From patchwork Mon Nov 11 20:54:13 2024 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Deepak Gupta X-Patchwork-Id: 13871438 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org Received: from bombadil.infradead.org (bombadil.infradead.org [198.137.202.133]) (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)) (No client certificate requested) by smtp.lore.kernel.org (Postfix) with ESMTPS id 86EECD3ABFA for ; Mon, 11 Nov 2024 22:16:03 +0000 (UTC) DKIM-Signature: v=1; a=rsa-sha256; q=dns/txt; c=relaxed/relaxed; d=lists.infradead.org; s=bombadil.20210309; h=Sender: Content-Transfer-Encoding:Content-Type:List-Subscribe:List-Help:List-Post: List-Archive:List-Unsubscribe:List-Id:Cc:To:In-Reply-To:References:Message-Id :MIME-Version:Subject:Date:From:Reply-To:Content-ID:Content-Description: Resent-Date:Resent-From:Resent-Sender:Resent-To:Resent-Cc:Resent-Message-ID: List-Owner; bh=Fnf8ml63PXIsf9XAvgI+q6cuxnf9UFO0924d9DVUxgM=; b=wwNxR1G1fIetF+ Kbh+qtPszXlWkD5UpSXDpyAjihCZpEA234Pi2WI6rW4kuBZd2LSIy+YGgmGzesaBGhkA53kwLgAY1 CgAuBufS1fFfguwk6DjULJMCFVmPOUzfiPoLAQyMdGgpsrGLW0OV7JN+JwsEDfmc6yns3AP3yYQSd pTidjbfqBUysHSo8Frdq26pWLZZKvQe+xCD7+l2G658pJOQl3jcEE1Cdz1jcT1zPd8Mo2Ux7S7rdL W7dHREWf6ocitdA1CMSyRU8qWSVVtB76cTKBHWdZmzvTozgs0sXNksgc/y0+Pp6h6nXKYAd4uXLYH pXHha5U3CmmwzuGfXUqw==; Received: from localhost ([::1] helo=bombadil.infradead.org) by bombadil.infradead.org with esmtp (Exim 4.98 #2 (Red Hat Linux)) id 1tAchO-00000001TYN-38t9; Mon, 11 Nov 2024 22:15:54 +0000 Received: from mail-pl1-x631.google.com ([2607:f8b0:4864:20::631]) by bombadil.infradead.org with esmtps (Exim 4.98 #2 (Red Hat Linux)) id 1tAbRI-00000001GSP-2iZY for linux-riscv@lists.infradead.org; Mon, 11 Nov 2024 20:55:15 +0000 Received: by mail-pl1-x631.google.com with SMTP id d9443c01a7336-20ca388d242so49915945ad.2 for ; Mon, 11 Nov 2024 12:55:12 -0800 (PST) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=rivosinc-com.20230601.gappssmtp.com; s=20230601; t=1731358512; x=1731963312; darn=lists.infradead.org; h=cc:to:in-reply-to:references:message-id:content-transfer-encoding :mime-version:subject:date:from:from:to:cc:subject:date:message-id :reply-to; bh=NYP5wvilXBl9e2AdD/12DI5Fd1eAjNDT/0JkZD4bKgk=; b=UoUkLM+4KRhQMKpuPTul0jx+EhvzDOnBz0JNJetxenvjJnI36zT0wWoa7r4LFAOBya A4h18HOS1hIq+OBZDCAjlfeQs95CaE11YVkEfKkbsDyPvtiiyQcRiyDBeAHH2iGsFEFv RMeoYL7oN9dAsnjRgTGOZ7anWoxgnggUyxSXhE+7uyOGRhniaqGaV0vrAsnFTVuOCZre vAljGBjup1YgVlxtsVoxOL0tkdde/YadN3ZS/rZs7g0MeqChYpW/PR0Aj2aAqPkt0kjP jVBAwv5DV/QwWwQ73h9eB47OZQg4TcFfQlgBVyc1JVvGhi4VHwVEE0GVOOEJSSWHfIHr kZaA== X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20230601; t=1731358512; x=1731963312; h=cc:to:in-reply-to:references:message-id:content-transfer-encoding :mime-version:subject:date:from:x-gm-message-state:from:to:cc :subject:date:message-id:reply-to; bh=NYP5wvilXBl9e2AdD/12DI5Fd1eAjNDT/0JkZD4bKgk=; b=CbTvqw8eOWsCiC6KZ841ClO8y6PyikH6tJ5Sim8sL57FtKG8PFD0PdvTuJHKoDEWU3 OnNUgh2bPaA7ufkJDueal09rDx6+ycgj2wVkNYxMd6+1WUESLMpy02wmfXZxPbfd490z i7L2qcMO/fB/3oYpfCuRmCSeYBsfCYnvgL1z67oi2l42z2IoG7gisxtl4kdJxmkokMsp O6UddXdY8ETLjxLIOWKABLoARx59Qti6oc2x+Mmm0jGt3M1uZMWpEELqvD3uNGd3Geq4 n2fhtN0SIHLDjWvpRYfWUeGVTZu+zffXFQV+6xIOjNSVls5OFsRwan1IbZA5Z/LMRD5K Y3eg== X-Forwarded-Encrypted: i=1; AJvYcCV77NBrDMZIDhmLUik97dv8fQeqaWceH3wi7G7Kby1+6v8P70uBx+CBF5G+JhPv9drQkAGISe5XPb3zHg==@lists.infradead.org X-Gm-Message-State: AOJu0YyfcO86yNNq7y2MhRlDVuvbKXBBDEQ3c3d+hBBrDKiJ46pa+l4m +J+Api73PjDlbl5U0w3VZ4WyeyqTTkXXLbzq8JlylNnB+vEd6+3zZgXqnL/7CbI= X-Google-Smtp-Source: AGHT+IGvZ1Qr8oDf21hnmw+UY/eeYz7wQwk8M8v9lcOAYNLAnYOjMSOnfptGUiFBUzt6eZ3xPP39jw== X-Received: by 2002:a17:902:db12:b0:211:6b25:d824 with SMTP id d9443c01a7336-21183e11eacmr202524465ad.35.1731358511517; Mon, 