From patchwork Mon Aug 7 22:00:08 2023 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Mark Brown X-Patchwork-Id: 13345197 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org Received: from bombadil.infradead.org (bombadil.infradead.org [198.137.202.133]) (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)) (No client certificate requested) by smtp.lore.kernel.org (Postfix) with ESMTPS id 88F68C001DF for ; Mon, 7 Aug 2023 22:01:58 +0000 (UTC) DKIM-Signature: v=1; a=rsa-sha256; q=dns/txt; c=relaxed/relaxed; d=lists.infradead.org; s=bombadil.20210309; h=Sender: Content-Transfer-Encoding:Content-Type:List-Subscribe:List-Help:List-Post: List-Archive:List-Unsubscribe:List-Id:Cc:To:In-Reply-To:References:Message-Id :MIME-Version:Subject:Date:From:Reply-To:Content-ID:Content-Description: Resent-Date:Resent-From:Resent-Sender:Resent-To:Resent-Cc:Resent-Message-ID: List-Owner; bh=LxjmeaLQ9QMp8/3rdp3ktOBtUaJ0G4q4WwDJ3q7d/EM=; b=uK8mcRIABRIJ1j PjltpD+nDG4BYFEExRv7aY36TtSxNvvx3+JRZfDnRF/ym9TdZeLfqhedvV0SFy5uQQtOe8RkU5NQ8 gOacUwsHLGfaDbQeBjvZzndfT3ZrYybf6bgUatAGPa9/HDdkcPjQ+9JWiZzAoREBpQADBI6+hQbsy tIISEU+9RCiR4sT4M6BajuLLkWyKCtS3bvsPfgf5pfMEzdqTdrI/1F6G8NAGH4ry+ZxJFiSxh/ZZ9 x98aV6h1guzAHEm6DoOp+GybQWqOJnO3Z7m/3KdI+3EyGPCyKO1aoOVAhD/otsX5nrBzPzR1GDqX1 ElkOsePsN3VHn7ndadwA==; Received: from localhost ([::1] helo=bombadil.infradead.org) by bombadil.infradead.org with esmtp (Exim 4.96 #2 (Red Hat Linux)) id 1qT8IV-000pqn-0L; Mon, 07 Aug 2023 22:01:55 +0000 Received: from dfw.source.kernel.org ([2604:1380:4641:c500::1]) by bombadil.infradead.org with esmtps (Exim 4.96 #2 (Red Hat Linux)) id 1qT8IR-000pna-0R; Mon, 07 Aug 2023 22:01:53 +0000 Received: from smtp.kernel.org (relay.kernel.org [52.25.139.140]) (using TLSv1.3 with cipher TLS_AES_256_GCM_SHA384 (256/256 bits) key-exchange X25519 server-signature RSA-PSS (2048 bits)) (No client certificate requested) by dfw.source.kernel.org (Postfix) with ESMTPS id A6D5D6229E; Mon, 7 Aug 2023 22:01:50 +0000 (UTC) Received: by smtp.kernel.org (Postfix) with ESMTPSA id 533ECC433C7; Mon, 7 Aug 2023 22:01:44 +0000 (UTC) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=kernel.org; s=k20201202; t=1691445710; bh=UGmEM6Ljj6jGLAgDJqTP0WjXv6GPir/AUngl+9/ZENM=; h=From:Date:Subject:References:In-Reply-To:To:Cc:From; b=sK4wyWybLhAOnNierXWH/0oZVONg6PY0hMSTjJ5/2SUXlDatl57c67u6SgTMT5Wz2 rWoPvwvx39L9WWxKN9vkvir26Qf5hw9ZkROL6FB+SjLlQkWsE02+Q9JMpVfd5uQHoC hrpsJzfuRf/U0u1/gnifb3CtO46PDw1KuFQyEIuY8WXXqoZ8bm1Mm9D13myhQ4BuRA Lln+jQjxNxuevaAdMP+1NRO3dwvvd7hKdg+v0vk5FTOMEIyuTeM6JtexgywiHsA5ki RJkqrbvOXFmHSmptFZEN+xMfIRjXkeOhZa1z+eNzP3UjxIq+lHs1i7F/BSMck74hn8 x4DL64ovRRNJA== From: Mark Brown Date: Mon, 07 Aug 2023 23:00:08 +0100 Subject: [PATCH v4 03/36] arm64/gcs: Document the ABI for Guarded Control Stacks MIME-Version: 1.0 Message-Id: <20230807-arm64-gcs-v4-3-68cfa37f9069@kernel.org> References: <20230807-arm64-gcs-v4-0-68cfa37f9069@kernel.org> In-Reply-To: <20230807-arm64-gcs-v4-0-68cfa37f9069@kernel.org> To: Catalin Marinas , Will Deacon , Jonathan Corbet , Andrew Morton , Marc Zyngier , Oliver Upton , James Morse , Suzuki K Poulose , Arnd Bergmann , Oleg Nesterov , Eric Biederman , Kees Cook , Shuah Khan , "Rick P. Edgecombe" , Deepak Gupta , Ard Biesheuvel , Szabolcs Nagy Cc: "H.J. Lu" , Paul Walmsley , Palmer Dabbelt , Albert Ou , linux-arm-kernel@lists.infradead.org, linux-doc@vger.kernel.org, kvmarm@lists.linux.dev, linux-fsdevel@vger.kernel.org, linux-arch@vger.kernel.org, linux-mm@kvack.org, linux-kselftest@vger.kernel.org, linux-kernel@vger.kernel.org, linux-riscv@lists.infradead.org, Mark Brown X-Mailer: b4 0.13-dev-034f2 X-Developer-Signature: