@@ -2319,6 +2319,7 @@ extern void pagefault_out_of_memory(void);
struct zap_details {
struct folio *single_folio; /* Locked folio to be unmapped */
bool even_cows; /* Zap COWed private pages too? */
+ bool reclaim_pt; /* Need reclaim page tables? */
zap_flags_t zap_flags; /* Extra flags for zapping */
};
@@ -1301,6 +1301,21 @@ config ARCH_HAS_USER_SHADOW_STACK
The architecture has hardware support for userspace shadow call
stacks (eg, x86 CET, arm64 GCS or RISC-V Zicfiss).
+config ARCH_SUPPORTS_PT_RECLAIM
+ def_bool n
+
+config PT_RECLAIM
+ bool "reclaim empty user page table pages"
+ default y
+ depends on ARCH_SUPPORTS_PT_RECLAIM && MMU && SMP
+ select MMU_GATHER_RCU_TABLE_FREE
+ help
+ Try to reclaim empty user page table pages in paths other that munmap
+ and exit_mmap path.
+
+ Note: now only empty user PTE page table pages will be reclaimed.
+
+
source "mm/damon/Kconfig"
endmenu
@@ -145,3 +145,4 @@ obj-$(CONFIG_GENERIC_IOREMAP) += ioremap.o
obj-$(CONFIG_SHRINKER_DEBUG) += shrinker_debug.o
obj-$(CONFIG_EXECMEM) += execmem.o
obj-$(CONFIG_TMPFS_QUOTA) += shmem_quota.o
+obj-$(CONFIG_PT_RECLAIM) += pt_reclaim.o
@@ -1508,4 +1508,27 @@ int walk_page_range_mm(struct mm_struct *mm, unsigned long start,
unsigned long end, const struct mm_walk_ops *ops,
void *private);
+#ifdef CONFIG_PT_RECLAIM
+bool try_get_and_clear_pmd(struct mm_struct *mm, pmd_t *pmd, pmd_t *pmdval);
+void free_pte(struct mm_struct *mm, unsigned long addr, struct mmu_gather *tlb,
+ pmd_t pmdval);
+void try_to_free_pte(struct mm_struct *mm, pmd_t *pmd, unsigned long addr,
+ struct mmu_gather *tlb);
+#else
+static inline bool try_get_and_clear_pmd(struct mm_struct *mm, pmd_t *pmd,
+ pmd_t *pmdval)
+{
+ return false;
+}
+static inline void free_pte(struct mm_struct *mm, unsigned long addr,
+ struct mmu_gather *tlb, pmd_t pmdval)
+{
+}
+static inline void try_to_free_pte(struct mm_struct *mm, pmd_t *pmd,
+ unsigned long addr, struct mmu_gather *tlb)
+{
+}
+#endif /* CONFIG_PT_RECLAIM */
+
+
#endif /* __MM_INTERNAL_H */
@@ -851,7 +851,9 @@ static int madvise_free_single_vma(struct vm_area_struct *vma,
static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
- zap_page_range_single(vma, start, end - start, NULL);
+ struct zap_details details = {.reclaim_pt = true,};
+
+ zap_page_range_single(vma, start, end - start, &details);
return 0;
}
@@ -1436,7 +1436,7 @@ copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
static inline bool should_zap_cows(struct zap_details *details)
{
/* By default, zap all pages */
- if (!details)
+ if (!details || details->reclaim_pt)
return true;
/* Or, we zap COWed pages only if the caller wants to */
@@ -1678,6 +1678,30 @@ static inline int do_zap_pte_range(struct mmu_gather *tlb,
details, rss);
}
+static inline int count_pte_none(pte_t *pte, int nr)
+{
+ int none_nr = 0;
+
+ /*
+ * If PTE_MARKER_UFFD_WP is enabled, the uffd-wp PTEs may be
+ * re-installed, so we need to check pte_none() one by one.
+ * Otherwise, checking a single PTE in a batch is sufficient.
