@@ -166,7 +166,7 @@ pub unsafe trait Allocator {
fn alloc(layout: Layout, flags: Flags) -> Result<NonNull<[u8]>, AllocError> {
// SAFETY: Passing `None` to `realloc` is valid by it's safety requirements and asks for a
// new memory allocation.
- unsafe { Self::realloc(None, layout, flags) }
+ unsafe { Self::realloc(None, layout, Layout::new::<()>(), flags) }
}
/// Re-allocate an existing memory allocation to satisfy the requested `layout`.
@@ -186,26 +186,23 @@ fn alloc(layout: Layout, flags: Flags) -> Result<NonNull<[u8]>, AllocError> {
///
/// # Safety
///
- /// If `ptr == Some(p)`, then `p` must point to an existing and valid memory allocation created
- /// by this allocator. The alignment encoded in `layout` must be smaller than or equal to the
- /// alignment requested in the previous `alloc` or `realloc` call of the same allocation.
- ///
- /// Additionally, `ptr` is allowed to be `None`; in this case a new memory allocation is
- /// created.
+ /// - If `ptr == Some(p)`, then `p` must point to an existing and valid memory allocation
+ /// created by this allocator.
+ /// - `ptr` is allowed to be `None`; in this case a new memory allocation is created.
+ /// - `old_layout` must match the `Layout` the allocation has been created with.
///
/// # Guarantees
///
/// This function has the same guarantees as [`Allocator::alloc`]. When `ptr == Some(p)`, then
/// it additionally guarantees that:
/// - the contents of the memory pointed to by `p` are preserved up to the lesser of the new
- /// and old size,
- /// and old size, i.e.
- /// `ret_ptr[0..min(layout.size(), old_size)] == p[0..min(layout.size(), old_size)]`, where
- /// `old_size` is the size of the allocation that `p` points at.
- /// - when the return value is `Err(AllocError)`, then `p` is still valid.
+ /// and old size, i.e. `ret_ptr[0..min(layout.size(), old_layout.size())] ==
+ /// p[0..min(layout.size(), old_layout.size())]`.
+ /// - when the return value is `Err(AllocError)`, then `ptr` is still valid.
unsafe fn realloc(
ptr: Option<NonNull<u8>>,
layout: Layout,
+ old_layout: Layout,
flags: Flags,
) -> Result<NonNull<[u8]>, AllocError>;
@@ -213,14 +210,13 @@ unsafe fn realloc(
///
/// # Safety
///
- /// `ptr` must point to an existing and valid memory allocation created by this `Allocator` and
- /// must not be a dangling pointer.
- ///
- /// The memory allocation at `ptr` must never again be read from or written to.
- unsafe fn free(ptr: NonNull<u8>) {
+ /// - `ptr` must point to an existing and valid memory allocation created by this `Allocator`.
+ /// - `layout` must match the `Layout` the allocation has been created with.
+ /// - The memory allocation at `ptr` must never again be read from or written to.
+ unsafe fn free(ptr: NonNull<u8>, layout: Layout) {
// SAFETY: The caller guarantees that `ptr` points at a valid allocation created by this
// allocator. We are passing a `Layout` with the smallest possible alignment, so it is
// smaller than or equal to the alignment previously used with this allocation.
- let _ = unsafe { Self::realloc(Some(ptr), Layout::new::<()>(), Flags(0)) };
+ let _ = unsafe { Self::realloc(Some(ptr), Layout::new::<()>(), layout, Flags(0)) };
}
}
@@ -54,6 +54,14 @@ fn aligned_size(new_layout: Layout) -> usize {
layout.size()
}
+/// Returns a properly aligned dangling pointer from the given `layout`.
+fn zst_realloc(layout: Layout) -> NonNull<u8> {
+ let ptr = layout.align() as *mut u8;
+
+ // SAFETY: `layout.align()` (and hence `ptr`) is guaranteed to be non-zero.
+ unsafe { NonNull::new_unchecked(ptr) }
+}
+
/// # Invariants
///
/// One of the following `krealloc`, `vrealloc`, `kvrealloc`.
@@ -84,11 +92,18 @@ unsafe fn call(
&self,
ptr: Option<NonNull<u8>>,
layout: Layout,
+ old_layout: Layout,
flags: Flags,
) -> Result<NonNull<[u8]>, AllocError> {
let size = aligned_size(layout);
let ptr = match ptr {
- Some(ptr) => ptr.as_ptr(),
+ Some(ptr) => {
+ if old_layout.size() == 0 {
+ ptr::null()
+ } else {
+ ptr.as_ptr()
+ }
+ }
None => ptr::null(),
};
@@ -106,7 +121,7 @@ unsafe fn call(
};
let ptr = if size == 0 {
- NonNull::dangling()
+ zst_realloc(layout)
} else {
NonNull::new(raw_ptr).ok_or(AllocError)?
