Err(e),
> +            }
> +        }
> +    );
> +}
> +
> +/// The kernel's [`Vec`] type.
> +///
> +/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
> +/// `Kmalloc`, `Vmalloc` or `KVmalloc`, written `Vec<T, A>`.

A closing bracket is missing in this sentence.

> +/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
> +/// the most common allocators the type aliases `KVec`, `VVec` and `KVVec` exist.
> +///
> +/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
> +///
> +/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
> +/// capacity of the vector (the number of elements that currently fit into the vector), it's length
> +/// (the number of elements that are currently stored in the vector) and the `Allocator` used to
> +/// allocate (and free) the backing buffer.
> +///
> +/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts
> +/// and manually modified.
> +///
> +/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
> +/// are added to the vector.
> +///
> +/// # Invariants
> +///
> +/// The [`Vec`] backing buffer's pointer always properly aligned and either points to memory
> +/// allocated with `A` or, for zero-sized types, is a dangling pointer.
> +///
> +/// The length of the vector always represents the exact number of elements stored in the vector.
> +///
> +/// The capacity of the vector always represents the absolute number of elements that can be stored
> +/// within the vector without re-allocation. However, it is legal for the backing buffer to be
> +/// larger than `size_of<T>` times the capacity.
> +///
> +/// The `Allocator` of the vector is the exact allocator the backing buffer was allocated with (and
> +/// must be freed with).
> +pub struct Vec<T, A: Allocator> {
> +    ptr: Unique<T>,
> +    /// Never used for ZSTs; it's `capacity()`'s responsibility to return usize::MAX in that case.
> +    ///
> +    /// # Safety
> +    ///
> +    /// `cap` must be in the `0..=isize::MAX` range.
> +    cap: usize,

This section header should say Invariants, not Safety.

> +    len: usize,
> +    _p: PhantomData<A>,
> +}
> +
> +/// Type alias for `Vec` with a `Kmalloc` allocator.
> +///
> +/// # Examples
> +///
> +/// ```
> +/// let mut v = KVec::new();
> +/// v.push(1, GFP_KERNEL)?;
> +/// assert_eq!(&v, &[1]);
> +///
> +/// # Ok::<(), Error>(())
> +/// ```
> +pub type KVec<T> = Vec<T, super::allocator::Kmalloc>;
> +
> +/// Type alias for `Vec` with a `Vmalloc` allocator.
> +///
> +/// # Examples
> +///
> +/// ```
> +/// let mut v = VVec::new();
> +/// v.push(1, GFP_KERNEL)?;
> +/// assert_eq!(&v, &[1]);
> +///
> +/// # Ok::<(), Error>(())
> +/// ```
> +pub type VVec<T> = Vec<T, super::allocator::Vmalloc>;
> +
> +/// Type alias for `Vec` with a `KVmalloc` allocator.
> +///
> +/// # Examples
> +///
> +/// ```
> +/// let mut v = KVVec::new();
> +/// v.push(1, GFP_KERNEL)?;
> +/// assert_eq!(&v, &[1]);
> +///
> +/// # Ok::<(), Error>(())
> +/// ```
> +pub type KVVec<T> = Vec<T, super::allocator::KVmalloc>;
> +
> +impl<T, A> Vec<T, A>
> +where
> +    A: Allocator,
> +{
> +    #[inline]
> +    fn is_zst() -> bool {
> +        core::mem::size_of::<T>() == 0
> +    }
> +
> +    /// Returns the total number of elements the vector can hold without
> +    /// reallocating.
> +    pub fn capacity(&self) -> usize {
> +        if Self::is_zst() {
> +            usize::MAX
> +        } else {
> +            self.cap
> +        }
> +    }

I would consider always storing usize::MAX in the capacity field for zst types?

> +
> +    /// Returns the number of elements in the vector, also referred to
> +    /// as its 'length'.
> +    #[inline]
> +    pub fn len(&self) -> usize {
> +        self.len
> +    }
> +
> +    /// Forces the length of the vector to new_len.
> +    ///
> +    /// # Safety
> +    ///
> +    /// - `new_len` must be less than or equal to [`Self::capacity()`].
> +    /// - The elements at `old_len..new_len` must be initialized.
> +    #[inline]
> +    pub unsafe fn set_len(&mut self, new_len: usize) {
> +        self.len = new_len;
> +    }
> +
> +    /// Extracts a slice containing the entire vector.
> +    ///
> +    /// Equivalent to `&s[..]`.
> +    #[inline]
> +    pub fn as_slice(&self) -> &[T] {
> +        self
> +    }
> +
> +    /// Extracts a mutable slice of the entire vector.
> +    ///
> +    /// Equivalent to `&mut s[..]`.
> +    #[inline]
> +    pub fn as_mut_slice(&mut self) -> &mut [T] {
> +        self
> +    }
> +
> +    /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling
> +    /// raw pointer valid for zero sized reads if the vector didn't allocate.
> +    #[inline]
> +    pub fn as_mut_ptr(&self) -> *mut T {
> +        self.ptr.as_ptr()
> +    }
> +
> +    /// Returns a raw pointer to the slice's buffer.
> +    #[inline]
> +    pub fn as_ptr(&self) -> *const T {
> +        self.as_mut_ptr()
> +    }
> +
> +    /// Returns `true` if the vector contains no elements.
> +    ///
> +    /// # Examples
> +    ///
> +    /// ```
> +    /// let mut v = KVec::new();
> +    /// assert!(v.is_empty());
> +    ///
> +    /// v.push(1, GFP_KERNEL);
> +    /// assert!(!v.is_empty());
> +    /// ```
> +    #[inline]
> +    pub fn is_empty(&self) -> bool {
> +        self.len() == 0
> +    }
> +
> +    /// Constructs a new, empty Vec<T, A>.
> +    ///
> +    /// This method does not allocate by itself.
> +    #[inline]
> +    pub const fn new() -> Self {
> +        Self {
> +            ptr: Unique::dangling(),
> +            cap: 0,
> +            len: 0,
> +            _p: PhantomData::<A>,
> +        }
> +    }
> +
> +    /// Returns the remaining spare capacity of the vector as a slice of `MaybeUninit<T>`.
> +    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
> +        // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
> +        // and valid, but uninitialized.
> +        unsafe {
> +            slice::from_raw_parts_mut(
> +                self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
> +                self.capacity() - self.len,
> +            )
> +        }

Is this correct for ZSTs?

> +    }
> +
> +    /// Appends an element to the back of the [`Vec`] instance.
> +    ///
> +    /// # Examples
> +    ///
> +    /// ```
> +    /// let mut v = KVec::new();
> +    /// v.push(1, GFP_KERNEL)?;
> +    /// assert_eq!(&v, &[1]);
> +    ///
> +    /// v.push(2, GFP_KERNEL)?;
> +    /// assert_eq!(&v, &[1, 2]);
> +    /// # Ok::<(), Error>(())
> +    /// ```
> +    pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
> +        Vec::reserve(self, 1, flags)?;
> +        let s = self.spare_capacity_mut();
> +        s[0].write(v);
> +
> +        // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
> +        // by 1. We also know that the new length is <= capacity because of the previous call to
> +        // `reserve` above.
> +        unsafe { self.set_len(self.len() + 1) };
> +        Ok(())
> +    }
> +
> +    /// Creates a new [`Vec`] instance with at least the given capacity.
> +    ///
> +    /// # Examples
> +    ///
> +    /// ```
> +    /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
> +    ///
> +    /// assert!(v.capacity() >= 20);
> +    /// # Ok::<(), Error>(())
> +    /// ```
> +    pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
> +        let mut v = Vec::new();
> +
> +        Self::reserve(&mut v, capacity, flags)?;
> +
> +        Ok(v)
> +    }
> +
> +    /// Pushes clones of the elements of slice into the [`Vec`] instance.
> +    ///
> +    /// # Examples
> +    ///
> +    /// ```
> +    /// let mut v = KVec::new();
> +    /// v.push(1, GFP_KERNEL)?;
> +    ///
> +    /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
> +    /// assert_eq!(&v, &[1, 20, 30, 40]);
> +    ///
> +    /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
> +    /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
> +    /// # Ok::<(), Error>(())
> +    /// ```
> +    pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError>
> +    where
> +        T: Clone,
> +    {
> +        self.reserve(other.len(), flags)?;
> +        for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
> +            slot.write(item.clone());
> +        }
> +
> +        // SAFETY: We just initialised the `other.len()` spare entries, so it is safe to increase
> +        // the length by the same amount. We also know that the new length is <= capacity because
> +        // of the previous call to `reserve` above.
> +        unsafe { self.set_len(self.len() + other.len()) };
> +        Ok(())
> +    }
> +
> +    /// Creates a Vec<T, A> directly from a pointer, a length, a capacity, and an allocator.
> +    ///
> +    /// # Safety
> +    ///
> +    /// This is highly unsafe, due to the number of invariants that aren’t checked:
> +    ///
> +    /// - `ptr` must be currently allocated via the given allocator `A`.
> +    /// - `T` needs to have the same alignment as what `ptr` was allocated with. (`T` having a less
> +    ///   strict alignment is not sufficient, the alignment really needs to be equal to satisfy the
> +    ///   `dealloc` requirement that memory must be allocated and deallocated with the same layout.)
> +    /// - The size of `T` times the `capacity` (i.e. the allocated size in bytes) needs to be
> +    ///   smaller or equal the size the pointer was allocated with.
> +    /// - `length` needs to be less than or equal to `capacity`.
> +    /// - The first `length` values must be properly initialized values of type `T`.
> +    /// - The allocated size in bytes must be no larger than `isize::MAX`. See the safety
> +    ///   documentation of `pointer::offset`.
> +    ///
> +    /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
> +    /// `cap` and `len`.
> +    ///
> +    /// # Examples
> +    ///
> +    /// ```
> +    /// let mut v = kernel::kvec![1, 2, 3]?;
> +    /// v.reserve(1, GFP_KERNEL)?;
> +    ///
> +    /// let (mut ptr, mut len, cap) = v.into_raw_parts();
> +    ///
> +    /// // SAFETY: We've just reserved memory for another element.
> +    /// unsafe { ptr.add(len).write(4) };
> +    /// len += 1;
> +    ///
> +    /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
> +    /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
> +    /// // from the exact same raw parts.
> +    /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
> +    ///
> +    /// assert_eq!(v, [1, 2, 3, 4]);
> +    ///
> +    /// # Ok::<(), Error>(())
> +    /// ```
> +    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
> +        let cap = if Self::is_zst() { 0 } else { capacity };
> +
> +        Self {
> +            // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
> +            // memory allocation, allocated with `A`.
> +            ptr: unsafe { Unique::new_unchecked(ptr) },
> +            cap,
> +            len: length,
> +            _p: PhantomData::<A>,
> +        }
> +    }
> +
> +    /// Decomposes a `Vec<T, A>` into its raw components: (`pointer`, `length`, `capacity`).
> +    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
> +        let me = ManuallyDrop::new(self);
> +        let len = me.len();
> +        let capacity = me.capacity();
> +        let ptr = me.as_mut_ptr();
> +        (ptr, len, capacity)
> +    }
> +
> +    /// Ensures that the capacity exceeds the length by at least `additional` elements.
> +    ///
> +    /// # Examples
> +    ///
> +    /// ```
> +    /// let mut v = KVec::new();
> +    /// v.push(1, GFP_KERNEL)?;
> +    ///
> +    /// v.reserve(10, GFP_KERNEL)?;
> +    /// let cap = v.capacity();
> +    /// assert!(cap >= 10);
> +    ///
> +    /// v.reserve(10, GFP_KERNEL)?;
> +    /// let new_cap = v.capacity();
> +    /// assert_eq!(new_cap, cap);
> +    ///
> +    /// # Ok::<(), Error>(())
> +    /// ```
> +    pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
> +        let len = self.len();
> +        let cap = self.capacity();
> +
> +        if cap - len >= additional {
> +            return Ok(());
> +        }
> +
> +        if Self::is_zst() {
> +            // The capacity is already `usize::MAX` for SZTs, we can't go higher.
> +            return Err(AllocError);
> +        }
> +
> +        // We know cap is <= `isize::MAX` because `Layout::array` fails if the resulting byte size
> +        // is greater than `isize::MAX`. So the multiplication by two won't overflow.

You know it won't overflow because of the type invariants. The thing
about Layout::array should instead be used to argue why setting
self.cap below does not break the invariants.

> +        let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
> +        let layout = core::alloc::Layout::array::<T>(new_cap).map_err(|_| AllocError)?;
> +
> +        // We need to make sure that `ptr` is either NULL or comes from a previous call to
> +        // `realloc_flags`. A `Vec<T, A>`'s `ptr` value is not guaranteed to be NULL and might be
> +        // dangling after being created with `Vec::new`. Instead, we can rely on `Vec<T, A>`'s
> +        // capacity to be zero if no memory has been allocated yet.
> +        let ptr = if cap == 0 {
> +            None
> +        } else {
> +            Some(self.ptr.as_non_null().cast())
> +        };
> +
> +        // SAFETY: `ptr` is valid because it's either `None` or comes from a previous call to
> +        // `A::realloc`. We also verified that the type is not a ZST.
> +        let ptr = unsafe { A::realloc(ptr, layout, flags)? };
> +
> +        self.ptr = ptr.cast().into();
> +        self.cap = new_cap;
> +
> +        Ok(())
> +    }
> +}
> +
> +impl<T: Clone, A: Allocator> Vec<T, A> {
> +    /// Extend the vector by `n` clones of value.
> +    pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
> +        self.reserve(n, flags)?;
> +
> +        let spare = self.spare_capacity_mut();
> +
> +        for i in 0..spare.len() - 1 {
> +            spare[i].write(value.clone());
> +        }

Minus one? Shouldn't this instead loop for `0..n`?

> +
> +        // We can write the last element directly without cloning needlessly
> +        spare[spare.len() - 1].write(value);

spare[n-1].write(value);

> +
> +        // SAFETY: `self.reserve` not bailing out with an error guarantees that we're not
> +        // exceeding the capacity of this `Vec`.
> +        unsafe { self.set_len(self.len() + n) };
> +
> +        Ok(())
> +    }
> +
> +    /// Create a new `Vec<T, A> and extend it by `n` clones of `value`.
> +    pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
> +        let mut v = Self::with_capacity(n, flags)?;
> +
> +        v.extend_with(n, value, flags)?;
> +
> +        Ok(v)
> +    }
> +}
> +
> +impl<T, A> Drop for Vec<T, A>
> +where
> +    A: Allocator,
> +{
> +    fn drop(&mut self) {
> +        // SAFETY: We need to drop the vector's elements in place, before we free the backing
> +        // memory.
> +        unsafe {
> +            core::ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
> +                self.as_mut_ptr(),
> +                self.len,
> +            ))
> +        };
> +
> +        // If `cap == 0` we never allocated any memory in the first place.
> +        if self.cap != 0 {
> +            // SAFETY: `self.ptr` was previously allocated with `A`.
> +            unsafe { A::free(self.ptr.as_non_null().cast()) };

Do you need a ZST check here?