v=1; a=openpgp-sha256; l=10389; i=broonie@kernel.org; h=from:subject:message-id; bh=UGmEM6Ljj6jGLAgDJqTP0WjXv6GPir/AUngl+9/ZENM=; b=owEBbQGS/pANAwAKASTWi3JdVIfQAcsmYgBk0WmaVUMP880FInNYASNKeNNZmYEdEqtaWytN2cgx fsSbzmaJATMEAAEKAB0WIQSt5miqZ1cYtZ/in+ok1otyXVSH0AUCZNFpmgAKCRAk1otyXVSH0HcgB/ 973HXExLaz4vkarDYRF6RyG5STwRPay+uFmkHCAn9zvHZZXKje0YTEjb6whFvK/qs+Us99EYhS0OfB 8nysoyClDzt3L2shQZgck+lagj1Ks2+l1O1MZUAp/bQTvYyIoV11ZNLgYHEMXMMJ0T8Ict5+KzolmH y78BblBw8ys5JgJw3VoawfMH6nffNSNL/S86wDwGXIn61CHxRZ/sLF4m+zz3g2S69bZPPI2iEy73hH b6UoNNxutmW3pJm9bgsGw2LJXn96EDK9s4ZSqeE7b93NCC2qN0Mi80YpVVQuOCTta9XEOcO1+qUZRG /iyQCfJvOQx2LAiCDh4H+3a4a4IAAZ X-Developer-Key: i=broonie@kernel.org; a=openpgp; fpr=3F2568AAC26998F9E813A1C5C3F436CA30F5D8EB X-CRM114-Version: 20100106-BlameMichelson ( TRE 0.8.0 (BSD) ) MR-646709E3 X-CRM114-CacheID: sfid-20230807_150151_259413_3E660324 X-CRM114-Status: GOOD ( 40.55 ) X-BeenThere: linux-riscv@lists.infradead.org X-Mailman-Version: 2.1.34 Precedence: list List-Id: List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Sender: "linux-riscv" Errors-To: linux-riscv-bounces+linux-riscv=archiver.kernel.org@lists.infradead.org Add some documentation of the userspace ABI for Guarded Control Stacks. Signed-off-by: Mark Brown --- Documentation/arch/arm64/gcs.rst | 228 +++++++++++++++++++++++++++++++++++++ Documentation/arch/arm64/index.rst | 1 + 2 files changed, 229 insertions(+) diff --git a/Documentation/arch/arm64/gcs.rst b/Documentation/arch/arm64/gcs.rst new file mode 100644 index 000000000000..c0f43961fd4b --- /dev/null +++ b/Documentation/arch/arm64/gcs.rst @@ -0,0 +1,228 @@ +=============================================== +Guarded Control Stack support for AArch64 Linux +=============================================== + +This document outlines briefly the interface provided to userspace by Linux in +order to support use of the ARM Guarded Control Stack (GCS) feature. + +This is an outline of the most important features and issues only and not +intended to be exhaustive. + + + +1. General +----------- + +* GCS is an architecture feature intended to provide greater protection + against return oriented programming (ROP) attacks and to simplify the + implementation of features that need to collect stack traces such as + profiling. + +* When GCS is enabled a separate guarded control stack is maintained by the + PE which is writeable only through specific GCS operations. This + stores the call stack only, when a procedure call instruction is + performed the current PC is pushed onto the GCS and on RET the + address in the LR is verified against that on the top of the GCS. + +* When active current GCS pointer is stored in the system register + GCSPR_EL0. This is readable by userspace but can only be updated + via specific GCS instructions. + +* The architecture provides instructions for switching between guarded + control stacks with checks to ensure that the new stack is a valid + target for switching. + +* The functionality of GCS is similar to that provided by the x86 Shadow + Stack feature, due to sharing of userspace interfaces the ABI refers to + shadow stacks rather than GCS. + +* Support for GCS is reported to userspace via HWCAP2_GCS in the aux vector + AT_HWCAP2 entry. + +* GCS is enabled per thread. While there is support for disabling GCS + at runtime this should be done with great care. + +* GCS memory access faults are reported as normal memory access faults. + +* GCS specific errors (those reported with EC 0x2d) will be reported as + SIGSEGV with a si_code of SEGV_CPERR (control protection error). + +* GCS is supported only for AArch64. + +* On systems where GCS is supported GCSPR_EL0 is always readable by EL0 + regardless of the GCS