===================================================================
@@ -35,7 +35,7 @@ struct cpuidle_driver;
struct cpuidle_state_usage {
unsigned long long disable;
unsigned long long usage;
- unsigned long long time; /* in US */
+ u64 time_ns;
unsigned long long above; /* Number of times it's been too deep */
unsigned long long below; /* Number of times it's been too shallow */
#ifdef CONFIG_SUSPEND
@@ -48,6 +48,8 @@ struct cpuidle_state {
char name[CPUIDLE_NAME_LEN];
char desc[CPUIDLE_DESC_LEN];
+ u64 exit_latency_ns;
+ u64 target_residency_ns;
unsigned int flags;
unsigned int exit_latency; /* in US */
int power_usage; /* in mW */
@@ -89,7 +91,7 @@ struct cpuidle_device {
ktime_t next_hrtimer;
int last_state_idx;
- int last_residency;
+ u64 last_residency_ns;
u64 poll_limit_ns;
struct cpuidle_state_usage states_usage[CPUIDLE_STATE_MAX];
struct cpuidle_state_kobj *kobjs[CPUIDLE_STATE_MAX];
@@ -260,7 +262,7 @@ struct cpuidle_governor {
#ifdef CONFIG_CPU_IDLE
extern int cpuidle_register_governor(struct cpuidle_governor *gov);
-extern int cpuidle_governor_latency_req(unsigned int cpu);
+extern s64 cpuidle_governor_latency_req(unsigned int cpu);
#else
static inline int cpuidle_register_governor(struct cpuidle_governor *gov)
{return 0;}
===================================================================
@@ -166,16 +166,27 @@ static void __cpuidle_driver_init(struct
if (!drv->cpumask)
drv->cpumask = (struct cpumask *)cpu_possible_mask;
- /*
- * Look for the timer stop flag in the different states, so that we know
- * if the broadcast timer has to be set up. The loop is in the reverse
- * order, because usually one of the deeper states have this flag set.
- */
- for (i = drv->state_count - 1; i >= 0 ; i--) {
- if (drv->states[i].flags & CPUIDLE_FLAG_TIMER_STOP) {
+ for (i = 0; i < drv->state_count; i++) {
+ struct cpuidle_state *s = &drv->states[i];
+
+ /*
+ * Look for the timer stop flag in the different states and if
+ * it is found, indicate that the broadcast timer has to be set
+ * up.
+ */
+ if (s->flags & CPUIDLE_FLAG_TIMER_STOP)
drv->bctimer = 1;
- break;
- }
+
+ /*
+ * The core will use the target residency and exit latency
+ * values in nanoseconds, but allow drivers to provide them in
+ * microseconds too.
+ */
+ if (s->target_residency > 0)
+ s->target_residency_ns = s->target_residency * NSEC_PER_USEC;
+
+ if (s->exit_latency > 0)
+ s->exit_latency_ns = s->exit_latency * NSEC_PER_USEC;
}
}
===================================================================
@@ -75,24 +75,24 @@ int cpuidle_play_dead(void)
static int find_deepest_state(struct cpuidle_driver *drv,
struct cpuidle_device *dev,
- unsigned int max_latency,
+ u64 max_latency_ns,
unsigned int forbidden_flags,
bool s2idle)
{
- unsigned int latency_req = 0;
+ u64 latency_req = 0;
int i, ret = 0;
for (i = 1; i < drv->state_count; i++) {
struct cpuidle_state *s = &drv->states[i];
if (dev->states_usage[i].disable ||
- s->exit_latency <= latency_req ||
- s->exit_latency > max_latency ||
+ s->exit_latency_ns <= latency_req ||
+ s->exit_latency_ns > max_latency_ns ||
(s->flags & forbidden_flags) ||
(s2idle && !s->enter_s2idle))
continue;
- latency_req = s->exit_latency;
+ latency_req = s->exit_latency_ns;
ret = i;
}
return ret;
@@ -124,7 +124,7 @@ void cpuidle_use_deepest_state(bool enab
int cpuidle_find_deepest_state(struct cpuidle_driver *drv,
struct cpuidle_device *dev)
{
- return find_deepest_state(drv, dev, UINT_MAX, 0, false);
+ return find_deepest_state(drv, dev, U64_MAX, 0, false);
}
#ifdef CONFIG_SUSPEND
@@ -180,7 +180,7 @@ int cpuidle_enter_s2idle(struct cpuidle_
* that interrupts won't be enabled when it exits and allows the tick to
* be frozen safely.
