@@ -976,7 +976,7 @@ All time durations are in microseconds.
A read-write single value file which exists on non-root cgroups.
The default is "0", i.e. no bandwidth boosting.
- The requested minimum utilization in the range [0, 1023].
+ The requested minimum percentage of utilization in the range [0, 100].
This interface allows reading and setting minimum utilization clamp
values similar to the sched_setattr(2). This minimum utilization
@@ -987,16 +987,16 @@ All time durations are in microseconds.
reports minimum utilization clamp value currently enforced on a task
group.
- The actual minimum utilization in the range [0, 1023].
+ The actual minimum percentage of utilization in the range [0, 100].
This value can be lower then cpu.util.min in case a parent cgroup
is enforcing a more restrictive clamping on minimum utilization.
cpu.util.max
A read-write single value file which exists on non-root cgroups.
- The default is "1023". i.e. no bandwidth clamping
+ The default is "100". i.e. no bandwidth clamping
- The requested maximum utilization in the range [0, 1023].
+ The requested maximum percentage of utilization in the range [0, 100].
This interface allows reading and setting maximum utilization clamp
values similar to the sched_setattr(2). This maximum utilization
@@ -1007,7 +1007,7 @@ All time durations are in microseconds.
reports maximum utilization clamp value currently enforced on a task
group.
- The actual maximum utilization in the range [0, 1023].
+ The actual maximum percentage of utilization in the range [0, 100].
This value can be lower then cpu.util.max in case a parent cgroup
is enforcing a more restrictive clamping on max utilization.
@@ -321,6 +321,26 @@ struct sched_info {
# define SCHED_FIXEDPOINT_SHIFT 10
# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
+static inline unsigned int util_from_pct(unsigned int pct)
+{
+ WARN_ON(pct > 100);
+
+ return ((SCHED_FIXEDPOINT_SCALE * pct) / 100);
+}
+
+static inline unsigned int util_to_pct(unsigned int value)
+{
+ unsigned int rounding = 0;
+
+ WARN_ON(value > SCHED_FIXEDPOINT_SCALE);
+
+ /* Compensate rounding errors for: 0, 256, 512, 768, 1024 */
+ if (likely((value & 0xFF) && ~(value & 0x700)))
+ rounding = 1;
+
+ return (rounding + ((100 * value) / SCHED_FIXEDPOINT_SCALE));
+}
+
struct load_weight {
unsigned long weight;
u32 inv_weight;
@@ -84,16 +84,18 @@ struct sched_param {
*
* @sched_util_min represents the minimum utilization
* @sched_util_max represents the maximum utilization
+ * @sched_util_min represents the minimum utilization percentage
+ * @sched_util_max represents the maximum utilization percentage
*
- * Utilization is a value in the range [0..SCHED_CAPACITY_SCALE] which
- * represents the percentage of CPU time used by a task when running at the
- * maximum frequency on the highest capacity CPU of the system. Thus, for
- * example, a 20% utilization task is a task running for 2ms every 10ms.
+ * Utilization is a value in the range [0..100] which represents the
+ * percentage of CPU time used by a task when running at the maximum frequency
+ * on the highest capacity CPU of the system. Thus, for example, a 20%
+ * utilization task is a task running for 2ms every 10ms.
*
- * A task with a min utilization value bigger then 0 is more likely to be
+ * A task with a min utilization value bigger then 0% is more likely to be
* scheduled on a CPU which has a capacity big enough to fit the specified
* minimum utilization value.
- * A task with a max utilization value smaller then 1024 is more likely to be
+ * A task with a max utilization value smaller then 100% is more likely to be
* scheduled on a CPU which do not necessarily have more capacity then the
* specified max utilization value.
*/
@@ -730,15 +730,15 @@ static DEFINE_MUTEX(uclamp_mutex);
/*
* Minimum utilization for tasks in the root cgroup
- * default: 0
+ * default: 0%
*/
unsigned int sysctl_sched_uclamp_util_min;
/*
* Maximum utilization for tasks in the root cgroup
- * default: 1024
+ * default: 100%
*/
-unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
+unsigned int sysctl_sched_uclamp_util_max = 100;
static struct uclamp_se uclamp_default[UCLAMP_CNT];
@@ -940,7 +940,7 @@ static inline void uclamp_cpu_update(struct rq *rq, int clamp_id,
max_value = max(max_value, uc_grp[group_id].value);
/* Stop if we reach the max possible clamp */
- if (max_value >= SCHED_CAPACITY_SCALE)
+ if (max_value >= 100)
break;
}
@@ -1397,7 +1397,7 @@ int sched_uclamp_handler(struct ctl_table *table, int write,
result = -EINVAL;
if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max)
goto undo;
- if (sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE)
+ if (sysctl_sched_uclamp_util_max > 100)
goto undo;
/* Find a valid group_id for each required clamp value */