> +        }
> +    }
> +}
> +
> +impl<T> Default for KVec<T> {
> +    #[inline]
> +    fn default() -> Self {
> +        Self::new()
> +    }
> +}
> +
> +impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
> +    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
> +        fmt::Debug::fmt(&**self, f)
> +    }
> +}
> +
> +impl<T, A> Deref for Vec<T, A>
> +where
> +    A: Allocator,
> +{
> +    type Target = [T];
> +
> +    #[inline]
> +    fn deref(&self) -> &[T] {
> +        // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
> +        // initialized elements of type `T`.
> +        unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
> +    }
> +}
> +
> +impl<T, A> DerefMut for Vec<T, A>
> +where
> +    A: Allocator,
> +{
> +    #[inline]
> +    fn deref_mut(&mut self) -> &mut [T] {
> +        // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
> +        // initialized elements of type `T`.
> +        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
> +    }
> +}
> +
> +impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
> +
> +impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
> +where
> +    A: Allocator,
> +{
> +    type Output = I::Output;
> +
> +    #[inline]
> +    fn index(&self, index: I) -> &Self::Output {
> +        Index::index(&**self, index)
> +    }
> +}
> +
> +impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
> +where
> +    A: Allocator,
> +{
> +    #[inline]
> +    fn index_mut(&mut self, index: I) -> &mut Self::Output {
> +        IndexMut::index_mut(&mut **self, index)
> +    }
> +}
> +
> +macro_rules! __impl_slice_eq {
> +    ([$($vars:tt)*] $lhs:ty, $rhs:ty $(where $ty:ty: $bound:ident)?) => {
> +        impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
> +        where
> +            T: PartialEq<U>,
> +            $($ty: $bound)?
> +        {
> +            #[inline]
> +            fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
> +        }
> +    }
> +}
> +
> +__impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> }
> +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &[U] }
> +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &mut [U] }
> +__impl_slice_eq! { [A: Allocator] &[T], Vec<U, A> }
> +__impl_slice_eq! { [A: Allocator] &mut [T], Vec<U, A> }
> +__impl_slice_eq! { [A: Allocator] Vec<T, A>, [U] }
> +__impl_slice_eq! { [A: Allocator] [T], Vec<U, A> }
> +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] }
> +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] }
> diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs
> index 6bf77577eae7..bb80a43d20fb 100644
> --- a/rust/kernel/prelude.rs
> +++ b/rust/kernel/prelude.rs
> @@ -14,7 +14,7 @@
>  #[doc(no_inline)]
>  pub use core::pin::Pin;
>
> -pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, VBox};
> +pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, KVVec, KVec, VBox, VVec};
>
>  #[doc(no_inline)]
>  pub use alloc::vec::Vec;
> --
> 2.45.2
>
Danilo Krummrich Aug. 1, 2024, 3:27 p.m. UTC | #2
On Thu, Aug 01, 2024 at 05:05:41PM +0200, Alice Ryhl wrote:
> On Thu, Aug 1, 2024 at 2:08 AM Danilo Krummrich <dakr@kernel.org> wrote:
> >
> > `Vec` provides a contiguous growable array type (such as `Vec`) with
> > contents allocated with the kernel's allocators (e.g. `Kmalloc`,
> > `Vmalloc` or `KVmalloc`).
> >
> > In contrast to Rust's `Vec` type, the kernel `Vec` type considers the
> > kernel's GFP flags for all appropriate functions, always reports
> > allocation failures through `Result<_, AllocError>` and remains
> > independent from unstable features.
> >
> > Signed-off-by: Danilo Krummrich <dakr@kernel.org>
> > ---
> >  rust/kernel/alloc.rs      |   6 +
> >  rust/kernel/alloc/kbox.rs |  16 +-
> >  rust/kernel/alloc/kvec.rs | 583 ++++++++++++++++++++++++++++++++++++++
> >  rust/kernel/prelude.rs    |   2 +-
> >  4 files changed, 605 insertions(+), 2 deletions(-)
> >  create mode 100644 rust/kernel/alloc/kvec.rs
> >
> > diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs
> > index 4bddd023aa7f..bd93140f3094 100644
> > --- a/rust/kernel/alloc.rs
> > +++ b/rust/kernel/alloc.rs
> > @@ -5,6 +5,7 @@
> >  #[cfg(not(any(test, testlib)))]
> >  pub mod allocator;
> >  pub mod kbox;
> > +pub mod kvec;
> >  pub mod vec_ext;
> >
> >  #[cfg(any(test, testlib))]
> > @@ -18,6 +19,11 @@
> >  pub use self::kbox::KVBox;
> >  pub use self::kbox::VBox;
> >
> > +pub use self::kvec::KVVec;
> > +pub use self::kvec::KVec;
> > +pub use self::kvec::VVec;
> > +pub use self::kvec::Vec;
> > +
> >  /// Indicates an allocation error.
> >  #[derive(Copy, Clone, PartialEq, Eq, Debug)]
> >  pub struct AllocError;
> > diff --git a/rust/kernel/alloc/kbox.rs b/rust/kernel/alloc/kbox.rs
> > index 7074f00e07bc..39feaed4a8f8 100644
> > --- a/rust/kernel/alloc/kbox.rs
> > +++ b/rust/kernel/alloc/kbox.rs
> > @@ -2,7 +2,7 @@
> >
> >  //! Implementation of [`Box`].
> >
> > -use super::{AllocError, Allocator, Flags};
> > +use super::{AllocError, Allocator, Flags, Vec};
> >  use core::fmt;
> >  use core::marker::PhantomData;
> >  use core::mem::ManuallyDrop;
> > @@ -169,6 +169,20 @@ pub fn into_pin(b: Self) -> Pin<Self>
> >      }
> >  }
> >
> > +impl<T, A, const N: usize> Box<[T; N], A>
> > +where
> > +    A: Allocator,
> > +{
> > +    /// Convert a `Box<[T], A>` to a `Vec<T, A>`.
> > +    pub fn into_vec(b: Self) -> Vec<T, A> {
> 
> This doc-comment seems wrong. [T] and [T; N] are not the same thing.

Indeed, gonna fix.

> 
> > +        let len = b.len();
> > +        unsafe {
> > +            let ptr = Self::into_raw(b);
> > +            Vec::from_raw_parts(ptr as _, len, len)
> > +        }
> > +    }
> > +}
> > +
> >  impl<T, A> Box<MaybeUninit<T>, A>
> >  where
> >      A: Allocator,
> > diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs
> > new file mode 100644
> > index 000000000000..04cc85f7d92c
> > --- /dev/null
> > +++ b/rust/kernel/alloc/kvec.rs
> > @@ -0,0 +1,583 @@
> > +// SPDX-License-Identifier: GPL-2.0
> > +
> > +//! Implementation of [`Vec`].
> > +
> > +use super::{AllocError, Allocator, Flags};
> > +use crate::types::Unique;
> > +use core::{
> > +    fmt,
> > +    marker::PhantomData,
> > +    mem::{ManuallyDrop, MaybeUninit},
> > +    ops::Deref,
> > +    ops::DerefMut,
> > +    ops::Index,
> > +    ops::IndexMut,
> > +    slice,
> > +    slice::SliceIndex,
> > +};
> > +
> > +/// Create a [`Vec`] containing the arguments.
> > +///
> > +/// # Examples
> > +///
> > +/// ```
> > +/// let mut v = kernel::kvec![];
> > +/// v.push(1, GFP_KERNEL)?;
> > +/// assert_eq!(v, [1]);
> > +///
> > +/// let mut v = kernel::kvec![1; 3]?;
> > +/// v.push(4, GFP_KERNEL)?;
> > +/// assert_eq!(v, [1, 1, 1, 4]);
> > +///
> > +/// let mut v = kernel::kvec![1, 2, 3]?;
> > +/// v.push(4, GFP_KERNEL)?;
> > +/// assert_eq!(v, [1, 2, 3, 4]);
> > +///
> > +/// # Ok::<(), Error>(())
> > +/// ```
> > +#[macro_export]
> > +macro_rules! kvec {
> > +    () => (
> > +        {
> > +            $crate::alloc::KVec::new()
> > +        }
> > +    );
> > +    ($elem:expr; $n:expr) => (
> > +        {
> > +            $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
> > +        }
> > +    );
> > +    ($($x:expr),+ $(,)?) => (
> > +        {
> > +            match $crate::alloc::KBox::new([$($x),+], GFP_KERNEL) {
> > +                Ok(b) => Ok($crate::alloc::KBox::into_vec(b)),
> > +                Err(e) => Err(e),
> > +            }
> > +        }
> > +    );
> > +}
> > +
> > +/// The kernel's [`Vec`] type.
> > +///
> > +/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
> > +/// `Kmalloc`, `Vmalloc` or `KVmalloc`, written `Vec<T, A>`.
> 
> A closing bracket is missing in this sentence.

Gonna fix.

> 
> > +/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
> > +/// the most common allocators the type aliases `KVec`, `VVec` and `KVVec` exist.
> > +///
> > +/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
> > +///
> > +/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
> > +/// capacity of the vector (the number of elements that currently fit into the vector), it's length
> > +/// (the number of elements that are currently stored in the vector) and the `Allocator` used to
> > +/// allocate (and free) the backing buffer.
> > +///
> > +/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts
> > +/// and manually modified.
> > +///
> > +/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
> > +/// are added to the vector.
> > +///
> > +/// # Invariants
> > +///
> > +/// The [`Vec`] backing buffer's pointer always properly aligned and either points to memory
> > +/// allocated with `A` or, for zero-sized types, is a dangling pointer.
> > +///
> > +/// The length of the vector always represents the exact number of elements stored in the vector.
> > +///
> > +/// The capacity of the vector always represents the absolute number of elements that can be stored
> > +/// within the vector without re-allocation. However, it is legal for the backing buffer to be
> > +/// larger than `size_of<T>` times the capacity.
> > +///
> > +/// The `Allocator` of the vector is the exact allocator the backing buffer was allocated with (and
> > +/// must be freed with).
> > +pub struct Vec<T, A: Allocator> {
> > +    ptr: Unique<T>,
> > +    /// Never used for ZSTs; it's `capacity()`'s responsibility to return usize::MAX in that case.
> > +    ///
> > +    /// # Safety
> > +    ///
> > +    /// `cap` must be in the `0..=isize::MAX` range.
> > +    cap: usize,
> 
> This section header should say Invariants, not Safety.

Agreed.

> 
> > +    len: usize,
> > +    _p: PhantomData<A>,
> > +}
> > +
> > +/// Type alias for `Vec` with a `Kmalloc` allocator.
> > +///
> > +/// # Examples
> > +///
> > +/// ```
> > +/// let mut v = KVec::new();
> > +/// v.push(1, GFP_KERNEL)?;
> > +/// assert_eq!(&v, &[1]);
> > +///
> > +/// # Ok::<(), Error>(())
> > +/// ```
> > +pub type KVec<T> = Vec<T, super::allocator::Kmalloc>;
> > +
> > +/// Type alias for `Vec` with a `Vmalloc` allocator.
> > +///
> > +/// # Examples
> > +///
> > +/// ```
> > +/// let mut v = VVec::new();
> > +/// v.push(1, GFP_KERNEL)?;
> > +/// assert_eq!(&v, &[1]);
> > +///
> > +/// # Ok::<(), Error>(())
> > +/// ```
> > +pub type VVec<T> = Vec<T, super::allocator::Vmalloc>;
> > +
> > +/// Type alias for `Vec` with a `KVmalloc` allocator.
> > +///
> > +/// # Examples
> > +///
> > +/// ```
> > +/// let mut v = KVVec::new();
> > +/// v.push(1, GFP_KERNEL)?;
> > +/// assert_eq!(&v, &[1]);
> > +///
> > +/// # Ok::<(), Error>(())
> > +/// ```
> > +pub type KVVec<T> = Vec<T, super::allocator::KVmalloc>;
> > +
> > +impl<T, A> Vec<T, A>
> > +where
> > +    A: Allocator,
> > +{
> > +    #[inline]
> > +    fn is_zst() -> bool {
> > +        core::mem::size_of::<T>() == 0
> > +    }
> > +
> > +    /// Returns the total number of elements the vector can hold without
> > +    /// reallocating.
> > +    pub fn capacity(&self) -> usize {
> > +        if Self::is_zst() {
> > +            usize::MAX
> > +        } else {
> > +            self.cap
> > +        }
> > +    }
> 
> I would consider always storing usize::MAX in the capacity field for zst types?

This wouldn't work. `self.cap` is supposed to represent the actual capacity of
the vector, which for ZSTs is zero.

> 
> > +
> > +    /// Returns the number of elements in the vector, also referred to
> > +    /// as its 'length'.
> > +    #[inline]
> > +    pub fn len(&self) -> usize {
> > +        self.len
> > +    }
> > +
> > +    /// Forces the length of the vector to new_len.
> > +    ///
> > +    /// # Safety
> > +    ///
> > +    /// - `new_len` must be less than or equal to [`Self::capacity()`].
> > +    /// - The elements at `old_len..new_len` must be initialized.
> > +    #[inline]
> > +    pub unsafe fn set_len(&mut self, new_len: usize) {
> > +        self.len = new_len;
> > +    }
> > +
> > +    /// Extracts a slice containing the entire vector.
> > +    ///
> > +    /// Equivalent to `&s[..]`.
> > +    #[inline]
> > +    pub fn as_slice(&self) -> &[T] {
> > +        self
> > +    }
> > +
> > +    /// Extracts a mutable slice of the entire vector.
> > +    ///
> > +    /// Equivalent to `&mut s[..]`.
> > +    #[inline]
> > +    pub fn as_mut_slice(&mut self) -> &mut [T] {
> > +        self
> > +    }
> > +
> > +    /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling
> > +    /// raw pointer valid for zero sized reads if the vector didn't allocate.
> > +    #[inline]
> > +    pub fn as_mut_ptr(&self) -> *mut T {
> > +        self.ptr.as_ptr()
> > +    }
> > +
> > +    /// Returns a raw pointer to the slice's buffer.
> > +    #[inline]
> > +    pub fn as_ptr(&self) -> *const T {
> > +        self.as_mut_ptr()
> > +    }
> > +
> > +    /// Returns `true` if the vector contains no elements.
> > +    ///
> > +    /// # Examples
> > +    ///
> > +    /// ```
> > +    /// let mut v = KVec::new();
> > +    /// assert!(v.is_empty());
> > +    ///
> > +    /// v.push(1, GFP_KERNEL);
> > +    /// assert!(!v.is_empty());
> > +    /// ```
> > +    #[inline]
> > +    pub fn is_empty(&self) -> bool {
> > +        self.len() == 0
> > +    }
> > +
> > +    /// Constructs a new, empty Vec<T, A>.
> > +    ///
> > +    /// This method does not allocate by itself.
> > +    #[inline]
> > +    pub const fn new() -> Self {
> > +        Self {
> > +            ptr: Unique::dangling(),
> > +            cap: 0,
> > +            len: 0,
> > +            _p: PhantomData::<A>,
> > +        }
> > +    }
> > +
> > +    /// Returns the remaining spare capacity of the vector as a slice of `MaybeUninit<T>`.
> > +    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
> > +        // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
> > +        // and valid, but uninitialized.
> > +        unsafe {
> > +            slice::from_raw_parts_mut(
> > +                self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
> > +                self.capacity() - self.len,
> > +            )
> > +        }
> 
> Is this correct for ZSTs?