*/
- index = find_deepest_state(drv, dev, UINT_MAX, 0, true);
+ index = find_deepest_state(drv, dev, U64_MAX, 0, true);
if (index > 0)
enter_s2idle_proper(drv, dev, index);
@@ -209,7 +209,7 @@ int cpuidle_enter_state(struct cpuidle_d
* CPU as a broadcast timer, this call may fail if it is not available.
*/
if (broadcast && tick_broadcast_enter()) {
- index = find_deepest_state(drv, dev, target_state->exit_latency,
+ index = find_deepest_state(drv, dev, target_state->exit_latency_ns,
CPUIDLE_FLAG_TIMER_STOP, false);
if (index < 0) {
default_idle_call();
@@ -247,7 +247,7 @@ int cpuidle_enter_state(struct cpuidle_d
local_irq_enable();
if (entered_state >= 0) {
- s64 diff, delay = drv->states[entered_state].exit_latency;
+ s64 diff, delay = drv->states[entered_state].exit_latency_ns;
int i;
/*
@@ -255,15 +255,13 @@ int cpuidle_enter_state(struct cpuidle_d
* This can be moved to within driver enter routine,
* but that results in multiple copies of same code.
*/
- diff = ktime_us_delta(time_end, time_start);
- if (diff > INT_MAX)
- diff = INT_MAX;
+ diff = ktime_sub(time_end, time_start);
- dev->last_residency = (int)diff;
- dev->states_usage[entered_state].time += dev->last_residency;
+ dev->last_residency_ns = diff;
+ dev->states_usage[entered_state].time_ns += diff;
dev->states_usage[entered_state].usage++;
- if (diff < drv->states[entered_state].target_residency) {
+ if (diff < drv->states[entered_state].target_residency_ns) {
for (i = entered_state - 1; i >= 0; i--) {
if (dev->states_usage[i].disable)
continue;
@@ -281,14 +279,14 @@ int cpuidle_enter_state(struct cpuidle_d
* Update if a deeper state would have been a
* better match for the observed idle duration.
*/
- if (diff - delay >= drv->states[i].target_residency)
+ if (diff - delay >= drv->states[i].target_residency_ns)
dev->states_usage[entered_state].below++;
break;
}
}
} else {
- dev->last_residency = 0;
+ dev->last_residency_ns = 0;
}
return entered_state;
@@ -381,7 +379,7 @@ u64 cpuidle_poll_time(struct cpuidle_dri
if (dev->states_usage[i].disable)
continue;
- limit_ns = (u64)drv->states[i].target_residency * NSEC_PER_USEC;
+ limit_ns = (u64)drv->states[i].target_residency_ns;
}
dev->poll_limit_ns = limit_ns;
@@ -552,7 +550,7 @@ static void __cpuidle_unregister_device(
static void __cpuidle_device_init(struct cpuidle_device *dev)
{
memset(dev->states_usage, 0, sizeof(dev->states_usage));
- dev->last_residency = 0;
+ dev->last_residency_ns = 0;
dev->next_hrtimer = 0;
}
===================================================================
@@ -277,13 +277,19 @@ define_show_state_function(exit_latency)
define_show_state_function(target_residency)
define_show_state_function(power_usage)
define_show_state_ull_function(usage)
-define_show_state_ull_function(time)
define_show_state_str_function(name)
define_show_state_str_function(desc)
define_show_state_ull_function(disable)
define_show_state_ull_function(above)
define_show_state_ull_function(below)
+static ssize_t show_state_time(struct cpuidle_state *state,
+ struct cpuidle_state_usage *state_usage,
+ char *buf)
+{
+ return sprintf(buf, "%llu\n", ktime_to_us(state_usage->time_ns));
+}
+
static ssize_t store_state_disable(struct cpuidle_state *state,
struct cpuidle_state_usage *state_usage,
const char *buf, size_t size)
