diff mbox series

[RFC,08/11] pcache: implement request processing and cache I/O path in cache_req

Message ID 20250414014505.20477-9-dongsheng.yang@linux.dev (mailing list archive)
State New
Headers show
Series pcache: Persistent Memory Cache for Block Devices | expand

Commit Message

Dongsheng Yang April 14, 2025, 1:45 a.m. UTC
This patch introduces the core request processing logic, which
handles all I/O operations for the PCACHE system, including read, write, and flush.

Read operations walk the in-memory cache tree to locate cached ranges. Missing
ranges are submitted to the backing device through asynchronous requests, optionally
inserting empty placeholder keys to prevent redundant reads. The traversal logic
carefully handles all possible overlapping conditions between requested and cached
ranges.

Write operations allocate space from per-queue data heads, copy data into persistent
memory segments, and append corresponding keys into the current kset for persistence.

Flush operations traverse all active ksets and ensure any accumulated keys are written
to persistent memory. Each kset is flushed atomically, allowing the cache metadata to
remain consistent even in the event of a crash.

This patch lays the foundation for the entire cache I/O path, ensuring that cache
operations are efficient and crash-safe.

Signed-off-by: Dongsheng Yang <dongsheng.yang@linux.dev>
---
 drivers/block/pcache/cache_req.c | 812 +++++++++++++++++++++++++++++++
 1 file changed, 812 insertions(+)
 create mode 100644 drivers/block/pcache/cache_req.c
diff mbox series

Patch

diff --git a/drivers/block/pcache/cache_req.c b/drivers/block/pcache/cache_req.c
new file mode 100644
index 000000000000..9d0bce55caed
--- /dev/null
+++ b/drivers/block/pcache/cache_req.c
@@ -0,0 +1,812 @@ 
+// SPDX-License-Identifier: GPL-2.0-or-later
+
+#include "cache.h"
+#include "backing_dev.h"
+#include "logic_dev.h"
+
+static int cache_data_head_init(struct pcache_cache *cache, u32 head_index)
+{
+	struct pcache_cache_segment *next_seg;
+	struct pcache_cache_data_head *data_head;
+
+	data_head = get_data_head(cache, head_index);
+	next_seg = get_cache_segment(cache);
+	if (!next_seg)
+		return -EBUSY;
+
+	cache_seg_get(next_seg);
+	data_head->head_pos.cache_seg = next_seg;
+	data_head->head_pos.seg_off = 0;
+
+	return 0;
+}
+
+/*
+ * cache_data_alloc - Allocate data for a cache key.
+ * @cache: Pointer to the cache structure.
+ * @key: Pointer to the cache key to allocate data for.
+ * @head_index: Index of the data head to use for allocation.
+ *
+ * This function tries to allocate space from the cache segment specified by the
+ * data head. If the remaining space in the segment is insufficient to allocate
+ * the requested length for the cache key, it will allocate whatever is available
+ * and adjust the key's length accordingly. This function does not allocate
+ * space that crosses segment boundaries.