configuration for the thread. + +* The architecture supports enabling GCS without verifying that return values + in LR match those in the GCS, the LR will be ignored. This is not supported + by Linux. + +* EL0 GCS entries with bit 63 set are reserved for use, one such use is defined + below for signals and should be ignored when parsing the stack if not + understood. + + +2. Enabling and disabling Guarded Control Stacks +------------------------------------------------- + +* GCS is enabled and disabled for a thread via the PR_SET_SHADOW_STACK_STATUS + prctl(), this takes a single flags argument specifying which GCS features + should be used. + +* When set PR_SHADOW_STACK_ENABLE flag allocates a Guarded Control Stack for + and enables GCS for the thread, enabling the functionality controlled by + GCSPRE0_EL1.{nTR, RVCHKEN, PCRSEL}. + +* When set the PR_SHADOW_STACK_PUSH flag enables the functionality controlled + by GCSCRE0_EL1.PUSHMEn, allowing explicit GCS pushes. + +* When set the PR_SHADOW_STACK_WRITE flag enables the functionality controlled + by GCSCRE0_EL1.STREn, allowing explicit stores to the Guarded Control Stack. + +* Any unknown flags will cause PR_SET_SHADOW_STACK_STATUS to return -EINVAL. + +* PR_LOCK_SHADOW_STACK_STATUS is passed a bitmask of features with the same + values as used for PR_SET_SHADOW_STACK_STATUS. Any future changes to the + status of the specified GCS mode bits will be rejected. + +* PR_LOCK_SHADOW_STACK_STATUS allows any bit to be locked, this allows + userspace to prevent changes to any future features. + +* PR_SET_SHADOW_STACK_STATUS and PR_LOCK_SHADOW_STACK_STATUS affect only the + thread the called them, any other running threads will be unaffected. + +* New threads inherit the GCS configuration of the thread that created them. + +* GCS is disabled on exec(). + +* The current GCS configuration for a thread may be read with the + PR_GET_SHADOW_STACK_STATUS prctl(), this returns the same flags that + are passed to PR_SET_SHADOW_STACK_STATUS. + +* If GCS is disabled for a thread after having previously been enabled then + the stack will remain allocated for the lifetime of the thread. At present + any attempt to reenable GCS for the thread will be rejected, this may be + revisited in future. + +* It should be noted that since enabling GCS will result in GCS becoming + active immediately it is not normally possible to return from the function + that invoked the prctl() that enabled GCS. It is expected that the normal + usage will be that GCS is enabled very early in execution of a program. + + + +3. Allocation of Guarded Control Stacks +---------------------------------------- + +* When GCS is enabled for a thread a new Guarded Control Stack will be + allocated for it of size RLIMIT_STACK / 2 or 2 gigabytes, whichever is + smaller. + +* When a new thread is created by a thread which has GCS enabled then a + new Guarded Control Stack will be allocated for the new thread with + half the size of the standard stack. + +* When a stack is allocated by enabling GCS or during thread creation then + the top 8 bytes of the stack will be initialised to 0 and GCSPR_EL0 will + be set to point to the address of this 0 value, this can be used to + detect the top of the stack. + +* Additional Guarded Control Stacks can be allocated using the + map_shadow_stack() system call. + +* Stacks allocated using map_shadow_stack() can optionally have an end of + stack marker and cap placed at the top of the stack. If the flag + SHADOW_STACK_SET_TOKEN is specified a cap will be placed on the stack, + if SHADOW_STACK_SET_MARKER is not specified the cap will be the top 8 + bytes of the stack and if it is specified then