===================================================================
@@ -106,11 +106,14 @@ int cpuidle_register_governor(struct cpu
* cpuidle_governor_latency_req - Compute a latency constraint for CPU
* @cpu: Target CPU
*/
-int cpuidle_governor_latency_req(unsigned int cpu)
+s64 cpuidle_governor_latency_req(unsigned int cpu)
{
int global_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
struct device *device = get_cpu_device(cpu);
int device_req = dev_pm_qos_raw_resume_latency(device);
- return device_req < global_req ? device_req : global_req;
+ if (device_req < global_req)
+ device_req = global_req;
+
+ return (s64)device_req * NSEC_PER_USEC;
}
===================================================================
@@ -27,8 +27,8 @@ struct ladder_device_state {
struct {
u32 promotion_count;
u32 demotion_count;
- u32 promotion_time;
- u32 demotion_time;
+ u64 promotion_time_ns;
+ u64 demotion_time_ns;
} threshold;
struct {
int promotion_count;
@@ -68,9 +68,10 @@ static int ladder_select_state(struct cp
{
struct ladder_device *ldev = this_cpu_ptr(&ladder_devices);
struct ladder_device_state *last_state;
- int last_residency, last_idx = dev->last_state_idx;
+ int last_idx = dev->last_state_idx;
int first_idx = drv->states[0].flags & CPUIDLE_FLAG_POLLING ? 1 : 0;
- int latency_req = cpuidle_governor_latency_req(dev->cpu);
+ s64 latency_req = cpuidle_governor_latency_req(dev->cpu);
+ s64 last_residency;
/* Special case when user has set very strict latency requirement */
if (unlikely(latency_req == 0)) {
@@ -80,13 +81,13 @@ static int ladder_select_state(struct cp
last_state = &ldev->states[last_idx];
- last_residency = dev->last_residency - drv->states[last_idx].exit_latency;
+ last_residency = dev->last_residency_ns - drv->states[last_idx].exit_latency_ns;
/* consider promotion */
if (last_idx < drv->state_count - 1 &&
!dev->states_usage[last_idx + 1].disable &&
- last_residency > last_state->threshold.promotion_time &&
- drv->states[last_idx + 1].exit_latency <= latency_req) {
+ last_residency > last_state->threshold.promotion_time_ns &&
+ drv->states[last_idx + 1].exit_latency_ns <= latency_req) {
last_state->stats.promotion_count++;
last_state->stats.demotion_count = 0;
if (last_state->stats.promotion_count >= last_state->threshold.promotion_count) {
@@ -98,11 +99,11 @@ static int ladder_select_state(struct cp
/* consider demotion */
if (last_idx > first_idx &&
(dev->states_usage[last_idx].disable ||
- drv->states[last_idx].exit_latency > latency_req)) {
+ drv->states[last_idx].exit_latency_ns > latency_req)) {
int i;
for (i = last_idx - 1; i > first_idx; i--) {
- if (drv->states[i].exit_latency <= latency_req)
+ if (drv->states[i].exit_latency_ns <= latency_req)
break;
}
ladder_do_selection(dev, ldev, last_idx, i);
@@ -110,7 +111,7 @@ static int ladder_select_state(struct cp
}
if (last_idx > first_idx &&
- last_residency < last_state->threshold.demotion_time) {
+ last_residency < last_state->threshold.demotion_time_ns) {
last_state->stats.demotion_count++;
last_state->stats.promotion_count = 0;
if (last_state->stats.demotion_count >= last_state->threshold.demotion_count) {
@@ -150,9 +151,9 @@ static int ladder_enable_device(struct c
lstate->threshold.demotion_count = DEMOTION_COUNT;
if (i < drv->state_count - 1)
- lstate->threshold.promotion_time = state->exit_latency;