Yes, it gives us a slice of ZSTs with the maximum possible length usize::MAX.

> 
> > +    }
> > +
> > +    /// Appends an element to the back of the [`Vec`] instance.
> > +    ///
> > +    /// # Examples
> > +    ///
> > +    /// ```
> > +    /// let mut v = KVec::new();
> > +    /// v.push(1, GFP_KERNEL)?;
> > +    /// assert_eq!(&v, &[1]);
> > +    ///
> > +    /// v.push(2, GFP_KERNEL)?;
> > +    /// assert_eq!(&v, &[1, 2]);
> > +    /// # Ok::<(), Error>(())
> > +    /// ```
> > +    pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
> > +        Vec::reserve(self, 1, flags)?;
> > +        let s = self.spare_capacity_mut();
> > +        s[0].write(v);
> > +
> > +        // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
> > +        // by 1. We also know that the new length is <= capacity because of the previous call to
> > +        // `reserve` above.
> > +        unsafe { self.set_len(self.len() + 1) };
> > +        Ok(())
> > +    }
> > +
> > +    /// Creates a new [`Vec`] instance with at least the given capacity.
> > +    ///
> > +    /// # Examples
> > +    ///
> > +    /// ```
> > +    /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
> > +    ///
> > +    /// assert!(v.capacity() >= 20);
> > +    /// # Ok::<(), Error>(())
> > +    /// ```
> > +    pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
> > +        let mut v = Vec::new();
> > +
> > +        Self::reserve(&mut v, capacity, flags)?;
> > +
> > +        Ok(v)
> > +    }
> > +
> > +    /// Pushes clones of the elements of slice into the [`Vec`] instance.
> > +    ///
> > +    /// # Examples
> > +    ///
> > +    /// ```
> > +    /// let mut v = KVec::new();
> > +    /// v.push(1, GFP_KERNEL)?;
> > +    ///
> > +    /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
> > +    /// assert_eq!(&v, &[1, 20, 30, 40]);
> > +    ///
> > +    /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
> > +    /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
> > +    /// # Ok::<(), Error>(())
> > +    /// ```
> > +    pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError>
> > +    where
> > +        T: Clone,
> > +    {
> > +        self.reserve(other.len(), flags)?;
> > +        for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
> > +            slot.write(item.clone());
> > +        }
> > +
> > +        // SAFETY: We just initialised the `other.len()` spare entries, so it is safe to increase
> > +        // the length by the same amount. We also know that the new length is <= capacity because
> > +        // of the previous call to `reserve` above.
> > +        unsafe { self.set_len(self.len() + other.len()) };
> > +        Ok(())
> > +    }
> > +
> > +    /// Creates a Vec<T, A> directly from a pointer, a length, a capacity, and an allocator.
> > +    ///
> > +    /// # Safety
> > +    ///
> > +    /// This is highly unsafe, due to the number of invariants that aren’t checked:
> > +    ///
> > +    /// - `ptr` must be currently allocated via the given allocator `A`.
> > +    /// - `T` needs to have the same alignment as what `ptr` was allocated with. (`T` having a less
> > +    ///   strict alignment is not sufficient, the alignment really needs to be equal to satisfy the
> > +    ///   `dealloc` requirement that memory must be allocated and deallocated with the same layout.)
> > +    /// - The size of `T` times the `capacity` (i.e. the allocated size in bytes) needs to be
> > +    ///   smaller or equal the size the pointer was allocated with.
> > +    /// - `length` needs to be less than or equal to `capacity`.
> > +    /// - The first `length` values must be properly initialized values of type `T`.
> > +    /// - The allocated size in bytes must be no larger than `isize::MAX`. See the safety
> > +    ///   documentation of `pointer::offset`.
> > +    ///
> > +    /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
> > +    /// `cap` and `len`.
> > +    ///
> > +    /// # Examples
> > +    ///
> > +    /// ```
> > +    /// let mut v = kernel::kvec![1, 2, 3]?;
> > +    /// v.reserve(1, GFP_KERNEL)?;
> > +    ///
> > +    /// let (mut ptr, mut len, cap) = v.into_raw_parts();
> > +    ///
> > +    /// // SAFETY: We've just reserved memory for another element.
> > +    /// unsafe { ptr.add(len).write(4) };
> > +    /// len += 1;
> > +    ///
> > +    /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
> > +    /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
> > +    /// // from the exact same raw parts.
> > +    /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
> > +    ///
> > +    /// assert_eq!(v, [1, 2, 3, 4]);
> > +    ///
> > +    /// # Ok::<(), Error>(())
> > +    /// ```
> > +    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
> > +        let cap = if Self::is_zst() { 0 } else { capacity };
> > +
> > +        Self {
> > +            // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
> > +            // memory allocation, allocated with `A`.
> > +            ptr: unsafe { Unique::new_unchecked(ptr) },
> > +            cap,
> > +            len: length,
> > +            _p: PhantomData::<A>,
> > +        }
> > +    }
> > +
> > +    /// Decomposes a `Vec<T, A>` into its raw components: (`pointer`, `length`, `capacity`).
> > +    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
> > +        let me = ManuallyDrop::new(self);
> > +        let len = me.len();
> > +        let capacity = me.capacity();
> > +        let ptr = me.as_mut_ptr();
> > +        (ptr, len, capacity)
> > +    }
> > +
> > +    /// Ensures that the capacity exceeds the length by at least `additional` elements.
> > +    ///
> > +    /// # Examples
> > +    ///
> > +    /// ```
> > +    /// let mut v = KVec::new();
> > +    /// v.push(1, GFP_KERNEL)?;
> > +    ///
> > +    /// v.reserve(10, GFP_KERNEL)?;
> > +    /// let cap = v.capacity();
> > +    /// assert!(cap >= 10);
> > +    ///
> > +    /// v.reserve(10, GFP_KERNEL)?;
> > +    /// let new_cap = v.capacity();
> > +    /// assert_eq!(new_cap, cap);
> > +    ///
> > +    /// # Ok::<(), Error>(())
> > +    /// ```
> > +    pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
> > +        let len = self.len();
> > +        let cap = self.capacity();
> > +
> > +        if cap - len >= additional {
> > +            return Ok(());
> > +        }
> > +
> > +        if Self::is_zst() {
> > +            // The capacity is already `usize::MAX` for SZTs, we can't go higher.
> > +            return Err(AllocError);
> > +        }
> > +
> > +        // We know cap is <= `isize::MAX` because `Layout::array` fails if the resulting byte size
> > +        // is greater than `isize::MAX`. So the multiplication by two won't overflow.
> 
> You know it won't overflow because of the type invariants. The thing
> about Layout::array should instead be used to argue why setting
> self.cap below does not break the invariants.

Good point, I will reword it.

> 
> > +        let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
> > +        let layout = core::alloc::Layout::array::<T>(new_cap).map_err(|_| AllocError)?;
> > +
> > +        // We need to make sure that `ptr` is either NULL or comes from a previous call to
> > +        // `realloc_flags`. A `Vec<T, A>`'s `ptr` value is not guaranteed to be NULL and might be
> > +        // dangling after being created with `Vec::new`. Instead, we can rely on `Vec<T, A>`'s
> > +        // capacity to be zero if no memory has been allocated yet.
> > +        let ptr = if cap == 0 {
> > +            None
> > +        } else {
> > +            Some(self.ptr.as_non_null().cast())
> > +        };
> > +
> > +        // SAFETY: `ptr` is valid because it's either `None` or comes from a previous call to
> > +        // `A::realloc`. We also verified that the type is not a ZST.
> > +        let ptr = unsafe { A::realloc(ptr, layout, flags)? };
> > +
> > +        self.ptr = ptr.cast().into();
> > +        self.cap = new_cap;
> > +
> > +        Ok(())
> > +    }
> > +}
> > +
> > +impl<T: Clone, A: Allocator> Vec<T, A> {
> > +    /// Extend the vector by `n` clones of value.
> > +    pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
> > +        self.reserve(n, flags)?;
> > +
> > +        let spare = self.spare_capacity_mut();
> > +
> > +        for i in 0..spare.len() - 1 {
> > +            spare[i].write(value.clone());
> > +        }
> 
> Minus one? Shouldn't this instead loop for `0..n`?

We can indeed just use `n` instead of `slice::len` here.

Minus one, because we create clones for the first n - 1 elements and for the
last one we just use the value itself.

> 
> > +
> > +        // We can write the last element directly without cloning needlessly
> > +        spare[spare.len() - 1].write(value);
> 
> spare[n-1].write(value);

Yep, works too.

> 
> > +
> > +        // SAFETY: `self.reserve` not bailing out with an error guarantees that we're not
> > +        // exceeding the capacity of this `Vec`.
> > +        unsafe { self.set_len(self.len() + n) };
> > +
> > +        Ok(())
> > +    }
> > +
> > +    /// Create a new `Vec<T, A> and extend it by `n` clones of `value`.
> > +    pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
> > +        let mut v = Self::with_capacity(n, flags)?;
> > +
> > +        v.extend_with(n, value, flags)?;
> > +
> > +        Ok(v)
> > +    }
> > +}
> > +
> > +impl<T, A> Drop for Vec<T, A>
> > +where
> > +    A: Allocator,
> > +{
> > +    fn drop(&mut self) {
> > +        // SAFETY: We need to drop the vector's elements in place, before we free the backing
> > +        // memory.
> > +        unsafe {
> > +            core::ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
> > +                self.as_mut_ptr(),
> > +                self.len,
> > +            ))
> > +        };
> > +
> > +        // If `cap == 0` we never allocated any memory in the first place.
> > +        if self.cap != 0 {
> > +            // SAFETY: `self.ptr` was previously allocated with `A`.
> > +            unsafe { A::free(self.ptr.as_non_null().cast()) };
> 
> Do you need a ZST check here?

No, for ZST `self.cap` is always zero.