};
@@ -124,10 +139,11 @@ unsafe impl Allocator for Kmalloc {
unsafe fn realloc(
ptr: Option<NonNull<u8>>,
layout: Layout,
+ old_layout: Layout,
flags: Flags,
) -> Result<NonNull<[u8]>, AllocError> {
// SAFETY: `ReallocFunc::call` has the same safety requirements as `Allocator::realloc`.
- unsafe { ReallocFunc::KREALLOC.call(ptr, layout, flags) }
+ unsafe { ReallocFunc::KREALLOC.call(ptr, layout, old_layout, flags) }
}
}
@@ -140,6 +156,7 @@ unsafe impl Allocator for Vmalloc {
unsafe fn realloc(
ptr: Option<NonNull<u8>>,
layout: Layout,
+ old_layout: Layout,
flags: Flags,
) -> Result<NonNull<[u8]>, AllocError> {
// TODO: Support alignments larger than PAGE_SIZE.
@@ -150,7 +167,7 @@ unsafe fn realloc(
// SAFETY: If not `None`, `ptr` is guaranteed to point to valid memory, which was previously
// allocated with this `Allocator`.
- unsafe { ReallocFunc::VREALLOC.call(ptr, layout, flags) }
+ unsafe { ReallocFunc::VREALLOC.call(ptr, layout, old_layout, flags) }
}
}
@@ -163,6 +180,7 @@ unsafe impl Allocator for KVmalloc {
unsafe fn realloc(
ptr: Option<NonNull<u8>>,
layout: Layout,
+ old_layout: Layout,
flags: Flags,
) -> Result<NonNull<[u8]>, AllocError> {
// TODO: Support alignments larger than PAGE_SIZE.
@@ -173,6 +191,6 @@ unsafe fn realloc(
// SAFETY: If not `None`, `ptr` is guaranteed to point to valid memory, which was previously
// allocated with this `Allocator`.
- unsafe { ReallocFunc::KVREALLOC.call(ptr, layout, flags) }
+ unsafe { ReallocFunc::KVREALLOC.call(ptr, layout, old_layout, flags) }
}
}
@@ -5,6 +5,7 @@
#[allow(unused_imports)] // Used in doc comments.
use super::allocator::{KVmalloc, Kmalloc, Vmalloc};
use super::{AllocError, Allocator, Flags};
+use core::alloc::Layout;
use core::fmt;
use core::marker::PhantomData;
use core::mem::ManuallyDrop;
@@ -233,7 +234,7 @@ pub fn new_uninit(flags: Flags) -> Result<Box<MaybeUninit<T>, A>, AllocError> {
let ptr = if Self::is_zst() {
NonNull::dangling()
} else {
- let layout = core::alloc::Layout::new::<MaybeUninit<T>>();
+ let layout = Layout::new::<MaybeUninit<T>>();
let ptr = A::alloc(layout, flags)?;
ptr.cast()
@@ -452,14 +453,14 @@ impl<T, A> Drop for Box<T, A>
A: Allocator,
{
fn drop(&mut self) {
- let size = core::mem::size_of_val::<T>(self);
+ let layout = Layout::for_value::<T>(self);
// SAFETY: The pointer in `self.0` is guaranteed to be valid by the type invariant.
unsafe { core::ptr::drop_in_place::<T>(self.deref_mut()) };
- if size != 0 {
- // SAFETY: As `size` is not zero, `self.0` was previously allocated with `A`.
- unsafe { A::free(self.0.cast()) };
- }
+ // SAFETY:
+ // - `self.0` was previously allocated with `A`.
+ // - `layout` is equal to the `Layout´ `self.0` was allocated with.