+ lstate->threshold.promotion_time_ns = state->exit_latency_ns;
if (i > first_idx)
- lstate->threshold.demotion_time = state->exit_latency;
+ lstate->threshold.demotion_time_ns = state->exit_latency_ns;
}
return 0;
===================================================================
@@ -33,7 +33,7 @@
#define INTERVALS (1UL << INTERVAL_SHIFT)
#define RESOLUTION 1024
#define DECAY 8
-#define MAX_INTERESTING 50000
+#define MAX_INTERESTING (50000 * NSEC_PER_USEC)
/*
@@ -120,14 +120,14 @@ struct menu_device {
int needs_update;
int tick_wakeup;
- unsigned int next_timer_us;
+ u64 next_timer_ns;
unsigned int bucket;
unsigned int correction_factor[BUCKETS];
unsigned int intervals[INTERVALS];
int interval_ptr;
};
-static inline int which_bucket(unsigned int duration, unsigned long nr_iowaiters)
+static inline int which_bucket(u64 duration_ns, unsigned long nr_iowaiters)
{
int bucket = 0;
@@ -140,15 +140,15 @@ static inline int which_bucket(unsigned
if (nr_iowaiters)
bucket = BUCKETS/2;
- if (duration < 10)
+ if (duration_ns < 10ULL * NSEC_PER_USEC)
return bucket;
- if (duration < 100)
+ if (duration_ns < 100ULL * NSEC_PER_USEC)
return bucket + 1;
- if (duration < 1000)
+ if (duration_ns < 1000ULL * NSEC_PER_USEC)
return bucket + 2;
- if (duration < 10000)
+ if (duration_ns < 10000ULL * NSEC_PER_USEC)
return bucket + 3;
- if (duration < 100000)
+ if (duration_ns < 100000ULL * NSEC_PER_USEC)
return bucket + 4;
return bucket + 5;
}
@@ -276,11 +276,12 @@ static int menu_select(struct cpuidle_dr
bool *stop_tick)
{
struct menu_device *data = this_cpu_ptr(&menu_devices);
- int latency_req = cpuidle_governor_latency_req(dev->cpu);
+ s64 latency_req = cpuidle_governor_latency_req(dev->cpu);
int i;
int idx;
- unsigned int interactivity_req;
- unsigned int predicted_us;
+ u64 predicted_ns;
+ unsigned int predicted_us, typical_us;
+ u64 interactivity_req;
unsigned long nr_iowaiters;
ktime_t delta_next;
@@ -290,14 +291,14 @@ static int menu_select(struct cpuidle_dr
}
/* determine the expected residency time, round up */
- data->next_timer_us = ktime_to_us(tick_nohz_get_sleep_length(&delta_next));
+ data->next_timer_ns = tick_nohz_get_sleep_length(&delta_next);
nr_iowaiters = nr_iowait_cpu(dev->cpu);
- data->bucket = which_bucket(data->next_timer_us, nr_iowaiters);
+ data->bucket = which_bucket(data->next_timer_ns, nr_iowaiters);
if (unlikely(drv->state_count <= 1 || latency_req == 0) ||
- ((data->next_timer_us < drv->states[1].target_residency ||
- latency_req < drv->states[1].exit_latency) &&
+ ((data->next_timer_ns < drv->states[1].target_residency_ns ||
+ latency_req < drv->states[1].exit_latency_ns) &&
!dev->states_usage[0].disable)) {
/*
* In this case state[0] will be used no matter what, so return
@@ -308,18 +309,18 @@ static int menu_select(struct cpuidle_dr
return 0;
}
- /*
- * Force the result of multiplication to be 64 bits even if both
- * operands are 32 bits.
- * Make sure to round up for half microseconds.
- */
- predicted_us = DIV_ROUND_CLOSEST_ULL((uint64_t)data->next_timer_us *
- data->correction_factor[data->bucket],
- RESOLUTION * DECAY);
+ predicted_ns = div64_u64(data->next_timer_ns *
+ data->correction_factor[data->bucket],
+ RESOLUTION * DECAY);
+ predicted_us = ktime_to_us(predicted_ns);
/*
* Use the lowest expected idle interval to pick the idle state.