> 
> > +        }
> > +    }
> > +}
> > +
> > +impl<T> Default for KVec<T> {
> > +    #[inline]
> > +    fn default() -> Self {
> > +        Self::new()
> > +    }
> > +}
> > +
> > +impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
> > +    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
> > +        fmt::Debug::fmt(&**self, f)
> > +    }
> > +}
> > +
> > +impl<T, A> Deref for Vec<T, A>
> > +where
> > +    A: Allocator,
> > +{
> > +    type Target = [T];
> > +
> > +    #[inline]
> > +    fn deref(&self) -> &[T] {
> > +        // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
> > +        // initialized elements of type `T`.
> > +        unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
> > +    }
> > +}
> > +
> > +impl<T, A> DerefMut for Vec<T, A>
> > +where
> > +    A: Allocator,
> > +{
> > +    #[inline]
> > +    fn deref_mut(&mut self) -> &mut [T] {
> > +        // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
> > +        // initialized elements of type `T`.
> > +        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
> > +    }
> > +}
> > +
> > +impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
> > +
> > +impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
> > +where
> > +    A: Allocator,
> > +{
> > +    type Output = I::Output;
> > +
> > +    #[inline]
> > +    fn index(&self, index: I) -> &Self::Output {
> > +        Index::index(&**self, index)
> > +    }
> > +}
> > +
> > +impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
> > +where
> > +    A: Allocator,
> > +{
> > +    #[inline]
> > +    fn index_mut(&mut self, index: I) -> &mut Self::Output {
> > +        IndexMut::index_mut(&mut **self, index)
> > +    }
> > +}
> > +
> > +macro_rules! __impl_slice_eq {
> > +    ([$($vars:tt)*] $lhs:ty, $rhs:ty $(where $ty:ty: $bound:ident)?) => {
> > +        impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
> > +        where
> > +            T: PartialEq<U>,
> > +            $($ty: $bound)?
> > +        {
> > +            #[inline]
> > +            fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
> > +        }
> > +    }
> > +}
> > +
> > +__impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> }
> > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &[U] }
> > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &mut [U] }
> > +__impl_slice_eq! { [A: Allocator] &[T], Vec<U, A> }
> > +__impl_slice_eq! { [A: Allocator] &mut [T], Vec<U, A> }
> > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, [U] }
> > +__impl_slice_eq! { [A: Allocator] [T], Vec<U, A> }
> > +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] }
> > +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] }
> > diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs
> > index 6bf77577eae7..bb80a43d20fb 100644
> > --- a/rust/kernel/prelude.rs
> > +++ b/rust/kernel/prelude.rs
> > @@ -14,7 +14,7 @@
> >  #[doc(no_inline)]
> >  pub use core::pin::Pin;
> >
> > -pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, VBox};
> > +pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, KVVec, KVec, VBox, VVec};
> >
> >  #[doc(no_inline)]
> >  pub use alloc::vec::Vec;
> > --
> > 2.45.2
> >
>
Alice Ryhl Aug. 1, 2024, 3:31 p.m. UTC | #3
On Thu, Aug 1, 2024 at 5:28 PM Danilo Krummrich <dakr@kernel.org> wrote:
>
> On Thu, Aug 01, 2024 at 05:05:41PM +0200, Alice Ryhl wrote:
> > On Thu, Aug 1, 2024 at 2:08 AM Danilo Krummrich <dakr@kernel.org> wrote:
> > >
> > > `Vec` provides a contiguous growable array type (such as `Vec`) with
> > > contents allocated with the kernel's allocators (e.g. `Kmalloc`,
> > > `Vmalloc` or `KVmalloc`).
> > >
> > > In contrast to Rust's `Vec` type, the kernel `Vec` type considers the
> > > kernel's GFP flags for all appropriate functions, always reports
> > > allocation failures through `Result<_, AllocError>` and remains
> > > independent from unstable features.
> > >
> > > Signed-off-by: Danilo Krummrich <dakr@kernel.org>
> > > ---
> > >  rust/kernel/alloc.rs      |   6 +
> > >  rust/kernel/alloc/kbox.rs |  16 +-
> > >  rust/kernel/alloc/kvec.rs | 583 ++++++++++++++++++++++++++++++++++++++
> > >  rust/kernel/prelude.rs    |   2 +-
> > >  4 files changed, 605 insertions(+), 2 deletions(-)
> > >  create mode 100644 rust/kernel/alloc/kvec.rs
> > >
> > > diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs
> > > index 4bddd023aa7f..bd93140f3094 100644
> > > --- a/rust/kernel/alloc.rs
> > > +++ b/rust/kernel/alloc.rs
> > > @@ -5,6 +5,7 @@
> > >  #[cfg(not(any(test, testlib)))]
> > >  pub mod allocator;
> > >  pub mod kbox;
> > > +pub mod kvec;
> > >  pub mod vec_ext;
> > >
> > >  #[cfg(any(test, testlib))]
> > > @@ -18,6 +19,11 @@
> > >  pub use self::kbox::KVBox;
> > >  pub use self::kbox::VBox;
> > >
> > > +pub use self::kvec::KVVec;
> > > +pub use self::kvec::KVec;
> > > +pub use self::kvec::VVec;
> > > +pub use self::kvec::Vec;
> > > +
> > >  /// Indicates an allocation error.
> > >  #[derive(Copy, Clone, PartialEq, Eq, Debug)]
> > >  pub struct AllocError;
> > > diff --git a/rust/kernel/alloc/kbox.rs b/rust/kernel/alloc/kbox.rs
> > > index 7074f00e07bc..39feaed4a8f8 100644
> > > --- a/rust/kernel/alloc/kbox.rs
> > > +++ b/rust/kernel/alloc/kbox.rs
> > > @@ -2,7 +2,7 @@
> > >
> > >  //! Implementation of [`Box`].
> > >
> > > -use super::{AllocError, Allocator, Flags};
> > > +use super::{AllocError, Allocator, Flags, Vec};
> > >  use core::fmt;
> > >  use core::marker::PhantomData;
> > >  use core::mem::ManuallyDrop;
> > > @@ -169,6 +169,20 @@ pub fn into_pin(b: Self) -> Pin<Self>
> > >      }
> > >  }
> > >
> > > +impl<T, A, const N: usize> Box<[T; N], A>
> > > +where
> > > +    A: Allocator,
> > > +{
> > > +    /// Convert a `Box<[T], A>` to a `Vec<T, A>`.
> > > +    pub fn into_vec(b: Self) -> Vec<T, A> {
> >
> > This doc-comment seems wrong. [T] and [T; N] are not the same thing.
>
> Indeed, gonna fix.
>
> >
> > > +        let len = b.len();
> > > +        unsafe {
> > > +            let ptr = Self::into_raw(b);
> > > +            Vec::from_raw_parts(ptr as _, len, len)
> > > +        }
> > > +    }
> > > +}
> > > +
> > >  impl<T, A> Box<MaybeUninit<T>, A>
> > >  where
> > >      A: Allocator,
> > > diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs
> > > new file mode 100644
> > > index 000000000000..04cc85f7d92c
> > > --- /dev/null
> > > +++ b/rust/kernel/alloc/kvec.rs
> > > @@ -0,0 +1,583 @@
> > > +// SPDX-License-Identifier: GPL-2.0
> > > +
> > > +//! Implementation of [`Vec`].
> > > +
> > > +use super::{AllocError, Allocator, Flags};
> > > +use crate::types::Unique;
> > > +use core::{
> > > +    fmt,
> > > +    marker::PhantomData,
> > > +    mem::{ManuallyDrop, MaybeUninit},
> > > +    ops::Deref,
> > > +    ops::DerefMut,
> > > +    ops::Index,
> > > +    ops::IndexMut,
> > > +    slice,
> > > +    slice::SliceIndex,
> > > +};
> > > +
> > > +/// Create a [`Vec`] containing the arguments.
> > > +///
> > > +/// # Examples
> > > +///
> > > +/// ```
> > > +/// let mut v = kernel::kvec![];
> > > +/// v.push(1, GFP_KERNEL)?;
> > > +/// assert_eq!(v, [1]);
> > > +///
> > > +/// let mut v = kernel::kvec![1; 3]?;
> > > +/// v.push(4, GFP_KERNEL)?;
> > > +/// assert_eq!(v, [1, 1, 1, 4]);
> > > +///
> > > +/// let mut v = kernel::kvec![1, 2, 3]?;
> > > +/// v.push(4, GFP_KERNEL)?;
> > > +/// assert_eq!(v, [1, 2, 3, 4]);
> > > +///
> > > +/// # Ok::<(), Error>(())
> > > +/// ```
> > > +#[macro_export]
> > > +macro_rules! kvec {
> > > +    () => (
> > > +        {
> > > +            $crate::alloc::KVec::new()
> > > +        }
> > > +    );
> > > +    ($elem:expr; $n:expr) => (
> > > +        {
> > > +            $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
> > > +        }
> > > +    );
> > > +    ($($x:expr),+ $(,)?) => (
> > > +        {
> > > +            match $crate::alloc::KBox::new([$($x),+], GFP_KERNEL) {
> > > +                Ok(b) => Ok($crate::alloc::KBox::into_vec(b)),
> > > +                Err(e) => Err(e),
> > > +            }
> > > +        }
> > > +    );
> > > +}
> > > +
> > > +/// The kernel's [`Vec`] type.
> > > +///
> > > +/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
> > > +/// `Kmalloc`, `Vmalloc` or `KVmalloc`, written `Vec<T, A>`.
> >
> > A closing bracket is missing in this sentence.
>
> Gonna fix.
>
> >
> > > +/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
> > > +/// the most common allocators the type aliases `KVec`, `VVec` and `KVVec` exist.
> > > +///
> > > +/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
> > > +///
> > > +/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
> > > +/// capacity of the vector (the number of elements that currently fit into the vector), it's length
> > > +/// (the number of elements that are currently stored in the vector) and the `Allocator` used to
> > > +/// allocate (and free) the backing buffer.
> > > +///
> > > +/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts
> > > +/// and manually modified.
> > > +///
> > > +/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
> > > +/// are added to the vector.
> > > +///
> > > +/// # Invariants
> > > +///
> > > +/// The [`Vec`] backing buffer's pointer always properly aligned and either points to memory
> > > +/// allocated with `A` or, for zero-sized types, is a dangling pointer.
> > > +///
> > > +/// The length of the vector always represents the exact number of elements stored in the vector.
> > > +///
> > > +/// The capacity of the vector always represents the absolute number of elements that can be stored
> > > +/// within the vector without re-allocation. However, it is legal for the backing buffer to be
> > > +/// larger than `size_of<T>` times the capacity.
> > > +///
> > > +/// The `Allocator` of the vector is the exact allocator the backing buffer was allocated with (and
> > > +/// must be freed with).
> > > +pub struct Vec<T, A: Allocator> {
> > > +    ptr: Unique<T>,
> > > +    /// Never used for ZSTs; it's `capacity()`'s responsibility to return usize::MAX in that case.
> > > +    ///
> > > +    /// # Safety
> > > +    ///
> > > +    /// `cap` must be in the `0..=isize::MAX` range.
> > > +    cap: usize,
> >
> > This section header should say Invariants, not Safety.
>
> Agreed.
>
> >
> > > +    len: usize,
> > > +    _p: PhantomData<A>,
> > > +}
> > > +
> > > +/// Type alias for `Vec` with a `Kmalloc` allocator.
> > > +///
> > > +/// # Examples
> > > +///
> > > +/// ```
> > > +/// let mut v = KVec::new();
> > > +/// v.push(1, GFP_KERNEL)?;
> > > +/// assert_eq!(&v, &[1]);
> > > +///
> > > +/// # Ok::<(), Error>(())
> > > +/// ```
> > > +pub type KVec<T> = Vec<T, super::allocator::Kmalloc>;
> > > +
> > > +/// Type alias for `Vec` with a `Vmalloc` allocator.
> > > +///
> > > +/// # Examples
> > > +///
> > > +/// ```
> > > +/// let mut v = VVec::new();
> > > +/// v.push(1, GFP_KERNEL)?;
> > > +/// assert_eq!(&v, &[1]);
> > > +///
> > > +/// # Ok::<(), Error>(())
> > > +/// ```
> > > +pub type VVec<T> = Vec<T, super::allocator::Vmalloc>;
> > > +
> > > +/// Type alias for `Vec` with a `KVmalloc` allocator.
> > > +///
> > > +/// # Examples
> > > +///
> > > +/// ```
> > > +/// let mut v = KVVec::new();
> > > +/// v.push(1, GFP_KERNEL)?;
> > > +/// assert_eq!(&v, &[1]);
> > > +///
> > > +/// # Ok::<(), Error>(())
> > > +/// ```
> > > +pub type KVVec<T> = Vec<T, super::allocator::KVmalloc>;
> > > +
> > > +impl<T, A> Vec<T, A>
> > > +where
> > > +    A: Allocator,
> > > +{
> > > +    #[inline]
> > > +    fn is_zst() -> bool {
> > > +        core::mem::size_of::<T>() == 0
> > > +    }
> > > +
> > > +    /// Returns the total number of elements the vector can hold without
> > > +    /// reallocating.
> > > +    pub fn capacity(&self) -> usize {
> > > +        if Self::is_zst() {
> > > +            usize::MAX
> > > +        } else {
> > > +            self.cap
> > > +        }
> > > +    }
> >
> > I would consider always storing usize::MAX in the capacity field for zst types?
>
> This wouldn't work. `self.cap` is supposed to represent the actual capacity of
> the vector, which for ZSTs is zero.

Storing usize::MAX values of a zero-sized type takes up zero bytes,
and your vector has space for zero bytes. Seems sensible to me to use
usize::MAX.

Anyway, it's up to you. I'm ok either way.

> > > +
> > > +    /// Returns the number of elements in the vector, also referred to
> > > +    /// as its 'length'.
> > > +    #[inline]
> > > +    pub fn len(&self) -> usize {
> > > +        self.len
> > > +    }
> > > +
> > > +    /// Forces the length of the vector to new_len.
> > > +    ///
> > > +    /// # Safety
> > > +    ///
> > > +    /// - `new_len` must be less than or equal to [`Self::capacity()`].
> > > +    /// - The elements at `old_len..new_len` must be initialized.
> > > +    #[inline]
> > > +    pub unsafe fn set_len(&mut self, new_len: usize) {
> > > +        self.len = new_len;
> > > +    }
> > > +
> > > +    /// Extracts a slice containing the entire vector.
> > > +    ///
> > > +    /// Equivalent to `&s[..]`.
> > > +    #[inline]
> > > +    pub fn as_slice(&self) -> &[T] {
> > > +        self
> > > +    }
> > > +
> > > +    /// Extracts a mutable slice of the entire vector.
> > > +    ///
> > > +    /// Equivalent to `&mut s[..]`.
> > > +    #[inline]
> > > +    pub fn as_mut_slice(&mut self) -> &mut [T] {
> > > +        self
> > > +    }
> > > +
> > > +    /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling
> > > +    /// raw pointer valid for zero sized reads if the vector didn't allocate.
> > > +    #[inline]
> > > +    pub fn as_mut_ptr(&self) -> *mut T {
> > > +        self.ptr.as_ptr()
> > > +    }
> > > +
> > > +    /// Returns a raw pointer to the slice's buffer.
> > > +    #[inline]
> > > +    pub fn as_ptr(&self) -> *const T {
> > > +        self.as_mut_ptr()
> > > +    }
> > > +
> > > +    /// Returns `true` if the vector contains no elements.
> > > +    ///
> > > +    /// # Examples
> > > +    ///
> > > +    /// ```
> > > +    /// let mut v = KVec::new();
> > > +    /// assert!(v.is_empty());
> > > +    ///
> > > +    /// v.push(1, GFP_KERNEL);
> > > +    /// assert!(!v.is_empty());
> > > +    /// ```
> > > +    #[inline]
> > > +    pub fn is_empty(&self) -> bool {
> > > +        self.len() == 0
> > > +    }
> > > +
> > > +    /// Constructs a new, empty Vec<T, A>.
> > > +    ///
> > > +    /// This method does not allocate by itself.
> > > +    #[inline]
> > > +    pub const fn new() -> Self {
> > > +        Self {
> > > +            ptr: Unique::dangling(),
> > > +            cap: 0,
> > > +            len: 0,
> > > +            _p: PhantomData::<A>,
> > > +        }
> > > +    }
> > > +
> > > +    /// Returns the remaining spare capacity of the vector as a slice of `MaybeUninit<T>`.
> > > +    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
> > > +        // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
> > > +        // and valid, but uninitialized.
> > > +        unsafe {
> > > +            slice::from_raw_parts_mut(
> > > +                self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
> > > +                self.capacity() - self.len,
> > > +            )
> > > +        }
> >
> > Is this correct for ZSTs?
>
> Yes, it gives us a slice of ZSTs with the maximum possible length usize::MAX.
>
> >
> > > +    }
> > > +
> > > +    /// Appends an element to the back of the [`Vec`] instance.
> > > +    ///
> > > +    /// # Examples
> > > +    ///
> > > +    /// ```
> > > +    /// let mut v = KVec::new();
> > > +    /// v.push(1, GFP_KERNEL)?;
> > > +    /// assert_eq!(&v, &[1]);
> > > +    ///
> > > +    /// v.push(2, GFP_KERNEL)?;
> > > +    /// assert_eq!(&v, &[1, 2]);
> > > +    /// # Ok::<(), Error>(())
> > > +    /// ```
> > > +    pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
> > > +        Vec::reserve(self, 1, flags)?;
> > > +        let s = self.spare_capacity_mut();
> > > +        s[0].write(v);
> > > +
> > > +        // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
> > > +        // by 1. We also know that the new length is <= capacity because of the previous call to
> > > +        // `reserve` above.
> > > +        unsafe { self.set_len(self.len() + 1) };
> > > +        Ok(())
> > > +    }
> > > +
> > > +    /// Creates a new [`Vec`] instance with at least the given capacity.
> > > +    ///
> > > +    /// # Examples
> > > +    ///
> > > +    /// ```
> > > +    /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
> > > +    ///
> > > +    /// assert!(v.capacity() >= 20);
> > > +    /// # Ok::<(), Error>(())
> > > +    /// ```
> > > +    pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
> > > +        let mut v = Vec::new();
> > > +
> > > +        Self::reserve(&mut v, capacity, flags)?;
> > > +
> > > +        Ok(v)
> > > +    }
> > > +
> > > +    /// Pushes clones of the elements of slice into the [`Vec`] instance.
> > > +    ///
> > > +    /// # Examples
> > > +    ///
> > > +    /// ```
> > > +    /// let mut v = KVec::new();
> > > +    /// v.push(1, GFP_KERNEL)?;
> > > +    ///
> > > +    /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
> > > +    /// assert_eq!(&v, &[1, 20, 30, 40]);
> > > +    ///
> > > +    /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
> > > +    /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
> > > +    /// # Ok::<(), Error>(())
> > > +    /// ```
> > > +    pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError>
> > > +    where
> > > +        T: Clone,
> > > +    {
> > > +        self.reserve(other.len(), flags)?;
> > > +        for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
> > > +            slot.write(item.clone());
> > > +        }
> > > +
> > > +        // SAFETY: We just initialised the `other.len()` spare entries, so it is safe to increase
> > > +        // the length by the same amount. We also know that the new length is <= capacity because
> > > +        // of the previous call to `reserve` above.
> > > +        unsafe { self.set_len(self.len() + other.len()) };
> > > +        Ok(())
> > > +    }
> > > +
> > > +    /// Creates a Vec<T, A> directly from a pointer, a length, a capacity, and an allocator.
> > > +    ///
> > > +    /// # Safety
> > > +    ///
> > > +    /// This is highly unsafe, due to the number of invariants that aren’t checked:
> > > +    ///
> > > +    /// - `ptr` must be currently allocated via the given allocator `A`.
> > > +    /// - `T` needs to have the same alignment as what `ptr` was allocated with. (`T` having a less
> > > +    ///   strict alignment is not sufficient, the alignment really needs to be equal to satisfy the
> > > +    ///   `dealloc` requirement that memory must be allocated and deallocated with the same layout.)
> > > +    /// - The size of `T` times the `capacity` (i.e. the allocated size in bytes) needs to be
> > > +    ///   smaller or equal the size the pointer was allocated with.
> > > +    /// - `length` needs to be less than or equal to `capacity`.
> > > +    /// - The first `length` values must be properly initialized values of type `T`.
> > > +    /// - The allocated size in bytes must be no larger than `isize::MAX`. See the safety
> > > +    ///   documentation of `pointer::offset`.
> > > +    ///
> > > +    /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
> > > +    /// `cap` and `len`.
> > > +    ///
> > > +    /// # Examples
> > > +    ///
> > > +    /// ```
> > > +    /// let mut v = kernel::kvec![1, 2, 3]?;
> > > +    /// v.reserve(1, GFP_KERNEL)?;
> > > +    ///
> > > +    /// let (mut ptr, mut len, cap) = v.into_raw_parts();
> > > +    ///
> > > +    /// // SAFETY: We've just reserved memory for another element.
> > > +    /// unsafe { ptr.add(len).write(4) };
> > > +    /// len += 1;
> > > +    ///
> > > +    /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
> > > +    /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
> > > +    /// // from the exact same raw parts.
> > > +    /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
> > > +    ///
> > > +    /// assert_eq!(v, [1, 2, 3, 4]);
> > > +    ///
> > > +    /// # Ok::<(), Error>(())
> > > +    /// ```
> > > +    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
> > > +        let cap = if Self::is_zst() { 0 } else { capacity };
> > > +
> > > +        Self {
> > > +            // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
> > > +            // memory allocation, allocated with `A`.
> > > +            ptr: unsafe { Unique::new_unchecked(ptr) },
> > > +            cap,
> > > +            len: length,
> > > +            _p: PhantomData::<A>,
> > > +        }
> > > +    }
> > > +
> > > +    /// Decomposes a `Vec<T, A>` into its raw components: (`pointer`, `length`, `capacity`).
> > > +    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
> > > +        let me = ManuallyDrop::new(self);
> > > +        let len = me.len();
> > > +        let capacity = me.capacity();
> > > +        let ptr = me.as_mut_ptr();
> > > +        (ptr, len, capacity)
> > > +    }
> > > +
> > > +    /// Ensures that the capacity exceeds the length by at least `additional` elements.
> > > +    ///
> > > +    /// # Examples
> > > +    ///
> > > +    /// ```
> > > +    /// let mut v = KVec::new();
> > > +    /// v.push(1, GFP_KERNEL)?;
> > > +    ///
> > > +    /// v.reserve(10, GFP_KERNEL)?;
> > > +    /// let cap = v.capacity();
> > > +    /// assert!(cap >= 10);
> > > +    ///
> > > +    /// v.reserve(10, GFP_KERNEL)?;
> > > +    /// let new_cap = v.capacity();
> > > +    /// assert_eq!(new_cap, cap);
> > > +    ///
> > > +    /// # Ok::<(), Error>(())
> > > +    /// ```
> > > +    pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
> > > +        let len = self.len();
> > > +        let cap = self.capacity();
> > > +
> > > +        if cap - len >= additional {
> > > +            return Ok(());
> > > +        }
> > > +
> > > +        if Self::is_zst() {
> > > +            // The capacity is already `usize::MAX` for SZTs, we can't go higher.
> > > +            return Err(AllocError);
> > > +        }
> > > +
> > > +        // We know cap is <= `isize::MAX` because `Layout::array` fails if the resulting byte size
> > > +        // is greater than `isize::MAX`. So the multiplication by two won't overflow.
> >
> > You know it won't overflow because of the type invariants. The thing
> > about Layout::array should instead be used to argue why setting
> > self.cap below does not break the invariants.
>
> Good point, I will reword it.
>
> >
> > > +        let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
> > > +        let layout = core::alloc::Layout::array::<T>(new_cap).map_err(|_| AllocError)?;
> > > +
> > > +        // We need to make sure that `ptr` is either NULL or comes from a previous call to
> > > +        // `realloc_flags`. A `Vec<T, A>`'s `ptr` value is not guaranteed to be NULL and might be
> > > +        // dangling after being created with `Vec::new`. Instead, we can rely on `Vec<T, A>`'s
> > > +        // capacity to be zero if no memory has been allocated yet.
> > > +        let ptr = if cap == 0 {
> > > +            None
> > > +        } else {
> > > +            Some(self.ptr.as_non_null().cast())
> > > +        };
> > > +
> > > +        // SAFETY: `ptr` is valid because it's either `None` or comes from a previous call to
> > > +        // `A::realloc`. We also verified that the type is not a ZST.
> > > +        let ptr = unsafe { A::realloc(ptr, layout, flags)? };
> > > +
> > > +        self.ptr = ptr.cast().into();
> > > +        self.cap = new_cap;
> > > +
> > > +        Ok(())
> > > +    }
> > > +}
> > > +
> > > +impl<T: Clone, A: Allocator> Vec<T, A> {
> > > +    /// Extend the vector by `n` clones of value.
> > > +    pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
> > > +        self.reserve(n, flags)?;
> > > +
> > > +        let spare = self.spare_capacity_mut();
> > > +
> > > +        for i in 0..spare.len() - 1 {
> > > +            spare[i].write(value.clone());
> > > +        }
> >
> > Minus one? Shouldn't this instead loop for `0..n`?
>
> We can indeed just use `n` instead of `slice::len` here.