+ */
+static int cache_data_alloc(struct pcache_cache *cache, struct pcache_cache_key *key, u32 head_index)
+{
+	struct pcache_cache_data_head *data_head;
+	struct pcache_cache_pos *head_pos;
+	struct pcache_cache_segment *cache_seg;
+	u32 seg_remain;
+	u32 allocated = 0, to_alloc;
+	int ret = 0;
+
+	data_head = get_data_head(cache, head_index);
+
+	spin_lock(&data_head->data_head_lock);
+again:
+	if (!data_head->head_pos.cache_seg) {
+		seg_remain = 0;
+	} else {
+		cache_pos_copy(&key->cache_pos, &data_head->head_pos);
+		key->seg_gen = key->cache_pos.cache_seg->gen;
+
+		head_pos = &data_head->head_pos;
+		cache_seg = head_pos->cache_seg;
+		seg_remain = cache_seg_remain(head_pos);
+		to_alloc = key->len - allocated;
+	}
+
+	if (seg_remain > to_alloc) {
+		/* If remaining space in segment is sufficient for the cache key, allocate it. */
+		cache_pos_advance(head_pos, to_alloc);
+		allocated += to_alloc;
+		cache_seg_get(cache_seg);
+	} else if (seg_remain) {
+		/* If remaining space is not enough, allocate the remaining space and adjust the cache key length. */
+		cache_pos_advance(head_pos, seg_remain);
+		key->len = seg_remain;
+
+		/* Get for key: obtain a reference to the cache segment for the key. */
+		cache_seg_get(cache_seg);
+		/* Put for head_pos->cache_seg: release the reference for the current head's segment. */
+		cache_seg_put(head_pos->cache_seg);
+		head_pos->cache_seg = NULL;
+	} else {
+		/* Initialize a new data head if no segment is available. */
+		ret = cache_data_head_init(cache, head_index);
+		if (ret)
+			goto out;
+
+		goto again;
+	}
+
+out:
+	spin_unlock(&data_head->data_head_lock);
+
+	return ret;
+}
+
+static void cache_copy_from_req_bio(struct pcache_cache *cache, struct pcache_cache_key *key,
+				struct pcache_request *pcache_req, u32 bio_off)
+{
+	struct pcache_cache_pos *pos = &key->cache_pos;
+	struct pcache_segment *segment;
+
+	segment = &pos->cache_seg->segment;
+
+	segment_copy_from_bio(segment, pos->seg_off, key->len, pcache_req->req->bio, bio_off);
+}
+
+static int cache_copy_to_req_bio(struct pcache_cache *cache, struct pcache_request *pcache_req,
+			    u32 bio_off, u32 len, struct pcache_cache_pos *pos, u64 key_gen)
+{
+	struct pcache_cache_segment *cache_seg = pos->cache_seg;
+	struct pcache_segment *segment = &cache_seg->segment;
+	int ret;
+
+	spin_lock(&cache_seg->gen_lock);
+	if (key_gen < cache_seg->gen) {
+		spin_unlock(&cache_seg->gen_lock);
+		return -EINVAL;
+	}
+
+	ret = segment_copy_to_bio(segment, pos->seg_off, len, pcache_req->req->bio, bio_off);
+	spin_unlock(&cache_seg->gen_lock);
+
+	return ret;
+}
+
+/**
+ * miss_read_end_req - Handle the end of a miss read request.
+ * @cache: Pointer to the cache structure.
+ * @pcache_req: Pointer to the request structure.
+ *
+ * This function is called when a backing request to read data from
+ * the backing_dev is completed. If the key associated with the request
+ * is empty (a placeholder), it allocates cache space for the key,
+ * copies the data read from the bio into the cache, and updates
+ * the key's status. If the key has been overwritten by a write
+ * request during this process, it will be deleted from the cache
+ * tree and no further action will be taken.