*/
- predicted_us = min(predicted_us, get_typical_interval(data, predicted_us));
+ typical_us = get_typical_interval(data, predicted_us);
+ if (typical_us < predicted_us) {
+ predicted_us = typical_us;
+ predicted_ns = (u64)typical_us * NSEC_PER_USEC;
+ }
if (tick_nohz_tick_stopped()) {
/*
@@ -330,14 +331,15 @@ static int menu_select(struct cpuidle_dr
* the known time till the closest timer event for the idle
* state selection.
*/
- if (predicted_us < TICK_USEC)
- predicted_us = ktime_to_us(delta_next);
+ if (predicted_ns < TICK_NSEC)
+ predicted_ns = delta_next;
} else {
/*
* Use the performance multiplier and the user-configurable
* latency_req to determine the maximum exit latency.
*/
- interactivity_req = predicted_us / performance_multiplier(nr_iowaiters);
+ interactivity_req = div64_u64(predicted_ns,
+ performance_multiplier(nr_iowaiters));
if (latency_req > interactivity_req)
latency_req = interactivity_req;
}
@@ -356,15 +358,15 @@ static int menu_select(struct cpuidle_dr
if (idx == -1)
idx = i; /* first enabled state */
- if (s->target_residency > predicted_us) {
+ if (s->target_residency_ns > predicted_ns) {
/*
* Use a physical idle state, not busy polling, unless
* a timer is going to trigger soon enough.
*/
if ((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) &&
- s->exit_latency <= latency_req &&
- s->target_residency <= data->next_timer_us) {
- predicted_us = s->target_residency;
+ s->exit_latency_ns <= latency_req &&
+ s->target_residency_ns <= data->next_timer_ns) {
+ predicted_ns = s->target_residency_ns;
idx = i;
break;
}
@@ -378,7 +380,7 @@ static int menu_select(struct cpuidle_dr
* tick in that case and let the governor run
* again in the next iteration of the loop.
*/
- predicted_us = drv->states[idx].target_residency;
+ predicted_ns = drv->states[idx].target_residency_ns;
break;
}
@@ -388,13 +390,13 @@ static int menu_select(struct cpuidle_dr
* closest timer event, select this one to avoid getting
* stuck in the shallow one for too long.
*/
- if (drv->states[idx].target_residency < TICK_USEC &&
- s->target_residency <= ktime_to_us(delta_next))
+ if (drv->states[idx].target_residency_ns < TICK_NSEC &&
+ s->target_residency_ns <= delta_next)
idx = i;
return idx;
}
- if (s->exit_latency > latency_req)
+ if (s->exit_latency_ns > latency_req_ns)
break;
idx = i;
@@ -408,12 +410,10 @@ static int menu_select(struct cpuidle_dr
* expected idle duration is shorter than the tick period length.
*/
if (((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) ||
- predicted_us < TICK_USEC) && !tick_nohz_tick_stopped()) {
- unsigned int delta_next_us = ktime_to_us(delta_next);
-
+ predicted_ns < TICK_NSEC) && !tick_nohz_tick_stopped()) {
*stop_tick = false;
- if (idx > 0 && drv->states[idx].target_residency > delta_next_us) {
+ if (idx > 0 && drv->states[idx].target_residency_ns > delta_next) {
/*
* The tick is not going to be stopped and the target
* residency of the state to be returned is not within
@@ -425,7 +425,7 @@ static int menu_select(struct cpuidle_dr
continue;
idx = i;
- if (drv->states[i].target_residency <= delta_next_us)
+ if (drv->states[i].target_residency_ns <= delta_next)
break;
}
}
@@ -461,7 +461,7 @@ static void menu_update(struct cpuidle_d
struct menu_device *data = this_cpu_ptr(&menu_devices);
int last_idx = dev->last_state_idx;
struct cpuidle_state *target = &drv->states[last_idx];
- unsigned int measured_us;
+ u64 measured_ns;
unsigned int new_factor;
/*
@@ -479,7 +479,7 @@ static void menu_update(struct cpuidle_d
* assume the state was never reached and the exit latency is 0.