11 Nov 2024 12:55:11 -0800 (PST) Received: from debug.ba.rivosinc.com ([64.71.180.162]) by smtp.gmail.com with ESMTPSA id 98e67ed59e1d1-2e9a5fd1534sm9059974a91.42.2024.11.11.12.55.08 (version=TLS1_3 cipher=TLS_AES_256_GCM_SHA384 bits=256/256); Mon, 11 Nov 2024 12:55:11 -0800 (PST) From: Deepak Gupta Date: Mon, 11 Nov 2024 12:54:13 -0800 Subject: [PATCH v8 28/29] riscv: Documentation for shadow stack on riscv MIME-Version: 1.0 Message-Id: <20241111-v5_user_cfi_series-v8-28-dce14aa30207@rivosinc.com> References: <20241111-v5_user_cfi_series-v8-0-dce14aa30207@rivosinc.com> In-Reply-To: <20241111-v5_user_cfi_series-v8-0-dce14aa30207@rivosinc.com> To: Thomas Gleixner , Ingo Molnar , Borislav Petkov , Dave Hansen , x86@kernel.org, "H. Peter Anvin" , Andrew Morton , "Liam R. Howlett" , Vlastimil Babka , Lorenzo Stoakes , Paul Walmsley , Palmer Dabbelt , Albert Ou , Conor Dooley , Rob Herring , Krzysztof Kozlowski , Arnd Bergmann , Christian Brauner , Peter Zijlstra , Oleg Nesterov , Eric Biederman , Kees Cook , Jonathan Corbet , Shuah Khan Cc: linux-kernel@vger.kernel.org, linux-fsdevel@vger.kernel.org, linux-mm@kvack.org, linux-riscv@lists.infradead.org, devicetree@vger.kernel.org, linux-arch@vger.kernel.org, linux-doc@vger.kernel.org, linux-kselftest@vger.kernel.org, alistair.francis@wdc.com, richard.henderson@linaro.org, jim.shu@sifive.com, andybnac@gmail.com, kito.cheng@sifive.com, charlie@rivosinc.com, atishp@rivosinc.com, evan@rivosinc.com, cleger@rivosinc.com, alexghiti@rivosinc.com, samitolvanen@google.com, broonie@kernel.org, rick.p.edgecombe@intel.com, Deepak Gupta X-Mailer: b4 0.14.0 X-CRM114-Version: 20100106-BlameMichelson ( TRE 0.8.0 (BSD) ) MR-646709E3 X-CRM114-CacheID: sfid-20241111_125512_848585_E2CA701A X-CRM114-Status: GOOD ( 23.69 ) X-BeenThere: linux-riscv@lists.infradead.org X-Mailman-Version: 2.1.34 Precedence: list List-Id: List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Sender: "linux-riscv" Errors-To: linux-riscv-bounces+linux-riscv=archiver.kernel.org@lists.infradead.org Adding documentation on shadow stack for user mode on riscv and kernel interfaces exposed so that user tasks can enable it. Signed-off-by: Deepak Gupta --- Documentation/arch/riscv/index.rst | 1 + Documentation/arch/riscv/zicfiss.rst | 176 +++++++++++++++++++++++++++++++++++ 2 files changed, 177 insertions(+) diff --git a/Documentation/arch/riscv/index.rst b/Documentation/arch/riscv/index.rst index be7237b69682..e240eb0ceb70 100644 --- a/Documentation/arch/riscv/index.rst +++ b/Documentation/arch/riscv/index.rst @@ -15,6 +15,7 @@ RISC-V architecture vector cmodx zicfilp + zicfiss features diff --git a/Documentation/arch/riscv/zicfiss.rst b/Documentation/arch/riscv/zicfiss.rst new file mode 100644 index 000000000000..5ba389f15b3f --- /dev/null +++ b/Documentation/arch/riscv/zicfiss.rst @@ -0,0 +1,176 @@ +.. SPDX-License-Identifier: GPL-2.0 + +:Author: Deepak Gupta +:Date: 12 January 2024 + +========================================================= +Shadow stack to protect function returns on RISC-V Linux +========================================================= + +This document briefly describes the interface provided to userspace by Linux +to enable shadow stack for user mode applications on RISV-V + +1. Feature Overview +-------------------- + +Memory corruption issues usually result in to crashes, however when in hands of +an adversary and if used creatively can result into variety security issues. + +One of those security issues can be code re-use attacks on program where +adversary can use corrupt return addresses present on stack and chain them +together to perform return oriented programming (ROP) and thus compromising +control flow