+ */
+static void miss_read_end_req(struct pcache_backing_dev_req *backing_req, int ret)
+{
+	void *priv_data = backing_req->priv_data;
+	struct pcache_request *pcache_req = backing_req->upper_req;
+	struct pcache_cache *cache = backing_req->backing_dev->cache;
+
+	if (priv_data) {
+		struct pcache_cache_key *key;
+		struct pcache_cache_subtree *cache_subtree;
+
+		key = (struct pcache_cache_key *)priv_data;
+		cache_subtree = key->cache_subtree;
+
+		/* if this key was deleted from cache_subtree by a write, key->flags should be cleared,
+		 * so if cache_key_empty() return true, this key is still in cache_subtree
+		 */
+		spin_lock(&cache_subtree->tree_lock);
+		if (cache_key_empty(key)) {
+			/* Check if the backing request was successful. */
+			if (ret) {
+				cache_key_delete(key);
+				goto unlock;
+			}
+
+			/* Allocate cache space for the key and copy data from the backing_dev. */
+			ret = cache_data_alloc(cache, key, pcache_req->queue->index);
+			if (ret) {
+				cache_key_delete(key);
+				goto unlock;
+			}
+			cache_copy_from_req_bio(cache, key, pcache_req, backing_req->bio_off);
+			key->flags &= ~PCACHE_CACHE_KEY_FLAGS_EMPTY;
+			key->flags |= PCACHE_CACHE_KEY_FLAGS_CLEAN;
+
+			/* Append the key to the cache. */
+			ret = cache_key_append(cache, key);
+			if (ret) {
+				cache_seg_put(key->cache_pos.cache_seg);
+				cache_key_delete(key);
+				goto unlock;
+			}
+		}
+unlock:
+		spin_unlock(&cache_subtree->tree_lock);
+		cache_key_put(key);
+	}
+
+	pcache_req_put(pcache_req, ret);
+}
+
+/**
+ * submit_cache_miss_req - Submit a backing request when cache data is missing
+ * @cache: The cache context that manages cache operations
+ * @pcache_req: The cache request containing information about the read request
+ *
+ * This function is used to handle cases where a cache read request cannot locate
+ * the required data in the cache. When such a miss occurs during `cache_subtree_walk`,
+ * it triggers a backing read request to fetch data from the backing storage.
+ *
+ * If `pcache_req->priv_data` is set, it points to a `pcache_cache_key`, representing
+ * a new cache key to be inserted into the cache. The function calls `cache_key_insert`
+ * to attempt adding the key. On insertion failure, it releases the key reference and
+ * clears `priv_data` to avoid further processing.
+ */
+static void submit_cache_miss_req(struct pcache_cache *cache, struct pcache_backing_dev_req *backing_req)
+{
+	int ret;
+
+	if (backing_req->priv_data) {
+		struct pcache_cache_key *key;
+
+		/* Attempt to insert the key into the cache if priv_data is set */
+		key = (struct pcache_cache_key *)backing_req->priv_data;
+		ret = cache_key_insert(&cache->req_key_tree, key, true);
+		if (ret) {
+			/* Release the key if insertion fails */
+			cache_key_put(key);
+			backing_req->priv_data = NULL;
+			backing_req->ret = ret;
+			backing_dev_req_end(backing_req);
+			return;
+		}
+	}
+	backing_dev_req_submit(backing_req);
+}
+
+/**
+ * create_cache_miss_req - Create a backing read request for a cache miss
+ * @cache: The cache structure that manages cache operations
+ * @parent: The parent request structure initiating the miss read
+ * @off: Offset in the parent request to read from
+ * @len: Length of data to read from the backing_dev
+ * @insert_key: Determines whether to insert a placeholder empty key in the cache tree
+ *
+ * This function generates a new backing read request when a cache miss occurs. The
+ * `insert_key` parameter controls whether a placeholder (empty) cache key should be
+ * added to the cache tree to prevent multiple backing requests for the same missing
+ * data. Generally, when the miss read occurs in a cache segment that doesn't contain
+ * the requested data, a placeholder key is created and inserted.
+ *
+ * However, if the cache tree already has an empty key at the location for this
+ * read, there is no need to create another. Instead, this function just send the
+ * new request without adding a duplicate placeholder.
+ *
+ * Returns:
+ * A pointer to the newly created request structure on success, or NULL on failure.
+ * If an empty key is created, it will be released if any errors occur during the
+ * process to ensure proper cleanup.