*/
- if (data->tick_wakeup && data->next_timer_us > TICK_USEC) {
+ if (data->tick_wakeup && data->next_timer_ns > TICK_NSEC) {
/*
* The nohz code said that there wouldn't be any events within
* the tick boundary (if the tick was stopped), but the idle
@@ -489,7 +489,7 @@ static void menu_update(struct cpuidle_d
* have been idle long (but not forever) to help the idle
* duration predictor do a better job next time.
*/
- measured_us = 9 * MAX_INTERESTING / 10;
+ measured_ns = 9 * MAX_INTERESTING / 10;
} else if ((drv->states[last_idx].flags & CPUIDLE_FLAG_POLLING) &&
dev->poll_time_limit) {
/*
@@ -499,28 +499,28 @@ static void menu_update(struct cpuidle_d
* the CPU might have been woken up from idle by the next timer.
* Assume that to be the case.
*/
- measured_us = data->next_timer_us;
+ measured_ns = data->next_timer_ns;
} else {
/* measured value */
- measured_us = dev->last_residency;
+ measured_ns = dev->last_residency_ns;
/* Deduct exit latency */
- if (measured_us > 2 * target->exit_latency)
- measured_us -= target->exit_latency;
+ if (measured_ns > 2 * target->exit_latency_ns)
+ measured_ns -= target->exit_latency_ns;
else
- measured_us /= 2;
+ measured_ns /= 2;
}
/* Make sure our coefficients do not exceed unity */
- if (measured_us > data->next_timer_us)
- measured_us = data->next_timer_us;
+ if (measured_ns > data->next_timer_ns)
+ measured_ns = data->next_timer_ns;
/* Update our correction ratio */
new_factor = data->correction_factor[data->bucket];
new_factor -= new_factor / DECAY;
- if (data->next_timer_us > 0 && measured_us < MAX_INTERESTING)
- new_factor += RESOLUTION * measured_us / data->next_timer_us;
+ if (data->next_timer_ns > 0 && measured_ns < MAX_INTERESTING)
+ new_factor += RESOLUTION * div64_u64(measured_ns, data->next_timer_ns);
else
/*
* we were idle so long that we count it as a perfect
@@ -540,7 +540,7 @@ static void menu_update(struct cpuidle_d
data->correction_factor[data->bucket] = new_factor;
/* update the repeating-pattern data */
- data->intervals[data->interval_ptr++] = measured_us;
+ data->intervals[data->interval_ptr++] = ktime_to_us(measured_ns);
if (data->interval_ptr >= INTERVALS)
data->interval_ptr = 0;
}
===================================================================
@@ -104,7 +104,7 @@ struct teo_cpu {
u64 sleep_length_ns;
struct teo_idle_state states[CPUIDLE_STATE_MAX];
int interval_idx;
- unsigned int intervals[INTERVALS];
+ u64 intervals[INTERVALS];
};
static DEFINE_PER_CPU(struct teo_cpu, teo_cpus);
@@ -117,9 +117,8 @@ static DEFINE_PER_CPU(struct teo_cpu, te
static void teo_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
{
struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu);
- unsigned int sleep_length_us = ktime_to_us(cpu_data->sleep_length_ns);
int i, idx_hit = -1, idx_timer = -1;
- unsigned int measured_us;
+ u64 measured_ns;
if (cpu_data->time_span_ns >= cpu_data->sleep_length_ns) {
/*
@@ -127,23 +126,21 @@ static void teo_update(struct cpuidle_dr
* enough to the closest timer event expected at the idle state
* selection time to be discarded.
*/
- measured_us = UINT_MAX;
+ measured_ns = U64_MAX;
} else {
- unsigned int lat;
+ u64 lat_ns = drv->states[dev->last_state_idx].exit_latency_ns;
- lat = drv->states[dev->last_state_idx].exit_latency;
-
- measured_us = ktime_to_us(cpu_data->time_span_ns);
+ measured_ns = cpu_data->time_span_ns;
/*
* The delay between the wakeup and the first instruction
* executed by the CPU is not likely to be worst-case every
* time, so take 1/2 of the exit latency as a very rough
* approximation of the average of it.