But `spare.len()` could be longer than `n`?

>
> Minus one, because we create clones for the first n - 1 elements and for the
> last one we just use the value itself.
>
> >
> > > +
> > > +        // We can write the last element directly without cloning needlessly
> > > +        spare[spare.len() - 1].write(value);
> >
> > spare[n-1].write(value);
>
> Yep, works too.
>
> >
> > > +
> > > +        // SAFETY: `self.reserve` not bailing out with an error guarantees that we're not
> > > +        // exceeding the capacity of this `Vec`.
> > > +        unsafe { self.set_len(self.len() + n) };
> > > +
> > > +        Ok(())
> > > +    }
> > > +
> > > +    /// Create a new `Vec<T, A> and extend it by `n` clones of `value`.
> > > +    pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
> > > +        let mut v = Self::with_capacity(n, flags)?;
> > > +
> > > +        v.extend_with(n, value, flags)?;
> > > +
> > > +        Ok(v)
> > > +    }
> > > +}
> > > +
> > > +impl<T, A> Drop for Vec<T, A>
> > > +where
> > > +    A: Allocator,
> > > +{
> > > +    fn drop(&mut self) {
> > > +        // SAFETY: We need to drop the vector's elements in place, before we free the backing
> > > +        // memory.
> > > +        unsafe {
> > > +            core::ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
> > > +                self.as_mut_ptr(),
> > > +                self.len,
> > > +            ))
> > > +        };
> > > +
> > > +        // If `cap == 0` we never allocated any memory in the first place.
> > > +        if self.cap != 0 {
> > > +            // SAFETY: `self.ptr` was previously allocated with `A`.
> > > +            unsafe { A::free(self.ptr.as_non_null().cast()) };
> >
> > Do you need a ZST check here?
>
> No, for ZST `self.cap` is always zero.
>
> >
> > > +        }
> > > +    }
> > > +}
> > > +
> > > +impl<T> Default for KVec<T> {
> > > +    #[inline]
> > > +    fn default() -> Self {
> > > +        Self::new()
> > > +    }
> > > +}
> > > +
> > > +impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
> > > +    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
> > > +        fmt::Debug::fmt(&**self, f)
> > > +    }
> > > +}
> > > +
> > > +impl<T, A> Deref for Vec<T, A>
> > > +where
> > > +    A: Allocator,
> > > +{
> > > +    type Target = [T];
> > > +
> > > +    #[inline]
> > > +    fn deref(&self) -> &[T] {
> > > +        // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
> > > +        // initialized elements of type `T`.
> > > +        unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
> > > +    }
> > > +}
> > > +
> > > +impl<T, A> DerefMut for Vec<T, A>
> > > +where
> > > +    A: Allocator,
> > > +{
> > > +    #[inline]
> > > +    fn deref_mut(&mut self) -> &mut [T] {
> > > +        // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
> > > +        // initialized elements of type `T`.
> > > +        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
> > > +    }
> > > +}
> > > +
> > > +impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
> > > +
> > > +impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
> > > +where
> > > +    A: Allocator,
> > > +{
> > > +    type Output = I::Output;
> > > +
> > > +    #[inline]
> > > +    fn index(&self, index: I) -> &Self::Output {
> > > +        Index::index(&**self, index)
> > > +    }
> > > +}
> > > +
> > > +impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
> > > +where
> > > +    A: Allocator,
> > > +{
> > > +    #[inline]
> > > +    fn index_mut(&mut self, index: I) -> &mut Self::Output {
> > > +        IndexMut::index_mut(&mut **self, index)
> > > +    }
> > > +}
> > > +
> > > +macro_rules! __impl_slice_eq {
> > > +    ([$($vars:tt)*] $lhs:ty, $rhs:ty $(where $ty:ty: $bound:ident)?) => {
> > > +        impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
> > > +        where
> > > +            T: PartialEq<U>,
> > > +            $($ty: $bound)?
> > > +        {
> > > +            #[inline]
> > > +            fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
> > > +        }
> > > +    }
> > > +}
> > > +
> > > +__impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> }
> > > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &[U] }
> > > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &mut [U] }
> > > +__impl_slice_eq! { [A: Allocator] &[T], Vec<U, A> }
> > > +__impl_slice_eq! { [A: Allocator] &mut [T], Vec<U, A> }
> > > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, [U] }
> > > +__impl_slice_eq! { [A: Allocator] [T], Vec<U, A> }
> > > +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] }
> > > +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] }
> > > diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs
> > > index 6bf77577eae7..bb80a43d20fb 100644
> > > --- a/rust/kernel/prelude.rs
> > > +++ b/rust/kernel/prelude.rs
> > > @@ -14,7 +14,7 @@
> > >  #[doc(no_inline)]
> > >  pub use core::pin::Pin;
> > >
> > > -pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, VBox};
> > > +pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, KVVec, KVec, VBox, VVec};
> > >
> > >  #[doc(no_inline)]
> > >  pub use alloc::vec::Vec;
> > > --
> > > 2.45.2
> > >
> >
Danilo Krummrich Aug. 1, 2024, 3:46 p.m. UTC | #4
On Thu, Aug 01, 2024 at 05:31:48PM +0200, Alice Ryhl wrote:
> On Thu, Aug 1, 2024 at 5:28 PM Danilo Krummrich <dakr@kernel.org> wrote:
> >
> > On Thu, Aug 01, 2024 at 05:05:41PM +0200, Alice Ryhl wrote:
> > > On Thu, Aug 1, 2024 at 2:08 AM Danilo Krummrich <dakr@kernel.org> wrote:
> > > >
> > > > `Vec` provides a contiguous growable array type (such as `Vec`) with
> > > > contents allocated with the kernel's allocators (e.g. `Kmalloc`,
> > > > `Vmalloc` or `KVmalloc`).
> > > >
> > > > In contrast to Rust's `Vec` type, the kernel `Vec` type considers the
> > > > kernel's GFP flags for all appropriate functions, always reports
> > > > allocation failures through `Result<_, AllocError>` and remains
> > > > independent from unstable features.
> > > >
> > > > Signed-off-by: Danilo Krummrich <dakr@kernel.org>
> > > > ---
> > > >  rust/kernel/alloc.rs      |   6 +
> > > >  rust/kernel/alloc/kbox.rs |  16 +-
> > > >  rust/kernel/alloc/kvec.rs | 583 ++++++++++++++++++++++++++++++++++++++
> > > >  rust/kernel/prelude.rs    |   2 +-
> > > >  4 files changed, 605 insertions(+), 2 deletions(-)
> > > >  create mode 100644 rust/kernel/alloc/kvec.rs
> > > >
> > > > diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs
> > > > index 4bddd023aa7f..bd93140f3094 100644
> > > > --- a/rust/kernel/alloc.rs
> > > > +++ b/rust/kernel/alloc.rs
> > > > @@ -5,6 +5,7 @@
> > > >  #[cfg(not(any(test, testlib)))]
> > > >  pub mod allocator;
> > > >  pub mod kbox;
> > > > +pub mod kvec;
> > > >  pub mod vec_ext;
> > > >
> > > >  #[cfg(any(test, testlib))]
> > > > @@ -18,6 +19,11 @@
> > > >  pub use self::kbox::KVBox;
> > > >  pub use self::kbox::VBox;
> > > >
> > > > +pub use self::kvec::KVVec;
> > > > +pub use self::kvec::KVec;
> > > > +pub use self::kvec::VVec;
> > > > +pub use self::kvec::Vec;
> > > > +
> > > >  /// Indicates an allocation error.
> > > >  #[derive(Copy, Clone, PartialEq, Eq, Debug)]
> > > >  pub struct AllocError;
> > > > diff --git a/rust/kernel/alloc/kbox.rs b/rust/kernel/alloc/kbox.rs
> > > > index 7074f00e07bc..39feaed4a8f8 100644
> > > > --- a/rust/kernel/alloc/kbox.rs
> > > > +++ b/rust/kernel/alloc/kbox.rs
> > > > @@ -2,7 +2,7 @@
> > > >
> > > >  //! Implementation of [`Box`].
> > > >
> > > > -use super::{AllocError, Allocator, Flags};
> > > > +use super::{AllocError, Allocator, Flags, Vec};
> > > >  use core::fmt;
> > > >  use core::marker::PhantomData;
> > > >  use core::mem::ManuallyDrop;
> > > > @@ -169,6 +169,20 @@ pub fn into_pin(b: Self) -> Pin<Self>
> > > >      }
> > > >  }
> > > >
> > > > +impl<T, A, const N: usize> Box<[T; N], A>
> > > > +where
> > > > +    A: Allocator,
> > > > +{
> > > > +    /// Convert a `Box<[T], A>` to a `Vec<T, A>`.
> > > > +    pub fn into_vec(b: Self) -> Vec<T, A> {
> > >
> > > This doc-comment seems wrong. [T] and [T; N] are not the same thing.
> >
> > Indeed, gonna fix.
> >
> > >
> > > > +        let len = b.len();
> > > > +        unsafe {
> > > > +            let ptr = Self::into_raw(b);
> > > > +            Vec::from_raw_parts(ptr as _, len, len)
> > > > +        }
> > > > +    }
> > > > +}
> > > > +
> > > >  impl<T, A> Box<MaybeUninit<T>, A>
> > > >  where
> > > >      A: Allocator,
> > > > diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs
> > > > new file mode 100644
> > > > index 000000000000..04cc85f7d92c
> > > > --- /dev/null
> > > > +++ b/rust/kernel/alloc/kvec.rs
> > > > @@ -0,0 +1,583 @@
> > > > +// SPDX-License-Identifier: GPL-2.0
> > > > +
> > > > +//! Implementation of [`Vec`].
> > > > +
> > > > +use super::{AllocError, Allocator, Flags};
> > > > +use crate::types::Unique;
> > > > +use core::{
> > > > +    fmt,
> > > > +    marker::PhantomData,
> > > > +    mem::{ManuallyDrop, MaybeUninit},
> > > > +    ops::Deref,
> > > > +    ops::DerefMut,
> > > > +    ops::Index,
> > > > +    ops::IndexMut,
> > > > +    slice,
> > > > +    slice::SliceIndex,
> > > > +};
> > > > +
> > > > +/// Create a [`Vec`] containing the arguments.
> > > > +///
> > > > +/// # Examples
> > > > +///
> > > > +/// ```
> > > > +/// let mut v = kernel::kvec![];
> > > > +/// v.push(1, GFP_KERNEL)?;
> > > > +/// assert_eq!(v, [1]);
> > > > +///
> > > > +/// let mut v = kernel::kvec![1; 3]?;
> > > > +/// v.push(4, GFP_KERNEL)?;
> > > > +/// assert_eq!(v, [1, 1, 1, 4]);
> > > > +///
> > > > +/// let mut v = kernel::kvec![1, 2, 3]?;
> > > > +/// v.push(4, GFP_KERNEL)?;
> > > > +/// assert_eq!(v, [1, 2, 3, 4]);
> > > > +///
> > > > +/// # Ok::<(), Error>(())
> > > > +/// ```
> > > > +#[macro_export]
> > > > +macro_rules! kvec {
> > > > +    () => (
> > > > +        {
> > > > +            $crate::alloc::KVec::new()
> > > > +        }
> > > > +    );
> > > > +    ($elem:expr; $n:expr) => (
> > > > +        {
> > > > +            $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
> > > > +        }
> > > > +    );
> > > > +    ($($x:expr),+ $(,)?) => (
> > > > +        {
> > > > +            match $crate::alloc::KBox::new([$($x),+], GFP_KERNEL) {
> > > > +                Ok(b) => Ok($crate::alloc::KBox::into_vec(b)),
> > > > +                Err(e) => Err(e),
> > > > +            }
> > > > +        }
> > > > +    );
> > > > +}
> > > > +
> > > > +/// The kernel's [`Vec`] type.
> > > > +///
> > > > +/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
> > > > +/// `Kmalloc`, `Vmalloc` or `KVmalloc`, written `Vec<T, A>`.
> > >
> > > A closing bracket is missing in this sentence.
> >
> > Gonna fix.
> >
> > >
> > > > +/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
> > > > +/// the most common allocators the type aliases `KVec`, `VVec` and `KVVec` exist.
> > > > +///
> > > > +/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
> > > > +///
> > > > +/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
> > > > +/// capacity of the vector (the number of elements that currently fit into the vector), it's length
> > > > +/// (the number of elements that are currently stored in the vector) and the `Allocator` used to
> > > > +/// allocate (and free) the backing buffer.
> > > > +///
> > > > +/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts
> > > > +/// and manually modified.
> > > > +///
> > > > +/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
> > > > +/// are added to the vector.
> > > > +///
> > > > +/// # Invariants
> > > > +///
> > > > +/// The [`Vec`] backing buffer's pointer always properly aligned and either points to memory
> > > > +/// allocated with `A` or, for zero-sized types, is a dangling pointer.
> > > > +///
> > > > +/// The length of the vector always represents the exact number of elements stored in the vector.
> > > > +///
> > > > +/// The capacity of the vector always represents the absolute number of elements that can be stored
> > > > +/// within the vector without re-allocation. However, it is legal for the backing buffer to be
> > > > +/// larger than `size_of<T>` times the capacity.
> > > > +///
> > > > +/// The `Allocator` of the vector is the exact allocator the backing buffer was allocated with (and
> > > > +/// must be freed with).
> > > > +pub struct Vec<T, A: Allocator> {
> > > > +    ptr: Unique<T>,
> > > > +    /// Never used for ZSTs; it's `capacity()`'s responsibility to return usize::MAX in that case.
> > > > +    ///
> > > > +    /// # Safety
> > > > +    ///
> > > > +    /// `cap` must be in the `0..=isize::MAX` range.
> > > > +    cap: usize,
> > >
> > > This section header should say Invariants, not Safety.
> >
> > Agreed.
> >
> > >
> > > > +    len: usize,
> > > > +    _p: PhantomData<A>,
> > > > +}
> > > > +
> > > > +/// Type alias for `Vec` with a `Kmalloc` allocator.
> > > > +///
> > > > +/// # Examples
> > > > +///
> > > > +/// ```
> > > > +/// let mut v = KVec::new();
> > > > +/// v.push(1, GFP_KERNEL)?;
> > > > +/// assert_eq!(&v, &[1]);
> > > > +///
> > > > +/// # Ok::<(), Error>(())
> > > > +/// ```
> > > > +pub type KVec<T> = Vec<T, super::allocator::Kmalloc>;
> > > > +
> > > > +/// Type alias for `Vec` with a `Vmalloc` allocator.
> > > > +///
> > > > +/// # Examples
> > > > +///
> > > > +/// ```
> > > > +/// let mut v = VVec::new();
> > > > +/// v.push(1, GFP_KERNEL)?;
> > > > +/// assert_eq!(&v, &[1]);
> > > > +///
> > > > +/// # Ok::<(), Error>(())
> > > > +/// ```
> > > > +pub type VVec<T> = Vec<T, super::allocator::Vmalloc>;
> > > > +
> > > > +/// Type alias for `Vec` with a `KVmalloc` allocator.
> > > > +///
> > > > +/// # Examples
> > > > +///
> > > > +/// ```
> > > > +/// let mut v = KVVec::new();
> > > > +/// v.push(1, GFP_KERNEL)?;
> > > > +/// assert_eq!(&v, &[1]);
> > > > +///
> > > > +/// # Ok::<(), Error>(())
> > > > +/// ```
> > > > +pub type KVVec<T> = Vec<T, super::allocator::KVmalloc>;
> > > > +
> > > > +impl<T, A> Vec<T, A>
> > > > +where
> > > > +    A: Allocator,
> > > > +{
> > > > +    #[inline]
> > > > +    fn is_zst() -> bool {
> > > > +        core::mem::size_of::<T>() == 0
> > > > +    }
> > > > +
> > > > +    /// Returns the total number of elements the vector can hold without
> > > > +    /// reallocating.
> > > > +    pub fn capacity(&self) -> usize {
> > > > +        if Self::is_zst() {
> > > > +            usize::MAX
> > > > +        } else {
> > > > +            self.cap
> > > > +        }
> > > > +    }
> > >
> > > I would consider always storing usize::MAX in the capacity field for zst types?
> >
> > This wouldn't work. `self.cap` is supposed to represent the actual capacity of
> > the vector, which for ZSTs is zero.
> 
> Storing usize::MAX values of a zero-sized type takes up zero bytes,
> and your vector has space for zero bytes. Seems sensible to me to use
> usize::MAX.