+ */
+static struct pcache_backing_dev_req *create_cache_miss_req(struct pcache_cache *cache, struct pcache_request *parent,
+					u32 off, u32 len, bool insert_key)
+{
+	struct pcache_backing_dev *backing_dev = cache->backing_dev;
+	struct pcache_backing_dev_req *backing_req;
+	struct pcache_cache_key *key = NULL;
+
+	backing_req = backing_dev_req_create(backing_dev, parent, off, len, miss_read_end_req);
+	if (!backing_req)
+		goto out;
+
+	/* Allocate a new empty key if insert_key is set */
+	if (insert_key) {
+		key = cache_key_alloc(&cache->req_key_tree);
+		if (!key) {
+			backing_req->ret = -ENOMEM;
+			goto end_req;
+		}
+
+		/* Initialize the empty key with offset, length, and empty flag */
+		key->off = parent->off + off;
+		key->len = len;
+		key->flags |= PCACHE_CACHE_KEY_FLAGS_EMPTY;
+	}
+
+	/* Attach the empty key to the request if it was created */
+	if (key) {
+		cache_key_get(key);
+		backing_req->priv_data = key;
+	}
+
+	return backing_req;
+
+end_req:
+	backing_dev_req_end(backing_req);
+out:
+	return NULL;
+}
+
+static int send_cache_miss_req(struct pcache_cache *cache, struct pcache_request *pcache_req,
+			    u32 off, u32 len, bool insert_key)
+{
+	struct pcache_backing_dev_req *backing_req;
+
+	backing_req = create_cache_miss_req(cache, pcache_req, off, len, insert_key);
+	if (!backing_req)
+		return -ENOMEM;
+
+	submit_cache_miss_req(cache, backing_req);
+
+	return 0;
+}
+
+/*
+ * In the process of walking the cache tree to locate cached data, this
+ * function handles the situation where the requested data range lies
+ * entirely before an existing cache node (`key_tmp`). This outcome
+ * signifies that the target data is absent from the cache (cache miss).
+ *
+ * To fulfill this portion of the read request, the function creates a
+ * backing request (`backing_req`) for the missing data range represented
+ * by `key`. It then appends this request to the submission list in the
+ * `ctx`, which will later be processed to retrieve the data from backing
+ * storage. After setting up the backing request, `req_done` in `ctx` is
+ * updated to reflect the length of the handled range, and the range
+ * in `key` is adjusted by trimming off the portion that is now handled.
+ *
+ * The scenario handled here:
+ *
+ *	  |--------|			  key_tmp (existing cached range)
+ * |====|					   key (requested range, preceding key_tmp)
+ *
+ * Since `key` is before `key_tmp`, it signifies that the requested data
+ * range is missing in the cache (cache miss) and needs retrieval from
+ * backing storage.
+ */
+static int read_before(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp,
+		struct pcache_cache_subtree_walk_ctx *ctx)
+{
+	struct pcache_backing_dev_req *backing_req;
+	int ret;
+
+	/*
+	 * In this scenario, `key` represents a range that precedes `key_tmp`,
+	 * meaning the requested data range is missing from the cache tree
+	 * and must be retrieved from the backing_dev.
+	 */
+	backing_req = create_cache_miss_req(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done, key->len, true);
+	if (!backing_req) {
+		ret = -ENOMEM;
+		goto out;
+	}
+
+	list_add(&backing_req->node, ctx->submit_req_list);
+	ctx->req_done += key->len;
+	cache_key_cutfront(key, key->len);
+
+	return 0;
+out:
+	return ret;
+}
+
+/*
+ * During cache_subtree_walk, this function manages a scenario where part of the
+ * requested data range overlaps with an existing cache node (`key_tmp`).
+ *
+ *	 |----------------|  key_tmp (existing cached range)
+ * |===========|		   key (requested range, overlapping the tail of key_tmp)
+ */
+static int read_overlap_tail(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp,
+		struct pcache_cache_subtree_walk_ctx *ctx)
+{
+	struct pcache_backing_dev_req *backing_req;
+	u32 io_len;
+	int ret;
+
+	/*
+	 * Calculate the length of the non-overlapping portion of `key`
+	 * before `key_tmp`, representing the data missing in the cache.
+	 */
+	io_len = cache_key_lstart(key_tmp) - cache_key_lstart(key);
+	if (io_len) {
+		backing_req = create_cache_miss_req(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done, io_len, true);
+		if (!backing_req) {
+			ret = -ENOMEM;
+			goto out;
+		}
+
+		list_add(&backing_req->node, ctx->submit_req_list);
+		ctx->req_done += io_len;
+		cache_key_cutfront(key, io_len);
+	}
+
+	/*
+	 * Handle the overlapping portion by calculating the length of
+	 * the remaining data in `key` that coincides with `key_tmp`.