@@ -1424,13 +1424,15 @@ int sched_uclamp_handler(struct ctl_table *table, int write,
/* Update each required clamp group */
if (old_min != sysctl_sched_uclamp_util_min) {
uc_se = &uclamp_default[UCLAMP_MIN];
+ value = util_from_pct(sysctl_sched_uclamp_util_min);
uclamp_group_get(NULL, NULL, UCLAMP_MIN, group_id[UCLAMP_MIN],
- uc_se, sysctl_sched_uclamp_util_min);
+ uc_se, value);
}
if (old_max != sysctl_sched_uclamp_util_max) {
uc_se = &uclamp_default[UCLAMP_MAX];
+ value = util_from_pct(sysctl_sched_uclamp_util_max);
uclamp_group_get(NULL, NULL, UCLAMP_MAX, group_id[UCLAMP_MAX],
- uc_se, sysctl_sched_uclamp_util_max);
+ uc_se, value);
}
goto done;
@@ -1525,7 +1527,7 @@ static inline int __setscheduler_uclamp(struct task_struct *p,
: p->uclamp[UCLAMP_MAX].value;
if (upper_bound == UCLAMP_NOT_VALID)
- upper_bound = SCHED_CAPACITY_SCALE;
+ upper_bound = 100;
if (attr->sched_util_min > upper_bound) {
result = -EINVAL;
goto done;
@@ -1546,7 +1548,7 @@ static inline int __setscheduler_uclamp(struct task_struct *p,
if (lower_bound == UCLAMP_NOT_VALID)
lower_bound = 0;
if (attr->sched_util_max < lower_bound ||
- attr->sched_util_max > SCHED_CAPACITY_SCALE) {
+ attr->sched_util_max > 100) {
result = -EINVAL;
goto done;
}
@@ -1563,12 +1565,12 @@ static inline int __setscheduler_uclamp(struct task_struct *p,
if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
uc_se = &p->uclamp[UCLAMP_MIN];
uclamp_group_get(p, NULL, UCLAMP_MIN, group_id[UCLAMP_MIN],
- uc_se, attr->sched_util_min);
+ uc_se, util_from_pct(attr->sched_util_min));
}
if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
uc_se = &p->uclamp[UCLAMP_MAX];
uclamp_group_get(p, NULL, UCLAMP_MAX, group_id[UCLAMP_MAX],
- uc_se, attr->sched_util_max);
+ uc_se, util_from_pct(attr->sched_util_max));
}
done:
@@ -5727,8 +5729,8 @@ SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
attr.sched_nice = task_nice(p);
#ifdef CONFIG_UCLAMP_TASK
- attr.sched_util_min = uclamp_task_value(p, UCLAMP_MIN);
- attr.sched_util_max = uclamp_task_value(p, UCLAMP_MAX);
+ attr.sched_util_min = util_to_pct(uclamp_task_value(p, UCLAMP_MIN));
+ attr.sched_util_max = util_to_pct(uclamp_task_value(p, UCLAMP_MAX));
#endif
rcu_read_unlock();
@@ -7581,8 +7583,10 @@ static int cpu_util_min_write_u64(struct cgroup_subsys_state *css,
int ret = -EINVAL;
int group_id;
- if (min_value > SCHED_CAPACITY_SCALE)
+ /* Check range and scale to internal representation */
+ if (min_value > 100)
return -ERANGE;
+ min_value = util_from_pct(min_value);
mutex_lock(&uclamp_mutex);
rcu_read_lock();
@@ -7626,8 +7630,10 @@ static int cpu_util_max_write_u64(struct cgroup_subsys_state *css,
int ret = -EINVAL;
int group_id;
- if (max_value > SCHED_CAPACITY_SCALE)
+ /* Check range and scale to internal representation */
+ if (max_value > 100)
return -ERANGE;
+ max_value = util_from_pct(max_value);
mutex_lock(&uclamp_mutex);
rcu_read_lock();
@@ -7677,7 +7683,7 @@ static inline u64 cpu_uclamp_read(struct cgroup_subsys_state *css,
: tg->uclamp[clamp_id].value;
rcu_read_unlock();
- return util_clamp;
+ return util_to_pct(util_clamp);
}
static u64 cpu_util_min_read_u64(struct cgroup_subsys_state *css,
The utilization is a well defined property of tasks and CPUs with an in-kernel representation based on power-of-two values. The current representation, in the [0..SCHED_CAPACITY_SCALE] range, allows efficient computations in hot-paths and a sufficient fixed point arithmetic precision. However, the utilization values range is still an implementation detail which is also possibly subject to changes in the future. Since we don't want to commit new user-space APIs to any in-kernel implementation detail, let's add an abstraction layer on top of the APIs used by util_clamp, i.e. sched_{set,get}attr syscalls and the cgroup's cpu.util_{min,max} attributes. We do that by adding a couple of conversion functions which can be used to conveniently transform utilization/capacity values from/to the internal SCHED_FIXEDPOINT_SCALE representation to/from a more generic percentage in the standard [0..100] range. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Paul Turner <pjt@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Todd Kjos <tkjos@google.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Steve Muckle <smuckle@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: linux-kernel@vger.kernel.org Cc: linux-pm@vger.kernel.org --- Changes in v4: Others: - rebased on v4.19-rc1 Changes in v3: - rebased on tip/sched/core Changes in v2: - none: this is a new patch --- Documentation/admin-guide/cgroup-v2.rst | 10 +++---- include/linux/sched.h | 20 +++++++++++++ include/uapi/linux/sched/types.h | 14 +++++---- kernel/sched/core.c | 38 ++++++++++++++----------- 4 files changed, 55 insertions(+), 27 deletions(-)