The logic here really is that `self.cap` represents the actual buffer size,
whereas `Self::capacity` represents the number of elements we can still store
without reallocating. Depending on the case we need to know one or the other.

I can add a comment to make this more clear if you prefer.

> 
> Anyway, it's up to you. I'm ok either way.
> 
> > > > +
> > > > +    /// Returns the number of elements in the vector, also referred to
> > > > +    /// as its 'length'.
> > > > +    #[inline]
> > > > +    pub fn len(&self) -> usize {
> > > > +        self.len
> > > > +    }
> > > > +
> > > > +    /// Forces the length of the vector to new_len.
> > > > +    ///
> > > > +    /// # Safety
> > > > +    ///
> > > > +    /// - `new_len` must be less than or equal to [`Self::capacity()`].
> > > > +    /// - The elements at `old_len..new_len` must be initialized.
> > > > +    #[inline]
> > > > +    pub unsafe fn set_len(&mut self, new_len: usize) {
> > > > +        self.len = new_len;
> > > > +    }
> > > > +
> > > > +    /// Extracts a slice containing the entire vector.
> > > > +    ///
> > > > +    /// Equivalent to `&s[..]`.
> > > > +    #[inline]
> > > > +    pub fn as_slice(&self) -> &[T] {
> > > > +        self
> > > > +    }
> > > > +
> > > > +    /// Extracts a mutable slice of the entire vector.
> > > > +    ///
> > > > +    /// Equivalent to `&mut s[..]`.
> > > > +    #[inline]
> > > > +    pub fn as_mut_slice(&mut self) -> &mut [T] {
> > > > +        self
> > > > +    }
> > > > +
> > > > +    /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling
> > > > +    /// raw pointer valid for zero sized reads if the vector didn't allocate.
> > > > +    #[inline]
> > > > +    pub fn as_mut_ptr(&self) -> *mut T {
> > > > +        self.ptr.as_ptr()
> > > > +    }
> > > > +
> > > > +    /// Returns a raw pointer to the slice's buffer.
> > > > +    #[inline]
> > > > +    pub fn as_ptr(&self) -> *const T {
> > > > +        self.as_mut_ptr()
> > > > +    }
> > > > +
> > > > +    /// Returns `true` if the vector contains no elements.
> > > > +    ///
> > > > +    /// # Examples
> > > > +    ///
> > > > +    /// ```
> > > > +    /// let mut v = KVec::new();
> > > > +    /// assert!(v.is_empty());
> > > > +    ///
> > > > +    /// v.push(1, GFP_KERNEL);
> > > > +    /// assert!(!v.is_empty());
> > > > +    /// ```
> > > > +    #[inline]
> > > > +    pub fn is_empty(&self) -> bool {
> > > > +        self.len() == 0
> > > > +    }
> > > > +
> > > > +    /// Constructs a new, empty Vec<T, A>.
> > > > +    ///
> > > > +    /// This method does not allocate by itself.
> > > > +    #[inline]
> > > > +    pub const fn new() -> Self {
> > > > +        Self {
> > > > +            ptr: Unique::dangling(),
> > > > +            cap: 0,
> > > > +            len: 0,
> > > > +            _p: PhantomData::<A>,
> > > > +        }
> > > > +    }
> > > > +
> > > > +    /// Returns the remaining spare capacity of the vector as a slice of `MaybeUninit<T>`.
> > > > +    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
> > > > +        // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
> > > > +        // and valid, but uninitialized.
> > > > +        unsafe {
> > > > +            slice::from_raw_parts_mut(
> > > > +                self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
> > > > +                self.capacity() - self.len,
> > > > +            )
> > > > +        }
> > >
> > > Is this correct for ZSTs?
> >
> > Yes, it gives us a slice of ZSTs with the maximum possible length usize::MAX.
> >
> > >
> > > > +    }
> > > > +
> > > > +    /// Appends an element to the back of the [`Vec`] instance.
> > > > +    ///
> > > > +    /// # Examples
> > > > +    ///
> > > > +    /// ```
> > > > +    /// let mut v = KVec::new();
> > > > +    /// v.push(1, GFP_KERNEL)?;
> > > > +    /// assert_eq!(&v, &[1]);
> > > > +    ///
> > > > +    /// v.push(2, GFP_KERNEL)?;
> > > > +    /// assert_eq!(&v, &[1, 2]);
> > > > +    /// # Ok::<(), Error>(())
> > > > +    /// ```
> > > > +    pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
> > > > +        Vec::reserve(self, 1, flags)?;
> > > > +        let s = self.spare_capacity_mut();
> > > > +        s[0].write(v);
> > > > +
> > > > +        // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
> > > > +        // by 1. We also know that the new length is <= capacity because of the previous call to
> > > > +        // `reserve` above.
> > > > +        unsafe { self.set_len(self.len() + 1) };
> > > > +        Ok(())
> > > > +    }
> > > > +
> > > > +    /// Creates a new [`Vec`] instance with at least the given capacity.
> > > > +    ///
> > > > +    /// # Examples
> > > > +    ///
> > > > +    /// ```
> > > > +    /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
> > > > +    ///
> > > > +    /// assert!(v.capacity() >= 20);
> > > > +    /// # Ok::<(), Error>(())
> > > > +    /// ```
> > > > +    pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
> > > > +        let mut v = Vec::new();
> > > > +
> > > > +        Self::reserve(&mut v, capacity, flags)?;
> > > > +
> > > > +        Ok(v)
> > > > +    }
> > > > +
> > > > +    /// Pushes clones of the elements of slice into the [`Vec`] instance.
> > > > +    ///
> > > > +    /// # Examples
> > > > +    ///
> > > > +    /// ```
> > > > +    /// let mut v = KVec::new();
> > > > +    /// v.push(1, GFP_KERNEL)?;
> > > > +    ///
> > > > +    /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
> > > > +    /// assert_eq!(&v, &[1, 20, 30, 40]);
> > > > +    ///
> > > > +    /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
> > > > +    /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
> > > > +    /// # Ok::<(), Error>(())
> > > > +    /// ```
> > > > +    pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError>
> > > > +    where
> > > > +        T: Clone,
> > > > +    {
> > > > +        self.reserve(other.len(), flags)?;
> > > > +        for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
> > > > +            slot.write(item.clone());
> > > > +        }
> > > > +
> > > > +        // SAFETY: We just initialised the `other.len()` spare entries, so it is safe to increase
> > > > +        // the length by the same amount. We also know that the new length is <= capacity because
> > > > +        // of the previous call to `reserve` above.
> > > > +        unsafe { self.set_len(self.len() + other.len()) };
> > > > +        Ok(())
> > > > +    }
> > > > +
> > > > +    /// Creates a Vec<T, A> directly from a pointer, a length, a capacity, and an allocator.
> > > > +    ///
> > > > +    /// # Safety
> > > > +    ///
> > > > +    /// This is highly unsafe, due to the number of invariants that aren’t checked:
> > > > +    ///
> > > > +    /// - `ptr` must be currently allocated via the given allocator `A`.
> > > > +    /// - `T` needs to have the same alignment as what `ptr` was allocated with. (`T` having a less
> > > > +    ///   strict alignment is not sufficient, the alignment really needs to be equal to satisfy the
> > > > +    ///   `dealloc` requirement that memory must be allocated and deallocated with the same layout.)
> > > > +    /// - The size of `T` times the `capacity` (i.e. the allocated size in bytes) needs to be
> > > > +    ///   smaller or equal the size the pointer was allocated with.
> > > > +    /// - `length` needs to be less than or equal to `capacity`.
> > > > +    /// - The first `length` values must be properly initialized values of type `T`.
> > > > +    /// - The allocated size in bytes must be no larger than `isize::MAX`. See the safety
> > > > +    ///   documentation of `pointer::offset`.
> > > > +    ///
> > > > +    /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
> > > > +    /// `cap` and `len`.
> > > > +    ///
> > > > +    /// # Examples
> > > > +    ///
> > > > +    /// ```
> > > > +    /// let mut v = kernel::kvec![1, 2, 3]?;
> > > > +    /// v.reserve(1, GFP_KERNEL)?;
> > > > +    ///
> > > > +    /// let (mut ptr, mut len, cap) = v.into_raw_parts();
> > > > +    ///
> > > > +    /// // SAFETY: We've just reserved memory for another element.
> > > > +    /// unsafe { ptr.add(len).write(4) };
> > > > +    /// len += 1;
> > > > +    ///
> > > > +    /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
> > > > +    /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
> > > > +    /// // from the exact same raw parts.
> > > > +    /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
> > > > +    ///
> > > > +    /// assert_eq!(v, [1, 2, 3, 4]);
> > > > +    ///
> > > > +    /// # Ok::<(), Error>(())
> > > > +    /// ```
> > > > +    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
> > > > +        let cap = if Self::is_zst() { 0 } else { capacity };
> > > > +
> > > > +        Self {
> > > > +            // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
> > > > +            // memory allocation, allocated with `A`.
> > > > +            ptr: unsafe { Unique::new_unchecked(ptr) },
> > > > +            cap,
> > > > +            len: length,
> > > > +            _p: PhantomData::<A>,
> > > > +        }
> > > > +    }
> > > > +
> > > > +    /// Decomposes a `Vec<T, A>` into its raw components: (`pointer`, `length`, `capacity`).
> > > > +    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
> > > > +        let me = ManuallyDrop::new(self);
> > > > +        let len = me.len();
> > > > +        let capacity = me.capacity();
> > > > +        let ptr = me.as_mut_ptr();
> > > > +        (ptr, len, capacity)
> > > > +    }
> > > > +
> > > > +    /// Ensures that the capacity exceeds the length by at least `additional` elements.
> > > > +    ///
> > > > +    /// # Examples
> > > > +    ///
> > > > +    /// ```
> > > > +    /// let mut v = KVec::new();
> > > > +    /// v.push(1, GFP_KERNEL)?;
> > > > +    ///
> > > > +    /// v.reserve(10, GFP_KERNEL)?;
> > > > +    /// let cap = v.capacity();
> > > > +    /// assert!(cap >= 10);
> > > > +    ///
> > > > +    /// v.reserve(10, GFP_KERNEL)?;
> > > > +    /// let new_cap = v.capacity();
> > > > +    /// assert_eq!(new_cap, cap);
> > > > +    ///
> > > > +    /// # Ok::<(), Error>(())
> > > > +    /// ```
> > > > +    pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
> > > > +        let len = self.len();
> > > > +        let cap = self.capacity();
> > > > +
> > > > +        if cap - len >= additional {
> > > > +            return Ok(());
> > > > +        }
> > > > +
> > > > +        if Self::is_zst() {
> > > > +            // The capacity is already `usize::MAX` for SZTs, we can't go higher.
> > > > +            return Err(AllocError);
> > > > +        }
> > > > +
> > > > +        // We know cap is <= `isize::MAX` because `Layout::array` fails if the resulting byte size
> > > > +        // is greater than `isize::MAX`. So the multiplication by two won't overflow.
> > >
> > > You know it won't overflow because of the type invariants. The thing
> > > about Layout::array should instead be used to argue why setting
> > > self.cap below does not break the invariants.
> >
> > Good point, I will reword it.
> >
> > >
> > > > +        let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
> > > > +        let layout = core::alloc::Layout::array::<T>(new_cap).map_err(|_| AllocError)?;
> > > > +
> > > > +        // We need to make sure that `ptr` is either NULL or comes from a previous call to
> > > > +        // `realloc_flags`. A `Vec<T, A>`'s `ptr` value is not guaranteed to be NULL and might be
> > > > +        // dangling after being created with `Vec::new`. Instead, we can rely on `Vec<T, A>`'s
> > > > +        // capacity to be zero if no memory has been allocated yet.
> > > > +        let ptr = if cap == 0 {
> > > > +            None
> > > > +        } else {
> > > > +            Some(self.ptr.as_non_null().cast())
> > > > +        };
> > > > +
> > > > +        // SAFETY: `ptr` is valid because it's either `None` or comes from a previous call to
> > > > +        // `A::realloc`. We also verified that the type is not a ZST.
> > > > +        let ptr = unsafe { A::realloc(ptr, layout, flags)? };
> > > > +
> > > > +        self.ptr = ptr.cast().into();
> > > > +        self.cap = new_cap;
> > > > +
> > > > +        Ok(())
> > > > +    }
> > > > +}
> > > > +
> > > > +impl<T: Clone, A: Allocator> Vec<T, A> {
> > > > +    /// Extend the vector by `n` clones of value.
> > > > +    pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
> > > > +        self.reserve(n, flags)?;
> > > > +
> > > > +        let spare = self.spare_capacity_mut();
> > > > +
> > > > +        for i in 0..spare.len() - 1 {
> > > > +            spare[i].write(value.clone());
> > > > +        }
> > >
> > > Minus one? Shouldn't this instead loop for `0..n`?
> >
> > We can indeed just use `n` instead of `slice::len` here.
> 
> But `spare.len()` could be longer than `n`?

