Message ID | 20180406153607.17815-6-dietmar.eggemann@arm.com (mailing list archive) |
---|---|
State | RFC, archived |
Headers | show |
On Fri, Apr 06, 2018 at 04:36:06PM +0100, Dietmar Eggemann wrote: > if (sd_flag & SD_BALANCE_WAKE) { > record_wakee(p); > + want_energy = wake_energy(p, prev_cpu); > want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) > - && cpumask_test_cpu(cpu, &p->cpus_allowed); > + && cpumask_test_cpu(cpu, &p->cpus_allowed) > + && !want_energy; Could you please fix that and put the operators at the end of the previous line?
On Monday 09 Apr 2018 at 18:30:29 (+0200), Peter Zijlstra wrote: > On Fri, Apr 06, 2018 at 04:36:06PM +0100, Dietmar Eggemann wrote: > > if (sd_flag & SD_BALANCE_WAKE) { > > record_wakee(p); > > + want_energy = wake_energy(p, prev_cpu); > > want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) > > - && cpumask_test_cpu(cpu, &p->cpus_allowed); > > + && cpumask_test_cpu(cpu, &p->cpus_allowed) > > + && !want_energy; > > Could you please fix that and put the operators at the end of the > previous line? Will do.
On Fri, Apr 06, 2018 at 04:36:06PM +0100, Dietmar Eggemann wrote: > + for_each_freq_domain(fd) { > + unsigned long spare_cap, max_spare_cap = 0; > + int max_spare_cap_cpu = -1; > + unsigned long util; > + > + /* Find the CPU with the max spare cap in the freq. dom. */ > + for_each_cpu_and(cpu, freq_domain_span(fd), sched_domain_span(sd)) { > + if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) > + continue; > + > + if (cpu == prev_cpu) > + continue; > + > + util = cpu_util_wake(cpu, p); > + cpu_cap = capacity_of(cpu); > + if (!util_fits_capacity(util + task_util, cpu_cap)) > + continue; > + > + spare_cap = cpu_cap - util; > + if (spare_cap > max_spare_cap) { > + max_spare_cap = spare_cap; > + max_spare_cap_cpu = cpu; > + } > + } > + > + /* Evaluate the energy impact of using this CPU. */ > + if (max_spare_cap_cpu >= 0) { > + cur_energy = compute_energy(p, max_spare_cap_cpu); > + if (cur_energy < best_energy) { > + best_energy = cur_energy; > + best_energy_cpu = max_spare_cap_cpu; > + } > + } > + } If each CPU has its own frequency domain, then the above loop ends up being O(n^2), no? Is there really nothing we can do about that? Also, I feel that warrants a comment warning about this. Someone, somewhere will try and build a 64+64 cpu system and get surprised it doesn't work :-)
On Tuesday 10 Apr 2018 at 19:29:32 (+0200), Peter Zijlstra wrote: > On Fri, Apr 06, 2018 at 04:36:06PM +0100, Dietmar Eggemann wrote: > > + for_each_freq_domain(fd) { > > + unsigned long spare_cap, max_spare_cap = 0; > > + int max_spare_cap_cpu = -1; > > + unsigned long util; > > + > > + /* Find the CPU with the max spare cap in the freq. dom. */ > > + for_each_cpu_and(cpu, freq_domain_span(fd), sched_domain_span(sd)) { > > + if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) > > + continue; > > + > > + if (cpu == prev_cpu) > > + continue; > > + > > + util = cpu_util_wake(cpu, p); > > + cpu_cap = capacity_of(cpu); > > + if (!util_fits_capacity(util + task_util, cpu_cap)) > > + continue; > > + > > + spare_cap = cpu_cap - util; > > + if (spare_cap > max_spare_cap) { > > + max_spare_cap = spare_cap; > > + max_spare_cap_cpu = cpu; > > + } > > + } > > + > > + /* Evaluate the energy impact of using this CPU. */ > > + if (max_spare_cap_cpu >= 0) { > > + cur_energy = compute_energy(p, max_spare_cap_cpu); > > + if (cur_energy < best_energy) { > > + best_energy = cur_energy; > > + best_energy_cpu = max_spare_cap_cpu; > > + } > > + } > > + } > > If each CPU has its own frequency domain, then the above loop ends up > being O(n^2), no? Hmmm, yes, that should be O(n^2) indeed. > Is there really nothing we can do about that? So, the only thing I see just now would be to make compute_energy() smarter somehow. Today we compute the energy consumed by each frequency domain and then sum them up to get the system energy. We re-compute the energy of each frequency domain, even when it is not