+	 */
+	io_len = cache_key_lend(key) - cache_key_lstart(key_tmp);
+	if (cache_key_empty(key_tmp)) {
+		ret = send_cache_miss_req(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done, io_len, false);
+		if (ret)
+			goto out;
+	} else {
+		ret = cache_copy_to_req_bio(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done,
+					io_len, &key_tmp->cache_pos, key_tmp->seg_gen);
+		if (ret) {
+			list_add(&key_tmp->list_node, ctx->delete_key_list);
+			goto out;
+		}
+	}
+
+	ctx->req_done += io_len;
+	cache_key_cutfront(key, io_len);
+
+	return 0;
+
+out:
+	return ret;
+}
+
+/**
+ * The scenario handled here:
+ *
+ *    |----|          key_tmp (existing cached range)
+ * |==========|       key (requested range)
+ */
+static int read_overlap_contain(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp,
+		struct pcache_cache_subtree_walk_ctx *ctx)
+{
+	struct pcache_backing_dev_req *backing_req;
+	u32 io_len;
+	int ret;
+
+	/*
+	 * Calculate the non-overlapping part of `key` before `key_tmp`
+	 * to identify the missing data length.
+	 */
+	io_len = cache_key_lstart(key_tmp) - cache_key_lstart(key);
+	if (io_len) {
+		backing_req = create_cache_miss_req(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done, io_len, true);
+		if (!backing_req) {
+			ret = -ENOMEM;
+			goto out;
+		}
+		list_add(&backing_req->node, ctx->submit_req_list);
+
+		ctx->req_done += io_len;
+		cache_key_cutfront(key, io_len);
+	}
+
+	/*
+	 * Handle the overlapping portion between `key` and `key_tmp`.
+	 */
+	io_len = key_tmp->len;
+	if (cache_key_empty(key_tmp)) {
+		ret = send_cache_miss_req(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done, io_len, false);
+		if (ret)
+			goto out;
+	} else {
+		ret = cache_copy_to_req_bio(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done,
+					io_len, &key_tmp->cache_pos, key_tmp->seg_gen);
+		if (ret) {
+			list_add(&key_tmp->list_node, ctx->delete_key_list);
+			goto out;
+		}
+	}
+
+	ctx->req_done += io_len;
+	cache_key_cutfront(key, io_len);
+
+	return 0;
+out:
+	return ret;
+}
+
+/*
+ *	 |-----------|		key_tmp (existing cached range)
+ *	   |====|			key (requested range, fully within key_tmp)
+ *
+ * If `key_tmp` contains valid cached data, this function copies the relevant
+ * portion to the request's bio. Otherwise, it sends a backing request to
+ * fetch the required data range.
+ */
+static int read_overlap_contained(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp,
+		struct pcache_cache_subtree_walk_ctx *ctx)
+{
+	struct pcache_cache_pos pos;
+	int ret;
+
+	/*
+	 * Check if `key_tmp` is empty, indicating a miss. If so, initiate
+	 * a backing request to fetch the required data for `key`.