integrity (CFI) of the program. + +Return addresses live on stack and thus in read-write memory and thus are +susceptible to corruption and allows an adversary to reach any program counter +(PC) in address space. On RISC-V ``zicfiss`` extension provides an alternate +stack termed as shadow stack on which return addresses can be safely placed in +prolog of the function and retrieved in epilog. ``zicfiss`` extension makes +following changes: + +- PTE encodings for shadow stack virtual memory + An earlier reserved encoding in first stage translation i.e. + PTE.R=0, PTE.W=1, PTE.X=0 becomes PTE encoding for shadow stack pages. + +- ``sspush x1/x5`` instruction pushes (stores) ``x1/x5`` to shadow stack. + +- ``sspopchk x1/x5`` instruction pops (loads) from shadow stack and compares + with ``x1/x5`` and if un-equal, CPU raises ``software check exception`` with + ``*tval = 3`` + +Compiler toolchain makes sure that function prologue have ``sspush x1/x5`` to +save return address on shadow stack in addition to regular stack. Similarly +function epilogs have ``ld x5, offset(x2)`` followed by ``sspopchk x5`` to +ensure that popped value from regular stack matches with popped value from +shadow stack. + +2. Shadow stack protections and linux memory manager +----------------------------------------------------- + +As mentioned earlier, shadow stack get new page table encodings and thus have +some special properties assigned to them and instructions that operate on them +as below: + +- Regular stores to shadow stack memory raises access store faults. This way + shadow stack memory is protected from stray inadvertant writes. + +- Regular loads to shadow stack memory are allowed. This allows stack trace + utilities or backtrace functions to read true callstack (not tampered). + +- Only shadow stack instructions can generate shadow stack load or shadow stack + store. + +- Shadow stack load / shadow stack store on read-only memory raises AMO/store + page fault. Thus both ``sspush x1/x5`` and ``sspopchk x1/x5`` will raise AMO/ + store page fault. This simplies COW handling in kernel During fork, kernel + can convert shadow stack pages into read-only memory (as it does for regular + read-write memory) and as soon as subsequent ``sspush`` or ``sspopchk`` in + userspace is encountered, then kernel can perform COW. + +- Shadow stack load / shadow stack store on read-write, read-write-execute + memory raises an access fault. This is a fatal condition because shadow stack + should never be operating on read-write, read-write-execute memory. + +3. ELF and psABI +----------------- + +Toolchain sets up :c:macro:`GNU_PROPERTY_RISCV_FEATURE_1_BCFI` for property +:c:macro:`GNU_PROPERTY_RISCV_FEATURE_1_AND` in notes section of the object file. + +4. Linux enabling +------------------ + +User space programs can have multiple shared objects loaded in its address space +and it's a difficult task to make sure all the dependencies have been compiled +with support of shadow stack. Thus it's left to dynamic loader to enable +shadow stack for the program. + +5. prctl() enabling +-------------------- + +:c:macro:`PR_SET_SHADOW_STACK_STATUS` / :c:macro:`PR_GET_SHADOW_STACK_STATUS` / +:c:macro:`PR_LOCK_SHADOW_STACK_STATUS` are three prctls added to manage shadow +stack enabling for tasks. prctls are arch agnostic and returns -EINVAL on other +arches. + +* prctl(PR_SET_SHADOW_STACK_STATUS, unsigned long arg) + +If arg1 :c:macro:`PR_SHADOW_STACK_ENABLE` and if CPU supports ``zicfiss`` then +kernel will enable shadow stack for the task. Dynamic loader can issue this +:c:macro:`prctl` once it has determined that all the objects loaded in address +space have support for shadow stack. Additionally