*/
- if (measured_us >= lat)
- measured_us -= lat / 2;
+ if (measured_ns >= lat_ns)
+ measured_ns -= lat_ns / 2;
else
- measured_us /= 2;
+ measured_ns /= 2;
}
/*
@@ -155,9 +152,9 @@ static void teo_update(struct cpuidle_dr
cpu_data->states[i].early_hits -= early_hits >> DECAY_SHIFT;
- if (drv->states[i].target_residency <= sleep_length_us) {
+ if (drv->states[i].target_residency_ns <= cpu_data->sleep_length_ns) {
idx_timer = i;
- if (drv->states[i].target_residency <= measured_us)
+ if (drv->states[i].target_residency_ns <= measured_ns)
idx_hit = i;
}
}
@@ -193,7 +190,7 @@ static void teo_update(struct cpuidle_dr
* Save idle duration values corresponding to non-timer wakeups for
* pattern detection.
*/
- cpu_data->intervals[cpu_data->interval_idx++] = measured_us;
+ cpu_data->intervals[cpu_data->interval_idx++] = measured_ns;
if (cpu_data->interval_idx > INTERVALS)
cpu_data->interval_idx = 0;
}
@@ -203,11 +200,11 @@ static void teo_update(struct cpuidle_dr
* @drv: cpuidle driver containing state data.
* @dev: Target CPU.
* @state_idx: Index of the capping idle state.
- * @duration_us: Idle duration value to match.
+ * @duration_ns: Idle duration value to match.
*/
static int teo_find_shallower_state(struct cpuidle_driver *drv,
struct cpuidle_device *dev, int state_idx,
- unsigned int duration_us)
+ u64 duration_ns)
{
int i;
@@ -216,7 +213,7 @@ static int teo_find_shallower_state(stru
continue;
state_idx = i;
- if (drv->states[i].target_residency <= duration_us)
+ if (drv->states[i].target_residency_ns <= duration_ns)
break;
}
return state_idx;
@@ -232,8 +229,9 @@ static int teo_select(struct cpuidle_dri
bool *stop_tick)
{
struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu);
- int latency_req = cpuidle_governor_latency_req(dev->cpu);
- unsigned int duration_us, count;
+ s64 latency_req = cpuidle_governor_latency_req(dev->cpu);
+ u64 duration_ns;
+ unsigned int count;
int max_early_idx, constraint_idx, idx, i;
ktime_t delta_tick;
@@ -244,8 +242,8 @@ static int teo_select(struct cpuidle_dri
cpu_data->time_span_ns = local_clock();
- cpu_data->sleep_length_ns = tick_nohz_get_sleep_length(&delta_tick);
- duration_us = ktime_to_us(cpu_data->sleep_length_ns);
+ duration_ns = tick_nohz_get_sleep_length(&delta_tick);
+ cpu_data->sleep_length_ns = duration_ns;
count = 0;
max_early_idx = -1;
@@ -275,17 +273,17 @@ static int teo_select(struct cpuidle_dri
if (idx < 0)
idx = i; /* first enabled state */
- if (s->target_residency > duration_us)
+ if (s->target_residency_ns > duration_ns)
break;
- if (s->exit_latency > latency_req && constraint_idx > i)
+ if (s->exit_latency_ns > latency_req && constraint_idx > i)
constraint_idx = i;
idx = i;
if (count < cpu_data->states[i].early_hits &&
!(tick_nohz_tick_stopped() &&
- drv->states[i].target_residency < TICK_USEC)) {
+ drv->states[i].target_residency_ns < TICK_NSEC)) {
count = cpu_data->states[i].early_hits;
max_early_idx = i;
}
@@ -302,7 +300,7 @@ static int teo_select(struct cpuidle_dri
if (cpu_data->states[idx].hits <= cpu_data->states[idx].misses &&
max_early_idx >= 0) {
idx = max_early_idx;
- duration_us = drv->states[idx].target_residency;
+ duration_ns = drv->states[idx].target_residency_ns;
}
/*
@@ -324,9 +322,9 @@ static int teo_select(struct cpuidle_dri
* the current expected idle duration value.