involved in the migration. In the case you describe, we will end up re-computing the energy of many frequency domains on which nothing happens every time we re-call compute_energy(). So there is probably something we could do by caching those values somehow. Otherwise, on systems with 2 frequency domains (e.g. big.LITTLE), the current code should behave relatively well. And I think that covers a large portion of the real-world systems for which EAS is useful, as of today at least ... :-) > Also, I > feel that warrants a comment warning about this. > > Someone, somewhere will try and build a 64+64 cpu system and get > surprised it doesn't work :-)
On Fri, Apr 06, 2018 at 04:36:06PM +0100, Dietmar Eggemann wrote: > From: Quentin Perret <quentin.perret@arm.com> > > In case an energy model is available, waking tasks are re-routed into a > new energy-aware placement algorithm. The eligible CPUs to be used in the > energy-aware wakeup path are restricted to the highest non-overutilized > sched_domain containing prev_cpu and this_cpu. If no such domain is found, > the tasks go through the usual wake-up path, hence energy-aware placement > happens only in lightly utilized scenarios. > > The selection of the most energy-efficient CPU for a task is achieved by > estimating the impact on system-level active energy resulting from the > placement of the task on the CPU with the highest spare capacity in each > frequency domain. The best CPU energy-wise is then selected if it saves > a large enough amount of energy with respect to prev_cpu. > > Although it has already shown significant benefits on some existing > targets, this approach cannot scale to platforms with numerous CPUs. > This patch is an attempt to do something useful as writing a fast > heuristic that performs reasonably well on a broad spectrum of > architectures isn't an easy task. As a consequence, the scope of > usability of the energy-aware wake-up path is restricted to systems > with the SD_ASYM_CPUCAPACITY flag set. These systems not only show the > most promising opportunities for saving energy but also typically > feature a limited number of logical CPUs. > > Moreover, the energy-aware wake-up path is accessible only if > sched_energy_enabled() is true. For systems which don't meet all > dependencies for EAS (CONFIG_PM_OPP for ex.) at compile time, > sched_enegy_enabled() defaults to a constant "false" value, hence letting > the compiler remove the unused EAS code entirely. > > Cc: Ingo Molnar <mingo@redhat.com> > Cc: Peter Zijlstra <peterz@infradead.org> > Signed-off-by: Quentin Perret <quentin.perret@arm.com> > Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> > --- > kernel/sched/fair.c | 97 ++++++++++++++++++++++++++++++++++++++++++++++++++--- > 1 file changed, 93 insertions(+), 4 deletions(-) > > diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c > index 8cb9fb04fff2..5ebb2d0306c7 100644 > --- a/kernel/sched/fair.c > +++ b/kernel/sched/fair.c > @@ -6700,6 +6700,81 @@ static unsigned long compute_energy(struct task_struct *p, int dst_cpu) > return energy; > } > > +static int find_energy_efficient_cpu(struct sched_domain *sd, > + struct task_struct *p, int prev_cpu) > +{ > + unsigned long cur_energy, prev_energy, best_energy, cpu_cap; > + unsigned long task_util = task_util_est(p); > + int cpu, best_energy_cpu = prev_cpu; > + struct freq_domain *fd; > + > + if (!task_util) > + return prev_cpu; > + > + if (cpumask_test_cpu(prev_cpu, &p->cpus_allowed)) > + prev_energy = best_energy = compute_energy(p, prev_cpu); > + else > + prev_energy = best_energy = ULONG_MAX; > + > + for_each_freq_domain(fd) { > + unsigned long spare_cap, max_spare_cap = 0; > + int max_spare_cap_cpu = -1; > + unsigned long util; > + > + /* Find the CPU with the max spare cap in the freq. dom. */ > + for_each_cpu_and(cpu, freq_domain_span(fd), sched_domain_span(sd)) { > + if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) > + continue; > + > + if (cpu == prev_cpu) > + continue; > + > + util = cpu_util_wake(cpu, p); > + cpu_cap = capacity_of(cpu); > + if (!util_fits_capacity(util + task_util, cpu_cap)) > + continue; > + > + spare_cap = cpu_cap - util; > + if (spare_cap > max_spare_cap) { > + max_spare_cap = spare_cap; > + max_spare_cap_cpu = cpu; > + } > + } If have two clusters, and if firstly iterate the big cluster, then max_spare_cap is a big value for big cluster and later LITTLE cluster has no chance to have higher value for spare_cap. For this case, the LITTLE CPU will be skipped for energy computation? > + > + /* Evaluate the energy impact of using this CPU. */ > + if (max_spare_cap_cpu >= 0) { > + cur_energy = compute_energy(p, max_spare_cap_cpu); > + if (cur_energy < best_energy) { > + best_energy = cur_energy; > + best_energy_cpu = max_spare_cap_cpu; > + } > + } > + } > + > + /* > + * We pick the best CPU only if it saves at least 1.5% of the > + * energy used by prev_cpu. > + */ > + if ((prev_energy - best_energy) > (prev_energy >> 6)) > + return best_energy_cpu; > + > + return prev_cpu; > +} > + > +static inline bool wake_energy(struct task_struct *p, int prev_cpu) > +{ > + struct sched_domain *sd; > + > + if (!sched_energy_enabled()) > + return false; > + > + sd = rcu_dereference_sched(cpu_rq(prev_cpu)->sd); > + if (!sd || sd_overutilized(sd)) > + return false; > + > + return true; > +} > + > /* > * select_task_rq_fair: Select target runqueue for the waking task in domains > * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, > @@ -6716,18 +6791,22 @@ static int > select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) > { > struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; > + struct sched_domain *energy_sd = NULL; > int cpu = smp_processor_id(); > int new_cpu = prev_cpu; > - int want_affine = 0; > + int want_affine = 0, want_energy = 0; > int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); > > + rcu_read_lock(); > + > if (sd_flag & SD_BALANCE_WAKE) { > record_wakee(p); > + want_energy = wake_energy(p, prev_cpu); > want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) > - && cpumask_test_cpu(cpu, &p->cpus_allowed); > + && cpumask_test_cpu(cpu, &p->cpus_allowed) > + && !want_energy; > } > > - rcu_read_lock(); > for_each_domain(cpu, tmp) { > if (!(tmp->flags & SD_LOAD_BALANCE)) > break; > @@ -6742,6 +6821,14 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f > break; > } > > + /* > + * Energy-aware task placement is performed on the highest > + * non-overutilized domain spanning over cpu and prev_cpu. > + */ > + if (want_energy && !sd_overutilized(tmp) && > + cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) > + energy_sd = tmp; > + > if (tmp->flags & sd_flag) > sd = tmp; > else if (!want_affine) > @@ -6765,7 +6852,9 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f > sync_entity_load_avg(&p->se); > } > > - if (!sd) { > + if (energy_sd) { > + new_cpu = find_energy_efficient_cpu(energy_sd, p, prev_cpu); > + } else if (!sd) { > pick_cpu: > if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ > new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); > -- > 2.11.0 >
Hi Leo, On Tuesday 17 Apr 2018 at 23:39:44 (+0800), Leo Yan wrote: > > + for_each_freq_domain(fd) { > > + unsigned long spare_cap, max_spare_cap = 0; > > + int max_spare_cap_cpu = -1; > > + unsigned long util; > > + > > + /* Find the CPU with the max spare cap in the freq. dom. */ > > + for_each_cpu_and(cpu, freq_domain_span(fd), sched_domain_span(sd)) { > > + if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) > > + continue; > > + > > + if (cpu == prev_cpu) > > + continue; > > + > > + util = cpu_util_wake(cpu, p); > > + cpu_cap = capacity_of(cpu); > > + if (!util_fits_capacity(util + task_util, cpu_cap)) > > + continue; > > + > > + spare_cap = cpu_cap - util; > > + if (spare_cap > max_spare_cap) { > > + max_spare_cap = spare_cap; > > + max_spare_cap_cpu = cpu; > > + } > > + } > > If have two clusters, and if firstly iterate the big cluster, then > max_spare_cap is a big value for big cluster and later LITTLE cluster > has no chance to have higher value for spare_cap. For this case, the > LITTLE CPU will be skipped for energy computation? max_spare_cap is reset to 0 at the top of the for_each_freq_domain() loop above so that shouldn't happen. Thanks, Quentin