if there is a +:c:macro:`dlopen` to an object which wasn't compiled with ``zicfiss``, dynamic +loader can issue this prctl with arg1 set to 0 (i.e. +:c:macro:`PR_SHADOW_STACK_ENABLE` being clear) + +* prctl(PR_GET_SHADOW_STACK_STATUS, unsigned long *arg) + +Returns current status of indirect branch tracking. If enabled it'll return +:c:macro:`PR_SHADOW_STACK_ENABLE`. + +* prctl(PR_LOCK_SHADOW_STACK_STATUS, unsigned long arg) + +Locks current status of shadow stack enabling on the task. User space may want +to run with strict security posture and wouldn't want loading of objects +without ``zicfiss`` support in it and thus would want to disallow disabling of +shadow stack on current task. In that case user space can use this prctl to +lock current settings. + +5. violations related to returns with shadow stack enabled +----------------------------------------------------------- + +Pertaining to shadow stack, CPU raises software check exception in following +condition: + +- On execution of ``sspopchk x1/x5``, ``x1/x5`` didn't match top of shadow + stack. If mismatch happens then cpu does ``*tval = 3`` and raise software + check exception. + +Linux kernel will treat this as :c:macro:`SIGSEV`` with code = +:c:macro:`SEGV_CPERR` and follow normal course of signal delivery. + +6. Shadow stack tokens +----------------------- +Regular stores on shadow stacks are not allowed and thus can't be tampered +with via arbitrary stray writes due to bugs. Method of pivoting / switching to +shadow stack is simply writing to csr ``CSR_SSP`` changes active shadow stack. +This can be problematic because usually value to be written to ``CSR_SSP`` will +be loaded somewhere in writeable memory and thus allows an adversary to +corruption bug in software to pivot to an any address in shadow stack range. +Shadow stack tokens can help mitigate this problem by making sure that: + +- When software is switching away from a shadow stack, shadow stack pointer + should be saved on shadow stack itself and call it ``shadow stack token`` + +- When software is switching to a shadow stack, it should read the + ``shadow stack token`` from shadow stack pointer and verify that + ``shadow stack token`` itself is pointer to shadow stack itself. + +- Once the token verification is done, software can perform the write to + ``CSR_SSP`` to switch shadow stack. + +Here software can be user mode task runtime itself which is managing various +contexts as part of single thread. Software can be kernel as well when kernel +has to deliver a signal to user task and must save shadow stack pointer. Kernel +can perform similar procedure by saving a token on user shadow stack itself. +This way whenever :c:macro:`sigreturn` happens, kernel can read the token and +verify the token and then switch to shadow stack. Using this mechanism, kernel +helps user task so that any corruption issue in user task is not exploited by +adversary by arbitrarily using :c:macro:`sigreturn`. Adversary will have to +make sure that there is a ``shadow stack token`` in addition to invoking +:c:macro:`sigreturn` + +7. Signal shadow stack +----------------------- +Following structure has been added to sigcontext for RISC-V:: + + struct __sc_riscv_cfi_state { + unsigned long ss_ptr; + }; + +As part of signal delivery, shadow stack token is saved on current shadow stack +itself and updated pointer is saved away in :c:macro:`ss_ptr` field in +:c:macro:`__sc_riscv_cfi_state` under :c:macro:`sigcontext`. Existing shadow +stack allocation is used for signal delivery. During :c:macro:`sigreturn`, +kernel will obtain :c:macro:`ss_ptr` from :c:macro:`sigcontext` and verify the +saved token on shadow stack itself and switch shadow stack.