You're right, we *have to* use `n`. Gonna fix that.

> 
> >
> > Minus one, because we create clones for the first n - 1 elements and for the
> > last one we just use the value itself.
> >
> > >
> > > > +
> > > > +        // We can write the last element directly without cloning needlessly
> > > > +        spare[spare.len() - 1].write(value);
> > >
> > > spare[n-1].write(value);
> >
> > Yep, works too.
> >
> > >
> > > > +
> > > > +        // SAFETY: `self.reserve` not bailing out with an error guarantees that we're not
> > > > +        // exceeding the capacity of this `Vec`.
> > > > +        unsafe { self.set_len(self.len() + n) };
> > > > +
> > > > +        Ok(())
> > > > +    }
> > > > +
> > > > +    /// Create a new `Vec<T, A> and extend it by `n` clones of `value`.
> > > > +    pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
> > > > +        let mut v = Self::with_capacity(n, flags)?;
> > > > +
> > > > +        v.extend_with(n, value, flags)?;
> > > > +
> > > > +        Ok(v)
> > > > +    }
> > > > +}
> > > > +
> > > > +impl<T, A> Drop for Vec<T, A>
> > > > +where
> > > > +    A: Allocator,
> > > > +{
> > > > +    fn drop(&mut self) {
> > > > +        // SAFETY: We need to drop the vector's elements in place, before we free the backing
> > > > +        // memory.
> > > > +        unsafe {
> > > > +            core::ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
> > > > +                self.as_mut_ptr(),
> > > > +                self.len,
> > > > +            ))
> > > > +        };
> > > > +
> > > > +        // If `cap == 0` we never allocated any memory in the first place.
> > > > +        if self.cap != 0 {
> > > > +            // SAFETY: `self.ptr` was previously allocated with `A`.
> > > > +            unsafe { A::free(self.ptr.as_non_null().cast()) };
> > >
> > > Do you need a ZST check here?
> >
> > No, for ZST `self.cap` is always zero.
> >
> > >
> > > > +        }
> > > > +    }
> > > > +}
> > > > +
> > > > +impl<T> Default for KVec<T> {
> > > > +    #[inline]
> > > > +    fn default() -> Self {
> > > > +        Self::new()
> > > > +    }
> > > > +}
> > > > +
> > > > +impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
> > > > +    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
> > > > +        fmt::Debug::fmt(&**self, f)
> > > > +    }
> > > > +}
> > > > +
> > > > +impl<T, A> Deref for Vec<T, A>
> > > > +where
> > > > +    A: Allocator,
> > > > +{
> > > > +    type Target = [T];
> > > > +
> > > > +    #[inline]
> > > > +    fn deref(&self) -> &[T] {
> > > > +        // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
> > > > +        // initialized elements of type `T`.
> > > > +        unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
> > > > +    }
> > > > +}
> > > > +
> > > > +impl<T, A> DerefMut for Vec<T, A>
> > > > +where
> > > > +    A: Allocator,
> > > > +{
> > > > +    #[inline]
> > > > +    fn deref_mut(&mut self) -> &mut [T] {
> > > > +        // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
> > > > +        // initialized elements of type `T`.
> > > > +        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
> > > > +    }
> > > > +}
> > > > +
> > > > +impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
> > > > +
> > > > +impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
> > > > +where
> > > > +    A: Allocator,
> > > > +{
> > > > +    type Output = I::Output;
> > > > +
> > > > +    #[inline]
> > > > +    fn index(&self, index: I) -> &Self::Output {
> > > > +        Index::index(&**self, index)
> > > > +    }
> > > > +}
> > > > +
> > > > +impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
> > > > +where
> > > > +    A: Allocator,
> > > > +{
> > > > +    #[inline]
> > > > +    fn index_mut(&mut self, index: I) -> &mut Self::Output {
> > > > +        IndexMut::index_mut(&mut **self, index)
> > > > +    }
> > > > +}
> > > > +
> > > > +macro_rules! __impl_slice_eq {
> > > > +    ([$($vars:tt)*] $lhs:ty, $rhs:ty $(where $ty:ty: $bound:ident)?) => {
> > > > +        impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
> > > > +        where
> > > > +            T: PartialEq<U>,
> > > > +            $($ty: $bound)?
> > > > +        {
> > > > +            #[inline]
> > > > +            fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
> > > > +        }
> > > > +    }
> > > > +}
> > > > +
> > > > +__impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> }
> > > > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &[U] }
> > > > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, &mut [U] }
> > > > +__impl_slice_eq! { [A: Allocator] &[T], Vec<U, A> }
> > > > +__impl_slice_eq! { [A: Allocator] &mut [T], Vec<U, A> }
> > > > +__impl_slice_eq! { [A: Allocator] Vec<T, A>, [U] }
> > > > +__impl_slice_eq! { [A: Allocator] [T], Vec<U, A> }
> > > > +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] }
> > > > +__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] }
> > > > diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs
> > > > index 6bf77577eae7..bb80a43d20fb 100644
> > > > --- a/rust/kernel/prelude.rs
> > > > +++ b/rust/kernel/prelude.rs
> > > > @@ -14,7 +14,7 @@
> > > >  #[doc(no_inline)]
> > > >  pub use core::pin::Pin;
> > > >
> > > > -pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, VBox};
> > > > +pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, KVVec, KVec, VBox, VVec};
> > > >
> > > >  #[doc(no_inline)]
> > > >  pub use alloc::vec::Vec;
> > > > --
> > > > 2.45.2
> > > >
> > >
>
diff mbox series

Patch

diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs
index 4bddd023aa7f..bd93140f3094 100644
--- a/rust/kernel/alloc.rs
+++ b/rust/kernel/alloc.rs
@@ -5,6 +5,7 @@ 
 #[cfg(not(any(test, testlib)))]
 pub mod allocator;
 pub mod kbox;
+pub mod kvec;
 pub mod vec_ext;
 
 #[cfg(any(test, testlib))]
@@ -18,6 +19,11 @@ 
 pub use self::kbox::KVBox;
 pub use self::kbox::VBox;
 
+pub use self::kvec::KVVec;
+pub use self::kvec::KVec;
+pub use self::kvec::VVec;
+pub use self::kvec::Vec;
+
 /// Indicates an allocation error.
 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
 pub struct AllocError;
diff --git a/rust/kernel/alloc/kbox.rs b/rust/kernel/alloc/kbox.rs
index 7074f00e07bc..39feaed4a8f8 100644
--- a/rust/kernel/alloc/kbox.rs
+++ b/rust/kernel/alloc/kbox.rs
@@ -2,7 +2,7 @@ 
 
 //! Implementation of [`Box`].
 
-use super::{AllocError, Allocator, Flags};
+use super::{AllocError, Allocator, Flags, Vec};
 use core::fmt;
 use core::marker::PhantomData;
 use core::mem::ManuallyDrop;
@@ -169,6 +169,20 @@  pub fn into_pin(b: Self) -> Pin<Self>
     }
 }
 