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index 8cb9fb04fff2..5ebb2d0306c7 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -6700,6 +6700,81 @@ static unsigned long compute_energy(struct task_struct *p, int dst_cpu) return energy; } +static int find_energy_efficient_cpu(struct sched_domain *sd, + struct task_struct *p, int prev_cpu) +{ + unsigned long cur_energy, prev_energy, best_energy, cpu_cap; + unsigned long task_util = task_util_est(p); + int cpu, best_energy_cpu = prev_cpu; + struct freq_domain *fd; + + if (!task_util) + return prev_cpu; + + if (cpumask_test_cpu(prev_cpu, &p->cpus_allowed)) + prev_energy = best_energy = compute_energy(p, prev_cpu); + else + prev_energy = best_energy = ULONG_MAX; + + for_each_freq_domain(fd) { + unsigned long spare_cap, max_spare_cap = 0; + int max_spare_cap_cpu = -1; + unsigned long util; + + /* Find the CPU with the max spare cap in the freq. dom. */ + for_each_cpu_and(cpu, freq_domain_span(fd), sched_domain_span(sd)) { + if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) + continue; + + if (cpu == prev_cpu) + continue; + + util = cpu_util_wake(cpu, p); + cpu_cap = capacity_of(cpu); + if (!util_fits_capacity(util + task_util, cpu_cap)) + continue; + + spare_cap = cpu_cap - util; + if (spare_cap > max_spare_cap) { + max_spare_cap = spare_cap; + max_spare_cap_cpu = cpu; + } + } + + /* Evaluate the energy impact of using this CPU. */ + if (max_spare_cap_cpu >= 0) { + cur_energy = compute_energy(p, max_spare_cap_cpu); + if (cur_energy < best_energy) { + best_energy = cur_energy; + best_energy_cpu = max_spare_cap_cpu; + } + } + } + + /* + * We pick the best CPU only if it saves at least 1.5% of the + * energy used by prev_cpu. + */ + if ((prev_energy - best_energy) > (prev_energy >> 6)) + return best_energy_cpu; + + return prev_cpu; +} + +static inline bool wake_energy(struct task_struct *p, int prev_cpu) +{ + struct sched_domain *sd; + + if (!sched_energy_enabled()) + return false; + + sd = rcu_dereference_sched(cpu_rq(prev_cpu)->sd); + if (!sd || sd_overutilized(sd)) + return false; + + return true; +} + /* * select_task_rq_fair: Select target runqueue for the waking task in domains * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, @@ -6716,18 +6791,22 @@ static int select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) { struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; + struct sched_domain *energy_sd = NULL; int cpu = smp_processor_id(); int new_cpu = prev_cpu; - int want_affine = 0; + int want_affine = 0, want_energy = 0; int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); + rcu_read_lock(); + if (sd_flag & SD_BALANCE_WAKE) { record_wakee(p); + want_energy = wake_energy(p, prev_cpu); want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) - && cpumask_test_cpu(cpu, &p->cpus_allowed); + && cpumask_test_cpu(cpu, &p->cpus_allowed) + && !want_energy; } - rcu_read_lock(); for_each_domain(cpu, tmp) { if (!(tmp->flags & SD_LOAD_BALANCE)) break; @@ -6742,6 +6821,14 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f break; } + /* + * Energy-aware task placement is performed on the highest + * non-overutilized domain spanning over cpu and prev_cpu. + */ + if (want_energy && !sd_overutilized(tmp) && + cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) + energy_sd = tmp; + if (tmp->flags & sd_flag) sd = tmp; else if (!want_affine) @@ -6765,7 +6852,9 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f sync_entity_load_avg(&p->se); } - if (!sd) { + if (energy_sd) { + new_cpu = find_energy_efficient_cpu(energy_sd, p, prev_cpu); + } else if (!sd) { pick_cpu: if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);