the cap will be the next + 8 bytes. While specifying just SHADOW_STACK_SET_MARKER by itself is + valid since the marker is all bits 0 it has no observable effect. + +* Stacks allocated using map_shadow_stack() must be larger than 16 bytes and + must be 16 bytes aligned. + +* When GCS is disabled for a thread the Guarded Control Stack initially + allocated for that thread will be freed. Note carefully that if the + stack has been switched this may not be the stack currently in use by + the thread. + + +4. Signal handling +-------------------- + +* A new signal frame record gcs_context encodes the current GCS mode and + pointer for the interrupted context on signal delivery. This will always + be present on systems that support GCS. + +* The record contains a flag field which reports the current GCS configuration + for the interrupted context as PR_GET_SHADOW_STACK_STATUS would. + +* The signal handler is run with the same GCS configuration as the interrupted + context. + +* When GCS is enabled for the interrupted thread a signal handling specific + GCS cap token will be written to the GCS, this is an architectural GCS cap + token with bit 63 set. The GCSPR_EL0 reported in the signal frame will + point to this cap token. + +* The signal handler will use the same GCS as the interrupted context. + +* When GCS is enabled on signal entry a frame with the address of the signal + return handler will be pushed onto the GCS, allowing return from the signal + handler via RET as normal. This will not be reported in the gcs_context in + the signal frame. + + +5. Signal return +----------------- + +When returning from a signal handler: + +* If there is a gcs_context record in the signal frame then the GCS flags + and GCSPR_EL0 will be restored from that context prior to further + validation. + +* If there is no gcs_context record in the signal frame then the GCS + configuration will be unchanged. + +* If GCS is enabled on return from a signal handler then GCSPR_EL0 must + point to a valid GCS signal cap record, this will be popped from the + GCS prior to signal return. + +* If the GCS configuration is locked when returning from a signal then any + attempt to change the GCS configuration will be treated as an error. This + is true even if GCS was not enabled prior to signal entry. + +* GCS may be disabled via signal return but any attempt to enable GCS via + signal return will be rejected. + + +7. ptrace extensions +--------------------- + +* A new regset NT_ARM_GCS is defined for use with PTRACE_GETREGSET and + PTRACE_SETREGSET. + +* Due to the complexity surrounding allocation and deallocation of stacks and + lack of practical application it is not possible to enable GCS via ptrace. + GCS may be disabled via the ptrace interface. + +* Other GCS modes may be configured via ptrace. + +* Configuration via ptrace ignores locking of GCS mode bits. + + +8. ELF coredump extensions +--------------------------- + +* NT_ARM_GCS notes will be added to each coredump for each thread of the + dumped process. The contents will be equivalent to the data that would + have been read if a PTRACE_GETREGSET of the corresponding type were + executed for each thread when the coredump was generated. + + + +9. /proc extensions +-------------------- + +* Guarded Control Stack pages will include "ss" in their VmFlags in + /proc//smaps. diff --git a/Documentation/arch/arm64/index.rst b/Documentation/arch/arm64/index.rst index d08e924204bf..dcf3ee3eb8c0 100644 --- a/Documentation/arch/arm64/index.rst +++ b/Documentation/arch/arm64/index.rst @@ -14,6 +14,7 @@ ARM64 Architecture booting cpu-feature-registers elf_hwcaps + gcs hugetlbpage kdump legacy_instructions