+impl<T, A, const N: usize> Box<[T; N], A>
+where
+    A: Allocator,
+{
+    /// Convert a `Box<[T], A>` to a `Vec<T, A>`.
+    pub fn into_vec(b: Self) -> Vec<T, A> {
+        let len = b.len();
+        unsafe {
+            let ptr = Self::into_raw(b);
+            Vec::from_raw_parts(ptr as _, len, len)
+        }
+    }
+}
+
 impl<T, A> Box<MaybeUninit<T>, A>
 where
     A: Allocator,
diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs
new file mode 100644
index 000000000000..04cc85f7d92c
--- /dev/null
+++ b/rust/kernel/alloc/kvec.rs
@@ -0,0 +1,583 @@ 
+// SPDX-License-Identifier: GPL-2.0
+
+//! Implementation of [`Vec`].
+
+use super::{AllocError, Allocator, Flags};
+use crate::types::Unique;
+use core::{
+    fmt,
+    marker::PhantomData,
+    mem::{ManuallyDrop, MaybeUninit},
+    ops::Deref,
+    ops::DerefMut,
+    ops::Index,
+    ops::IndexMut,
+    slice,
+    slice::SliceIndex,
+};
+
+/// Create a [`Vec`] containing the arguments.
+///
+/// # Examples
+///
+/// ```
+/// let mut v = kernel::kvec![];
+/// v.push(1, GFP_KERNEL)?;
+/// assert_eq!(v, [1]);
+///
+/// let mut v = kernel::kvec![1; 3]?;
+/// v.push(4, GFP_KERNEL)?;
+/// assert_eq!(v, [1, 1, 1, 4]);
+///
+/// let mut v = kernel::kvec![1, 2, 3]?;
+/// v.push(4, GFP_KERNEL)?;
+/// assert_eq!(v, [1, 2, 3, 4]);
+///
+/// # Ok::<(), Error>(())
+/// ```
+#[macro_export]
+macro_rules! kvec {
+    () => (
+        {
+            $crate::alloc::KVec::new()
+        }
+    );
+    ($elem:expr; $n:expr) => (
+        {
+            $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
+        }
+    );
+    ($($x:expr),+ $(,)?) => (
+        {
+            match $crate::alloc::KBox::new([$($x),+], GFP_KERNEL) {
+                Ok(b) => Ok($crate::alloc::KBox::into_vec(b)),
+                Err(e) => Err(e),
+            }
+        }
+    );
+}
+
+/// The kernel's [`Vec`] type.
+///
+/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
+/// `Kmalloc`, `Vmalloc` or `KVmalloc`, written `Vec<T, A>`.
+///
+/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
+/// the most common allocators the type aliases `KVec`, `VVec` and `KVVec` exist.
+///
+/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
+///
+/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
+/// capacity of the vector (the number of elements that currently fit into the vector), it's length
+/// (the number of elements that are currently stored in the vector) and the `Allocator` used to
+/// allocate (and free) the backing buffer.
+///
+/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts
+/// and manually modified.
+///
+/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
+/// are added to the vector.
+///
+/// # Invariants
+///
+/// The [`Vec`] backing buffer's pointer always properly aligned and either points to memory
+/// allocated with `A` or, for zero-sized types, is a dangling pointer.
+///
+/// The length of the vector always represents the exact number of elements stored in the vector.
+///
+/// The capacity of the vector always represents the absolute number of elements that can be stored
+/// within the vector without re-allocation. However, it is legal for the backing buffer to be
+/// larger than `size_of<T>` times the capacity.
+///
+/// The `Allocator` of the vector is the exact allocator the backing buffer was allocated with (and
+/// must be freed with).
+pub struct Vec<T, A: Allocator> {
+    ptr: Unique<T>,
+    /// Never used for ZSTs; it's `capacity()`'s responsibility to return usize::MAX in that case.
+    ///
+    /// # Safety
+    ///
+    /// `cap` must be in the `0..=isize::MAX` range.
+    cap: usize,
+    len: usize,
+    _p: PhantomData<A>,
+}
+
+/// Type alias for `Vec` with a `Kmalloc` allocator.
+///
+/// # Examples
+///
+/// ```
+/// let mut v = KVec::new();
+/// v.push(1, GFP_KERNEL)?;
+/// assert_eq!(&v, &[1]);
+///
+/// # Ok::<(), Error>(())
+/// ```
+pub type KVec<T> = Vec<T, super::allocator::Kmalloc>;
+
+/// Type alias for `Vec` with a `Vmalloc` allocator.
+///
+/// # Examples
+///
+/// ```
+/// let mut v = VVec::new();
+/// v.push(1, GFP_KERNEL)?;
+/// assert_eq!(&v, &[1]);
+///
+/// # Ok::<(), Error>(())
+/// ```
+pub type VVec<T> = Vec<T, super::allocator::Vmalloc>;
+
+/// Type alias for `Vec` with a `KVmalloc` allocator.
+///
+/// # Examples
+///
+/// ```
+/// let mut v = KVVec::new();
+/// v.push(1, GFP_KERNEL)?;
+/// assert_eq!(&v, &[1]);
+///
+/// # Ok::<(), Error>(())
+/// ```
+pub type KVVec<T> = Vec<T, super::allocator::KVmalloc>;
+
+impl<T, A> Vec<T, A>
+where
+    A: Allocator,
+{
+    #[inline]
+    fn is_zst() -> bool {
+        core::mem::size_of::<T>() == 0
+    }
+
+    /// Returns the total number of elements the vector can hold without
+    /// reallocating.
+    pub fn capacity(&self) -> usize {
+        if Self::is_zst() {
+            usize::MAX
+        } else {
+            self.cap
+        }
+    }
+
+    /// Returns the number of elements in the vector, also referred to
+    /// as its 'length'.
+    #[inline]
+    pub fn len(&self) -> usize {
+        self.len
+    }
+
+    /// Forces the length of the vector to new_len.
+    ///
+    /// # Safety
+    ///
+    /// - `new_len` must be less than or equal to [`Self::capacity()`].
+    /// - The elements at `old_len..new_len` must be initialized.
+    #[inline]
+    pub unsafe fn set_len(&mut self, new_len: usize) {
+        self.len = new_len;
+    }
+
+    /// Extracts a slice containing the entire vector.
+    ///
+    /// Equivalent to `&s[..]`.
+    #[inline]
+    pub fn as_slice(&self) -> &[T] {
+        self
+    }
+
+    /// Extracts a mutable slice of the entire vector.
+    ///
+    /// Equivalent to `&mut s[..]`.
+    #[inline]
+    pub fn as_mut_slice(&mut self) -> &mut [T] {
+        self
+    }
+
+    /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling
+    /// raw pointer valid for zero sized reads if the vector didn't allocate.
+    #[inline]
+    pub fn as_mut_ptr(&self) -> *mut T {
+        self.ptr.as_ptr()
+    }
+
+    /// Returns a raw pointer to the slice's buffer.
+    #[inline]
+    pub fn as_ptr(&self) -> *const T {
+        self.as_mut_ptr()
+    }
+
+    /// Returns `true` if the vector contains no elements.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = KVec::new();
+    /// assert!(v.is_empty());
+    ///
+    /// v.push(1, GFP_KERNEL);
+    /// assert!(!v.is_empty());
+    /// ```
+    #[inline]
+    pub fn is_empty(&self) -> bool {
+        self.len() == 0
+    }
+
+    /// Constructs a new, empty Vec<T, A>.
+    ///
+    /// This method does not allocate by itself.
+    #[inline]
+    pub const fn new() -> Self {
+        Self {
+            ptr: Unique::dangling(),
+            cap: 0,
+            len: 0,
+            _p: PhantomData::<A>,
+        }
+    }
+
+    /// Returns the remaining spare capacity of the vector as a slice of `MaybeUninit<T>`.
+    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
+        // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
+        // and valid, but uninitialized.
+        unsafe {
+            slice::from_raw_parts_mut(
+                self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
+                self.capacity() - self.len,
+            )
+        }
+    }
+
+    /// Appends an element to the back of the [`Vec`] instance.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = KVec::new();
+    /// v.push(1, GFP_KERNEL)?;
+    /// assert_eq!(&v, &[1]);
+    ///
+    /// v.push(2, GFP_KERNEL)?;
+    /// assert_eq!(&v, &[1, 2]);
+    /// # Ok::<(), Error>(())
+    /// ```
+    pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
+        Vec::reserve(self, 1, flags)?;
+        let s = self.spare_capacity_mut();
+        s[0].write(v);
+
+        // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
+        // by 1. We also know that the new length is <= capacity because of the previous call to
+        // `reserve` above.
+        unsafe { self.set_len(self.len() + 1) };
+        Ok(())
+    }
+
+    /// Creates a new [`Vec`] instance with at least the given capacity.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
+    ///
+    /// assert!(v.capacity() >= 20);
+    /// # Ok::<(), Error>(())
+    /// ```
+    pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
+        let mut v = Vec::new();
+
+        Self::reserve(&mut v, capacity, flags)?;
+
+        Ok(v)
+    }
+
+    /// Pushes clones of the elements of slice into the [`Vec`] instance.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = KVec::new();
+    /// v.push(1, GFP_KERNEL)?;
+    ///
+    /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
+    /// assert_eq!(&v, &[1, 20, 30, 40]);
+    ///
+    /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
+    /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
+    /// # Ok::<(), Error>(())
+    /// ```
+    pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError>
+    where
+        T: Clone,
+    {
+        self.reserve(other.len(), flags)?;
+        for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
+            slot.write(item.clone());
+        }
+
+        // SAFETY: We just initialised the `other.len()` spare entries, so it is safe to increase
+        // the length by the same amount. We also know that the new length is <= capacity because
+        // of the previous call to `reserve` above.
+        unsafe { self.set_len(self.len() + other.len()) };
+        Ok(())
+    }
+
+    /// Creates a Vec<T, A> directly from a pointer, a length, a capacity, and an allocator.
+    ///
+    /// # Safety
+    ///
+    /// This is highly unsafe, due to the number of invariants that aren’t checked:
+    ///
+    /// - `ptr` must be currently allocated via the given allocator `A`.
+    /// - `T` needs to have the same alignment as what `ptr` was allocated with. (`T` having a less
+    ///   strict alignment is not sufficient, the alignment really needs to be equal to satisfy the
+    ///   `dealloc` requirement that memory must be allocated and deallocated with the same layout.)
+    /// - The size of `T` times the `capacity` (i.e. the allocated size in bytes) needs to be
+    ///   smaller or equal the size the pointer was allocated with.
+    /// - `length` needs to be less than or equal to `capacity`.
+    /// - The first `length` values must be properly initialized values of type `T`.
+    /// - The allocated size in bytes must be no larger than `isize::MAX`. See the safety
+    ///   documentation of `pointer::offset`.
+    ///
+    /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
+    /// `cap` and `len`.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = kernel::kvec![1, 2, 3]?;
+    /// v.reserve(1, GFP_KERNEL)?;
+    ///
+    /// let (mut ptr, mut len, cap) = v.into_raw_parts();
+    ///
+    /// // SAFETY: We've just reserved memory for another element.
+    /// unsafe { ptr.add(len).write(4) };
+    /// len += 1;
+    ///
+    /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
+    /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
+    /// // from the exact same raw parts.
+    /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
+    ///
+    /// assert_eq!(v, [1, 2, 3, 4]);
+    ///
+    /// # Ok::<(), Error>(())
+    /// ```
+    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
+        let cap = if Self::is_zst() { 0 } else { capacity };
+
+        Self {
+            // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
+            // memory allocation, allocated with `A`.
+            ptr: unsafe { Unique::new_unchecked(ptr) },
+            cap,
+            len: length,
+            _p: PhantomData::<A>,
+        }
+    }
+
+    /// Decomposes a `Vec<T, A>` into its raw components: (`pointer`, `length`, `capacity`).
+    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
+        let me = ManuallyDrop::new(self);
+        let len = me.len();
+        let capacity = me.capacity();
+        let ptr = me.as_mut_ptr();
+        (ptr, len, capacity)
+    }
+
+    /// Ensures that the capacity exceeds the length by at least `additional` elements.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// let mut v = KVec::new();
+    /// v.push(1, GFP_KERNEL)?;
+    ///
+    /// v.reserve(10, GFP_KERNEL)?;
+    /// let cap = v.capacity();
+    /// assert!(cap >= 10);
+    ///
+    /// v.reserve(10, GFP_KERNEL)?;
+    /// let new_cap = v.capacity();
+    /// assert_eq!(new_cap, cap);
+    ///
+    /// # Ok::<(), Error>(())
+    /// ```
+    pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
+        let len = self.len();
+        let cap = self.capacity();
+
+        if cap - len >= additional {
+            return Ok(());
+        }
+
+        if Self::is_zst() {
+            // The capacity is already `usize::MAX` for SZTs, we can't go higher.
+            return Err(AllocError);
+        }
+
+        // We know cap is <= `isize::MAX` because `Layout::array` fails if the resulting byte size
+        // is greater than `isize::MAX`. So the multiplication by two won't overflow.
+        let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
+        let layout = core::alloc::Layout::array::<T>(new_cap).map_err(|_| AllocError)?;
+
+        // We need to make sure that `ptr` is either NULL or comes from a previous call to
+        // `realloc_flags`. A `Vec<T, A>`'s `ptr` value is not guaranteed to be NULL and might be
+        // dangling after being created with `Vec::new`. Instead, we can rely on `Vec<T, A>`'s
+        // capacity to be zero if no memory has been allocated yet.
+        let ptr = if cap == 0 {
+            None
+        } else {
+            Some(self.ptr.as_non_null().cast())
+        };
+
+        // SAFETY: `ptr` is valid because it's either `None` or comes from a previous call to
+        // `A::realloc`. We also verified that the type is not a ZST.
+        let ptr = unsafe { A::realloc(ptr, layout, flags)? };
+
+        self.ptr = ptr.cast().into();
+        self.cap = new_cap;
+
+        Ok(())
+    }
+}
+
+impl<T: Clone, A: Allocator> Vec<T, A> {
+    /// Extend the vector by `n` clones of value.
+    pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
+        self.reserve(n, flags)?;
+
+        let spare = self.spare_capacity_mut();
+
+        for i in 0..spare.len() - 1 {
+            spare[i].write(value.clone());
+        }
+
+        // We can write the last element directly without cloning needlessly
+        spare[spare.len() - 1].write(value);
+
+        // SAFETY: `self.reserve` not bailing out with an error guarantees that we're not
+        // exceeding the capacity of this `Vec`.
+        unsafe { self.set_len(self.len() + n) };
+
+        Ok(())
+    }
+
+    /// Create a new `Vec<T, A> and extend it by `n` clones of `value`.
+    pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
+        let mut v = Self::with_capacity(n, flags)?;
+
+        v.extend_with(n, value, flags)?;
+
+        Ok(v)
+    }
+}
+
+impl<T, A> Drop for Vec<T, A>
+where
+    A: Allocator,
+{
+    fn drop(&mut self) {
+        // SAFETY: We need to drop the vector's elements in place, before we free the backing
+        // memory.
+        unsafe {
+            core::ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
+                self.as_mut_ptr(),
+                self.len,
+            ))
+        };
+
+        // If `cap == 0` we never allocated any memory in the first place.
+        if self.cap != 0 {
+            // SAFETY: `self.ptr` was previously allocated with `A`.
+            unsafe { A::free(self.ptr.as_non_null().cast()) };
+        }
+    }
+}
+
+impl<T> Default for KVec<T> {
+    #[inline]
+    fn default() -> Self {
+        Self::new()
+    }
+}
+
+impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        fmt::Debug::fmt(&**self, f)
+    }
+}
+
+impl<T, A> Deref for Vec<T, A>
+where
+    A: Allocator,
+{
+    type Target = [T];
+
+    #[inline]
+    fn deref(&self) -> &[T] {
+        // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
+        // initialized elements of type `T`.
+        unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
+    }
+}
+
+impl<T, A> DerefMut for Vec<T, A>
+where
+    A: Allocator,
+{
+    #[inline]
+    fn deref_mut(&mut self) -> &mut [T] {
+        // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
+        // initialized elements of type `T`.
+        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
+    }
+}
+
+impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
+
+impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
+where
+    A: Allocator,
+{
+    type Output = I::Output;
+
+    #[inline]
+    fn index(&self, index: I) -> &Self::Output {
+        Index::index(&**self, index)
+    }
+}
+
+impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
+where
+    A: Allocator,
+{
+    #[inline]
+    fn index_mut(&mut self, index: I) -> &mut Self::Output {
+        IndexMut::index_mut(&mut **self, index)
+    }
+}
+
+macro_rules! __impl_slice_eq {
+    ([$($vars:tt)*] $lhs:ty, $rhs:ty $(where $ty:ty: $bound:ident)?) => {
+        impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
+        where
+            T: PartialEq<U>,
+            $($ty: $bound)?
+        {
+            #[inline]
+            fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
+        }
+    }
+}
+
+__impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> }
+__impl_slice_eq! { [A: Allocator] Vec<T, A>, &[U] }
+__impl_slice_eq! { [A: Allocator] Vec<T, A>, &mut [U] }
+__impl_slice_eq! { [A: Allocator] &[T], Vec<U, A> }
+__impl_slice_eq! { [A: Allocator] &mut [T], Vec<U, A> }
+__impl_slice_eq! { [A: Allocator] Vec<T, A>, [U] }
+__impl_slice_eq! { [A: Allocator] [T], Vec<U, A> }
+__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] }
+__impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] }
diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs
index 6bf77577eae7..bb80a43d20fb 100644
--- a/rust/kernel/prelude.rs
+++ b/rust/kernel/prelude.rs
@@ -14,7 +14,7 @@ 
 #[doc(no_inline)]
 pub use core::pin::Pin;
 
-pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, VBox};
+pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, KVVec, KVec, VBox, VVec};
 
 #[doc(no_inline)]
 pub use alloc::vec::Vec;