+ unsafe { A::free(self.0.cast(), layout) };
}
}
@@ -7,6 +7,7 @@
AllocError, Allocator, Box, Flags,
};
use core::{
+ alloc::Layout,
fmt,
marker::PhantomData,
mem::{ManuallyDrop, MaybeUninit},
@@ -452,21 +453,28 @@ pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocEr
// We know `cap` is <= `isize::MAX` because of the type invariants of `Self`. So the
// multiplication by two won't overflow.
let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
- let layout = core::alloc::Layout::array::<T>(new_cap).map_err(|_| AllocError)?;
+ let layout = Layout::array::<T>(new_cap).map_err(|_| AllocError)?;
+
+ let old_layout = Layout::array::<T>(self.cap).map_err(|_| AllocError)?;
// We need to make sure that `ptr` is either NULL or comes from a previous call to
// `realloc_flags`. A `Vec<T, A>`'s `ptr` value is not guaranteed to be NULL and might be
// dangling after being created with `Vec::new`. Instead, we can rely on `Vec<T, A>`'s
// capacity to be zero if no memory has been allocated yet.
+ //
+ // Still required? In `Vec::new` we use `NonNull::dangling`, which effectively would be
+ // valid to pass to `A::realloc`, but was never created by one the `Allocator`'s functions.
let ptr = if cap == 0 {
None
} else {
Some(self.ptr.cast())
};
- // SAFETY: `ptr` is valid because it's either `None` or comes from a previous call to
- // `A::realloc`. We also verified that the type is not a ZST.
- let ptr = unsafe { A::realloc(ptr, layout, flags)? };
+ // SAFETY:
+ // - `ptr` is valid because it's either `None` or comes from a previous call to
+ // `A::realloc`.
+ // - `old_layout` matches the `Layout` of the preceeding allocation, if any.
+ let ptr = unsafe { A::realloc(ptr, layout, old_layout, flags)? };
self.ptr = ptr.cast();
@@ -528,9 +536,16 @@ fn drop(&mut self) {
};
// If `cap == 0` we never allocated any memory in the first place.
+ //
+ // Same here, theoretically, we know that `NonNull::dangling` from `Vec::new` is valid for
+ // `A::free`, but it was never created by any of the `Allocator` functions.
if self.cap != 0 {
+ // This can never fail; since this `Layout` is equivalent to the one of the original
+ // allocation.
+ let layout = Layout::array::<T>(self.cap).unwrap();
+
// SAFETY: `self.ptr` was previously allocated with `A`.
- unsafe { A::free(self.ptr.cast()) };
+ unsafe { A::free(self.ptr.cast(), layout) };
}
}
}
@@ -751,13 +766,17 @@ pub fn collect(self, flags: Flags) -> Vec<T, A> {
ptr = buf.as_ptr();
}
+ // This can never fail; since this `Layout` is equivalent to the one of the original
+ // allocation.
+ let old_layout = Layout::array::<T>(cap).unwrap();
+
// This can never fail, `len` is guaranteed to be smaller than `cap`.
- let layout = core::alloc::Layout::array::<T>(len).unwrap();
+ let layout = Layout::array::<T>(len).unwrap();
// SAFETY: `buf` points to the start of the backing buffer and `len` is guaranteed to be
// smaller than `cap`. Depending on `alloc` this operation may shrink the buffer or leaves
// it as it is.
- ptr = match unsafe { A::realloc(Some(buf.cast()), layout, flags) } {
+ ptr = match unsafe { A::realloc(Some(buf.cast()), layout, old_layout, flags) } {
// If we fail to shrink, which likely can't even happen, continue with the existing
// buffer.
Err(_) => ptr,
@@ -846,9 +865,16 @@ fn drop(&mut self) {
unsafe { ptr::drop_in_place(self.as_raw_mut_slice()) };
// If `cap == 0` we never allocated any memory in the first place.
+ //
+ // Same here, theoretically, we know that `NonNull::dangling` from `Vec::new` is valid for
+ // `A::free`, but it was never created by any of the `Allocator` functions.
if self.cap != 0 {
+ // This can never fail; since this `Layout` is equivalent to the one of the original
+ // allocation.
+ let layout = Layout::array::<T>(self.cap).unwrap();
+
// SAFETY: `self.buf` was previously allocated with `A`.
- unsafe { A::free(self.buf.cast()) };
+ unsafe { A::free(self.buf.cast(), layout) };
}
}
}
Since this came up a few times, this patch shows how the implementation looks like with an `old_layout` argument. Signed-off-by: Danilo Krummrich <dakr@kernel.org> --- rust/kernel/alloc.rs | 32 ++++++++++++-------------- rust/kernel/alloc/allocator.rs | 28 +++++++++++++++++++---- rust/kernel/alloc/kbox.rs | 13 ++++++----- rust/kernel/alloc/kvec.rs | 42 +++++++++++++++++++++++++++------- 4 files changed, 78 insertions(+), 37 deletions(-)