+	 */
+	if (cache_key_empty(key_tmp)) {
+		ret = send_cache_miss_req(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done, key->len, false);
+		if (ret)
+			goto out;
+	} else {
+		cache_pos_copy(&pos, &key_tmp->cache_pos);
+		cache_pos_advance(&pos, cache_key_lstart(key) - cache_key_lstart(key_tmp));
+
+		ret = cache_copy_to_req_bio(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done,
+					key->len, &pos, key_tmp->seg_gen);
+		if (ret) {
+			list_add(&key_tmp->list_node, ctx->delete_key_list);
+			goto out;
+		}
+	}
+
+	ctx->req_done += key->len;
+	cache_key_cutfront(key, key->len);
+
+	return 0;
+out:
+	return ret;
+}
+
+/*
+ *	 |--------|		  key_tmp (existing cached range)
+ *	   |==========|	  key (requested range, overlapping the head of key_tmp)
+ */
+static int read_overlap_head(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp,
+		struct pcache_cache_subtree_walk_ctx *ctx)
+{
+	struct pcache_cache_pos pos;
+	u32 io_len;
+	int ret;
+
+	io_len = cache_key_lend(key_tmp) - cache_key_lstart(key);
+
+	if (cache_key_empty(key_tmp)) {
+		ret = send_cache_miss_req(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done, io_len, false);
+		if (ret)
+			goto out;
+	} else {
+		cache_pos_copy(&pos, &key_tmp->cache_pos);
+		cache_pos_advance(&pos, cache_key_lstart(key) - cache_key_lstart(key_tmp));
+
+		ret = cache_copy_to_req_bio(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done,
+					io_len, &pos, key_tmp->seg_gen);
+		if (ret) {
+			list_add(&key_tmp->list_node, ctx->delete_key_list);
+			goto out;
+		}
+	}
+
+	ctx->req_done += io_len;
+	cache_key_cutfront(key, io_len);
+
+	return 0;
+out:
+	return ret;
+}
+
+/*
+ * read_walk_finally - Finalizes the cache read tree walk by submitting any
+ *					 remaining backing requests
+ * @ctx:	   Context structure holding information about the cache,
+ *			 read request, and submission list
+ *
+ * This function is called at the end of the `cache_subtree_walk` during a
+ * cache read operation. It completes the walk by checking if any data
+ * requested by `key` was not found in the cache tree, and if so, it sends
+ * a backing request to retrieve that data. Then, it iterates through the
+ * submission list of backing requests created during the walk, removing
+ * each request from the list and submitting it.
+ *
+ * The scenario managed here includes:
+ * - Sending a backing request for the remaining length of `key` if it was
+ *   not fulfilled by existing cache entries.
+ * - Iterating through `ctx->submit_req_list` to submit each backing request
+ *   enqueued during the walk.
+ *
+ * This ensures all necessary backing requests for cache misses are submitted
+ * to the backing storage to retrieve any data that could not be found in
+ * the cache.
+ */
+static int read_walk_finally(struct pcache_cache_subtree_walk_ctx *ctx)
+{
+	struct pcache_backing_dev_req *backing_req, *next_req;
+	struct pcache_cache_key *key = ctx->key;
+	int ret;
+
+	if (key->len) {
+		ret = send_cache_miss_req(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done, key->len, true);
+		if (ret)
+			goto out;
+		ctx->req_done += key->len;
+	}
+
+	list_for_each_entry_safe(backing_req, next_req, ctx->submit_req_list, node) {
+		list_del_init(&backing_req->node);
+		submit_cache_miss_req(ctx->cache_tree->cache, backing_req);
+	}
+
+	return 0;
+
+out:
+	return ret;
+}
+
+/*
+ * This function is used within `cache_subtree_walk` to determine whether the
+ * read operation has covered the requested data length. It compares the
+ * amount of data processed (`ctx->req_done`) with the total data length
+ * specified in the original request (`ctx->pcache_req->data_len`).
+ *
+ * If `req_done` meets or exceeds the required data length, the function
+ * returns `true`, indicating the walk is complete. Otherwise, it returns `false`,
+ * signaling that additional data processing is needed to fulfill the request.
+ */
+static bool read_walk_done(struct pcache_cache_subtree_walk_ctx *ctx)
+{
+	return (ctx->req_done >= ctx->pcache_req->data_len);
+}
+
+/*
+ * cache_read - Process a read request by traversing the cache tree
+ * @cache:	 Cache structure holding cache trees and related configurations
+ * @pcache_req:   Request structure with information about the data to read
+ *
+ * This function attempts to fulfill a read request by traversing the cache tree(s)
+ * to locate cached data for the requested range. If parts of the data are missing
+ * in the cache, backing requests are generated to retrieve the required segments.