*/
for (i = 0; i < INTERVALS; i++) {
- unsigned int val = cpu_data->intervals[i];
+ u64 val = cpu_data->intervals[i];
- if (val >= duration_us)
+ if (val >= duration_ns)
continue;
count++;
@@ -338,17 +336,17 @@ static int teo_select(struct cpuidle_dri
* values are in the interesting range.
*/
if (count > INTERVALS / 2) {
- unsigned int avg_us = div64_u64(sum, count);
+ u64 avg_ns = div64_u64(sum, count);
/*
* Avoid spending too much time in an idle state that
* would be too shallow.
*/
- if (!(tick_nohz_tick_stopped() && avg_us < TICK_USEC)) {
- duration_us = avg_us;
- if (drv->states[idx].target_residency > avg_us)
+ if (!(tick_nohz_tick_stopped() && avg_ns < TICK_NSEC)) {
+ duration_ns = avg_ns;
+ if (drv->states[idx].target_residency_ns > avg_ns)
idx = teo_find_shallower_state(drv, dev,
- idx, avg_us);
+ idx, avg_ns);
}
}
}
@@ -358,9 +356,7 @@ static int teo_select(struct cpuidle_dri
* expected idle duration is shorter than the tick period length.
*/
if (((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) ||
- duration_us < TICK_USEC) && !tick_nohz_tick_stopped()) {
- unsigned int delta_tick_us = ktime_to_us(delta_tick);
-
+ duration_ns < TICK_NSEC) && !tick_nohz_tick_stopped()) {
*stop_tick = false;
/*
@@ -369,8 +365,8 @@ static int teo_select(struct cpuidle_dri
* till the closest timer including the tick, try to correct
* that.
*/
- if (idx > 0 && drv->states[idx].target_residency > delta_tick_us)
- idx = teo_find_shallower_state(drv, dev, idx, delta_tick_us);
+ if (idx > 0 && drv->states[idx].target_residency_ns > delta_tick)
+ idx = teo_find_shallower_state(drv, dev, idx, delta_tick);
}
return idx;
@@ -414,7 +410,7 @@ static int teo_enable_device(struct cpui
memset(cpu_data, 0, sizeof(*cpu_data));
for (i = 0; i < INTERVALS; i++)
- cpu_data->intervals[i] = UINT_MAX;
+ cpu_data->intervals[i] = U64_MAX;
return 0;
}
===================================================================
@@ -49,7 +49,7 @@ static int haltpoll_select(struct cpuidl
struct cpuidle_device *dev,
bool *stop_tick)
{
- int latency_req = cpuidle_governor_latency_req(dev->cpu);
+ s64 latency_req = cpuidle_governor_latency_req(dev->cpu);
if (!drv->state_count || latency_req == 0) {
*stop_tick = false;
@@ -75,10 +75,9 @@ static int haltpoll_select(struct cpuidl
return 0;
}
-static void adjust_poll_limit(struct cpuidle_device *dev, unsigned int block_us)
+static void adjust_poll_limit(struct cpuidle_device *dev, u64 block_ns)
{
unsigned int val;
- u64 block_ns = block_us*NSEC_PER_USEC;
/* Grow cpu_halt_poll_us if
* cpu_halt_poll_us < block_ns < guest_halt_poll_us
@@ -115,7 +114,7 @@ static void haltpoll_reflect(struct cpui
dev->last_state_idx = index;
if (index != 0)
- adjust_poll_limit(dev, dev->last_residency);
+ adjust_poll_limit(dev, dev->last_residency_ns);
}
/**
===================================================================
@@ -104,7 +104,7 @@ static int call_cpuidle(struct cpuidle_d
* update no idle residency and return.
*/
if (current_clr_polling_and_test()) {
- dev->last_residency = 0;
+ dev->last_residency_ns = 0;
local_irq_enable();
return -EBUSY;
}