+ */
+#ifdef CONFIG_PTE_MARKER_UFFD_WP
+ for (;;) {
+ if (pte_none(ptep_get(pte)))
+ none_nr++;
+ if (--nr == 0)
+ break;
+ pte++;
+ }
+#else
+ if (pte_none(ptep_get(pte)))
+ none_nr = nr;
+#endif
+ return none_nr;
+}
+
static unsigned long zap_pte_range(struct mmu_gather *tlb,
struct vm_area_struct *vma, pmd_t *pmd,
unsigned long addr, unsigned long end,
@@ -1689,8 +1713,16 @@ static unsigned long zap_pte_range(struct mmu_gather *tlb,
spinlock_t *ptl;
pte_t *start_pte;
pte_t *pte;
+ pmd_t pmdval;
+ bool can_reclaim_pt = false;
+ bool direct_reclaim = false;
+ unsigned long start = addr;
+ int none_nr = 0;
int nr;
+ if (details && details->reclaim_pt && (end - start >= PMD_SIZE))
+ can_reclaim_pt = true;
+
retry:
tlb_change_page_size(tlb, PAGE_SIZE);
init_rss_vec(rss);
@@ -1706,12 +1738,16 @@ static unsigned long zap_pte_range(struct mmu_gather *tlb,
nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss,
&force_flush, &force_break);
+ none_nr += count_pte_none(pte, nr);
if (unlikely(force_break)) {
addr += nr * PAGE_SIZE;
break;
}
} while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
+ if (addr == end && can_reclaim_pt && (none_nr == PTRS_PER_PTE))
+ direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval);
+
add_mm_rss_vec(mm, rss);
arch_leave_lazy_mmu_mode();
@@ -1738,6 +1774,13 @@ static unsigned long zap_pte_range(struct mmu_gather *tlb,
goto retry;
}
+ if (can_reclaim_pt) {
+ if (direct_reclaim)
+ free_pte(mm, start, tlb, pmdval);
+ else
+ try_to_free_pte(mm, pmd, start, tlb);
+ }
+
return addr;
}
new file mode 100644
@@ -0,0 +1,68 @@
+// SPDX-License-Identifier: GPL-2.0
+#include <linux/hugetlb.h>
+#include <asm-generic/tlb.h>
+#include <asm/pgalloc.h>
+
+#include "internal.h"
+
+bool try_get_and_clear_pmd(struct mm_struct *mm, pmd_t *pmd, pmd_t *pmdval)
+{
+ spinlock_t *pml = pmd_lockptr(mm, pmd);
+
+ if (!spin_trylock(pml))
+ return false;
+
+ *pmdval = pmdp_get_lockless(pmd);
+ pmd_clear(pmd);
+ spin_unlock(pml);
+
+ return true;
+}
+
+void free_pte(struct mm_struct *mm, unsigned long addr, struct mmu_gather *tlb,
+ pmd_t pmdval)
+{
+ pte_free_tlb(tlb, pmd_pgtable(pmdval), addr);
+ mm_dec_nr_ptes(mm);
+}
+
+void try_to_free_pte(struct mm_struct *mm, pmd_t *pmd, unsigned long addr,
+ struct mmu_gather *tlb)
+{
+ pmd_t pmdval;
+ spinlock_t *pml, *ptl;
+ pte_t *start_pte, *pte;
+ int i;
+
+ start_pte = pte_offset_map_rw_nolock(mm, pmd, addr, &pmdval, &ptl);
+ if (!start_pte)
+ return;
+
+ pml = pmd_lock(mm, pmd);
+ if (ptl != pml)
+ spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
+
+ if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd))))
+ goto out_ptl;
+
+ /* Check if it is empty PTE page */
+ for (i = 0, pte = start_pte; i < PTRS_PER_PTE; i++, pte++) {
+ if (!pte_none(ptep_get(pte)))
+ goto out_ptl;
+ }
+ pte_unmap(start_pte);
+
+ pmd_clear(pmd);
+
+ if (ptl != pml)
+ spin_unlock(ptl);
+ spin_unlock(pml);
+
+ free_pte(mm, addr, tlb, pmdval);
+
+ return;
+out_ptl:
+ pte_unmap_unlock(start_pte, ptl);
+ if (pml != ptl)
+ spin_unlock(pml);
+}
Now in order to pursue high performance, applications mostly use some high-performance user-mode memory allocators, such as jemalloc or tcmalloc. These memory allocators use madvise(MADV_DONTNEED or MADV_FREE) to release physical memory, but neither MADV_DONTNEED nor MADV_FREE will release page table memory, which may cause huge page table memory usage. The following are a memory usage snapshot of one process which actually happened on our server: VIRT: 55t RES: 590g VmPTE: 110g In this case, most of the page table entries are empty. For such a PTE page where all entries are empty, we can actually free it back to the system for others to use. As a first step, this commit aims to synchronously free the empty PTE pages in madvise(MADV_DONTNEED) case. We will detect and free empty PTE pages in zap_pte_range(), and will add zap_details.reclaim_pt to exclude cases other than madvise(MADV_DONTNEED). Once an empty PTE is detected, we first try to hold the pmd lock within the pte lock. If successful, we clear the pmd entry directly (fast path). Otherwise, we wait until the pte lock is released, then re-hold the pmd and pte locks and loop PTRS_PER_PTE times to check pte_none() to re-detect whether the PTE page is empty and free it (slow path). For other cases such as madvise(MADV_FREE), consider scanning and freeing empty PTE pages asynchronously in the future. The following code snippet can show the effect of optimization: mmap 50G while (1) { for (; i < 1024 * 25; i++) { touch 2M memory madvise MADV_DONTNEED 2M } } As we can see, the memory usage of VmPTE is reduced: before after VIRT 50.0 GB 50.0 GB RES 3.1 MB 3.1 MB VmPTE 102640 KB 240 KB Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> --- include/linux/mm.h | 1 + mm/Kconfig | 15 ++++++++++ mm/Makefile | 1 + mm/internal.h | 23 ++++++++++++++++ mm/madvise.c | 4 ++- mm/memory.c | 45 +++++++++++++++++++++++++++++- mm/pt_reclaim.c | 68 ++++++++++++++++++++++++++++++++++++++++++++++ 7 files changed, 155 insertions(+), 2 deletions(-) create mode 100644 mm/pt_reclaim.c