+ *
+ * The function operates by initializing a key for the requested data range and
+ * preparing a context (`walk_ctx`) to manage the cache tree traversal. The context
+ * includes pointers to functions (e.g., `read_before`, `read_overlap_tail`) that handle
+ * specific conditions encountered during the traversal. The `walk_finally` and `walk_done`
+ * functions manage the end stages of the traversal, while the `delete_key_list` and
+ * `submit_req_list` lists track any keys to be deleted or requests to be submitted.
+ *
+ * The function first calculates the requested range and checks if it fits within the
+ * current cache tree (based on the tree's size limits). It then locks the cache tree
+ * and performs a search to locate any matching keys. If there are outdated keys,
+ * these are deleted, and the search is restarted to ensure accurate data retrieval.
+ *
+ * If the requested range spans multiple cache trees, the function moves on to the
+ * next tree once the current range has been processed. This continues until the
+ * entire requested data length has been handled.
+ */
+static int cache_read(struct pcache_cache *cache, struct pcache_request *pcache_req)
+{
+	struct pcache_cache_key key_data = { .off = pcache_req->off, .len = pcache_req->data_len };
+	struct pcache_cache_subtree *cache_subtree;
+	struct pcache_cache_key *key_tmp = NULL, *key_next;
+	struct rb_node *prev_node = NULL;
+	struct pcache_cache_key *key = &key_data;
+	struct pcache_cache_subtree_walk_ctx walk_ctx = { 0 };
+	LIST_HEAD(delete_key_list);
+	LIST_HEAD(submit_req_list);
+	int ret;
+
+	walk_ctx.cache_tree = &cache->req_key_tree;
+	walk_ctx.req_done = 0;
+	walk_ctx.pcache_req = pcache_req;
+	walk_ctx.before = read_before;
+	walk_ctx.overlap_tail = read_overlap_tail;
+	walk_ctx.overlap_head = read_overlap_head;
+	walk_ctx.overlap_contain = read_overlap_contain;
+	walk_ctx.overlap_contained = read_overlap_contained;
+	walk_ctx.walk_finally = read_walk_finally;
+	walk_ctx.walk_done = read_walk_done;
+	walk_ctx.delete_key_list = &delete_key_list;
+	walk_ctx.submit_req_list = &submit_req_list;
+
+next_tree:
+	key->off = pcache_req->off + walk_ctx.req_done;
+	key->len = pcache_req->data_len - walk_ctx.req_done;
+	if (key->len > PCACHE_CACHE_SUBTREE_SIZE - (key->off & PCACHE_CACHE_SUBTREE_SIZE_MASK))
+		key->len = PCACHE_CACHE_SUBTREE_SIZE - (key->off & PCACHE_CACHE_SUBTREE_SIZE_MASK);
+
+	cache_subtree = get_subtree(&cache->req_key_tree, key->off);
+	spin_lock(&cache_subtree->tree_lock);
+
+search:
+	prev_node = cache_subtree_search(cache_subtree, key, NULL, NULL, &delete_key_list);
+
+cleanup_tree:
+	if (!list_empty(&delete_key_list)) {
+		list_for_each_entry_safe(key_tmp, key_next, &delete_key_list, list_node) {
+			list_del_init(&key_tmp->list_node);
+			cache_key_delete(key_tmp);
+		}
+		goto search;
+	}
+
+	walk_ctx.start_node = prev_node;
+	walk_ctx.key = key;
+
+	ret = cache_subtree_walk(&walk_ctx);
+	if (ret == -EINVAL)
+		goto cleanup_tree;
+	else if (ret)
+		goto out;
+
+	spin_unlock(&cache_subtree->tree_lock);
+
+	if (walk_ctx.req_done < pcache_req->data_len)
+		goto next_tree;
+
+	return 0;
+out:
+	spin_unlock(&cache_subtree->tree_lock);
+
+	return ret;
+}
+
+static int cache_write(struct pcache_cache *cache, struct pcache_request *pcache_req)
+{
+	struct pcache_cache_subtree *cache_subtree;
+	struct pcache_cache_key *key;
+	u64 offset = pcache_req->off;
+	u32 length = pcache_req->data_len;
+	u32 io_done = 0;
+	int ret;
+
+	while (true) {
+		if (io_done >= length)
+			break;
+
+		key = cache_key_alloc(&cache->req_key_tree);
+		if (!key) {
+			ret = -ENOMEM;
+			goto err;
+		}
+
+		key->off = offset + io_done;
+		key->len = length - io_done;
+		if (key->len > PCACHE_CACHE_SUBTREE_SIZE - (key->off & PCACHE_CACHE_SUBTREE_SIZE_MASK))
+			key->len = PCACHE_CACHE_SUBTREE_SIZE - (key->off & PCACHE_CACHE_SUBTREE_SIZE_MASK);
+
+		ret = cache_data_alloc(cache, key, pcache_req->queue->index);
+		if (ret) {
+			cache_key_put(key);
+			goto err;
+		}
+
+		if (!key->len) {
+			cache_seg_put(key->cache_pos.cache_seg);
+			cache_key_put(key);
+			continue;
+		}
+
+		cache_copy_from_req_bio(cache, key, pcache_req, io_done);
+
+		cache_subtree = get_subtree(&cache->req_key_tree, key->off);
+		spin_lock(&cache_subtree->tree_lock);
+		ret = cache_key_insert(&cache->req_key_tree, key, true);
+		if (ret) {
+			cache_seg_put(key->cache_pos.cache_seg);
+			cache_key_put(key);
+			goto unlock;
+		}
+
+		ret = cache_key_append(cache, key);
+		if (ret) {
+			cache_seg_put(key->cache_pos.cache_seg);
+			cache_key_delete(key);
+			goto unlock;
+		}
+
+		io_done += key->len;
+		spin_unlock(&cache_subtree->tree_lock);
+	}
+
+	return 0;
+unlock:
+	spin_unlock(&cache_subtree->tree_lock);
+err:
+	return ret;
+}
+
+/**
+ * cache_flush - Flush all ksets to persist any pending cache data
+ * @cache: Pointer to the cache structure
+ *
+ * This function iterates through all ksets associated with the provided `cache`
+ * and ensures that any data marked for persistence is written to media. For each
+ * kset, it acquires the kset lock, then invokes `cache_kset_close`, which handles
+ * the persistence logic for that kset.
+ *
+ * If `cache_kset_close` encounters an error, the function exits immediately with
+ * the respective error code, preventing the flush operation from proceeding to
+ * subsequent ksets.
+ */
+int cache_flush(struct pcache_cache *cache)
+{
+	struct pcache_cache_kset *kset;
+	u32 i, ret;
+
+	for (i = 0; i < cache->n_ksets; i++) {
+		kset = get_kset(cache, i);
+
+		spin_lock(&kset->kset_lock);
+		ret = cache_kset_close(cache, kset);
+		spin_unlock(&kset->kset_lock);
+
+		if (ret)
+			return ret;
+	}
+
+	return 0;
+}
+
+/**
+ * pcache_cache_handle_req - Entry point for handling cache requests
+ * @cache: Pointer to the cache structure
+ * @pcache_req: Pointer to the request structure containing operation and data details
+ *
+ * This function serves as the main entry for cache operations, directing
+ * requests based on their operation type. Depending on the operation (`op`)
+ * specified in `pcache_req`, the function calls the appropriate helper function
+ * to process the request.
+ */
+int pcache_cache_handle_req(struct pcache_cache *cache, struct pcache_request *pcache_req)
+{
+	switch (pcache_req->op) {
+	case REQ_OP_FLUSH:
+		return cache_flush(cache);
+	case REQ_OP_WRITE:
+		return cache_write(cache, pcache_req);
+	case REQ_OP_READ:
+		return cache_read(cache, pcache_req);
+	default:
+		return -EIO;
+	}
+
+	return 0;
+}