@@ -308,19 +308,19 @@ static int afu_attach(struct cxlflash_cfg *cfg, struct ctx_info *ctxi)
* @lli: LUN destined for capacity request.
*
* The READ_CAP16 can take quite a while to complete. Should an EEH occur while
- * in scsi_execute(), the EEH handler will attempt to recover. As part of the
- * recovery, the handler drains all currently running ioctls, waiting until they
- * have completed before proceeding with a reset. As this routine is used on the
- * ioctl path, this can create a condition where the EEH handler becomes stuck,
- * infinitely waiting for this ioctl thread. To avoid this behavior, temporarily
- * unmark this thread as an ioctl thread by releasing the ioctl read semaphore.
- * This will allow the EEH handler to proceed with a recovery while this thread
- * is still running. Once the scsi_execute() returns, reacquire the ioctl read
- * semaphore and check the adapter state in case it changed while inside of
- * scsi_execute(). The state check will wait if the adapter is still being
- * recovered or return a failure if the recovery failed. In the event that the
- * adapter reset failed, simply return the failure as the ioctl would be unable
- * to continue.
+ * in scsi_execute_cmd(), the EEH handler will attempt to recover. As part of
+ * the recovery, the handler drains all currently running ioctls, waiting until
+ * they have completed before proceeding with a reset. As this routine is used
+ * on the ioctl path, this can create a condition where the EEH handler becomes
+ * stuck, infinitely waiting for this ioctl thread. To avoid this behavior,
+ * temporarily unmark this thread as an ioctl thread by releasing the ioctl
+ * read semaphore. This will allow the EEH handler to proceed with a recovery
+ * while this thread is still running. Once the scsi_execute_cmd() returns,
+ * reacquire the ioctl read semaphore and check the adapter state in case it
+ * changed while inside of scsi_execute_cmd(). The state check will wait if the
+ * adapter is still being recovered or return a failure if the recovery failed.
+ * In the event that the adapter reset failed, simply return the failure as the
+ * ioctl would be unable to continue.
*
* Note that the above puts a requirement on this routine to only be called on
* an ioctl thread.
@@ -333,6 +333,9 @@ static int read_cap16(struct scsi_device *sdev, struct llun_info *lli)
struct device *dev = &cfg->dev->dev;
struct glun_info *gli = lli->parent;
struct scsi_sense_hdr sshdr;
+ const struct scsi_exec_args exec_args = {
+ .sshdr = &sshdr,
+ };
u8 *cmd_buf = NULL;
u8 *scsi_cmd = NULL;
int rc = 0;
@@ -357,9 +360,8 @@ static int read_cap16(struct scsi_device *sdev, struct llun_info *lli)
/* Drop the ioctl read semahpore across lengthy call */
up_read(&cfg->ioctl_rwsem);
- result = scsi_execute(sdev, scsi_cmd, DMA_FROM_DEVICE, cmd_buf,
- CMD_BUFSIZE, NULL, &sshdr, to, CMD_RETRIES,
- 0, 0, NULL);
+ result = scsi_execute_cmd(sdev, scsi_cmd, REQ_OP_DRV_IN, cmd_buf,
+ CMD_BUFSIZE, to, CMD_RETRIES, exec_args);
down_read(&cfg->ioctl_rwsem);
rc = check_state(cfg);
if (rc) {
@@ -397,19 +397,19 @@ static int init_vlun(struct llun_info *lli)
* @nblks: Number of logical blocks to write same.
*
* The SCSI WRITE_SAME16 can take quite a while to complete. Should an EEH occur
- * while in scsi_execute(), the EEH handler will attempt to recover. As part of
- * the recovery, the handler drains all currently running ioctls, waiting until
- * they have completed before proceeding with a reset. As this routine is used
- * on the ioctl path, this can create a condition where the EEH handler becomes
- * stuck, infinitely waiting for this ioctl thread. To avoid this behavior,
- * temporarily unmark this thread as an ioctl thread by releasing the ioctl read
- * semaphore. This will allow the EEH handler to proceed with a recovery while
- * this thread is still running. Once the scsi_execute() returns, reacquire the
- * ioctl read semaphore and check the adapter state in case it changed while
- * inside of scsi_execute(). The state check will wait if the adapter is still
- * being recovered or return a failure if the recovery failed. In the event that
- * the adapter reset failed, simply return the failure as the ioctl would be
- * unable to continue.
+ * while in scsi_execute_cmd(), the EEH handler will attempt to recover. As
+ * part of the recovery, the handler drains all currently running ioctls,
+ * waiting until they have completed before proceeding with a reset. As this
+ * routine is used on the ioctl path, this can create a condition where the
+ * EEH handler becomes stuck, infinitely waiting for this ioctl thread. To
+ * avoid this behavior, temporarily unmark this thread as an ioctl thread by
+ * releasing the ioctl read semaphore. This will allow the EEH handler to
+ * proceed with a recovery while this thread is still running. Once the
+ * scsi_execute_cmd() returns, reacquire the ioctl read semaphore and check the
+ * adapter state in case it changed while inside of scsi_execute_cmd(). The
+ * state check will wait if the adapter is still being recovered or return a
+ * failure if the recovery failed. In the event that the adapter reset failed,
+ * simply return the failure as the ioctl would be unable to continue.
*
* Note that the above puts a requirement on this routine to only be called on
* an ioctl thread.
@@ -450,9 +450,9 @@ static int write_same16(struct scsi_device *sdev,
/* Drop the ioctl read semahpore across lengthy call */
up_read(&cfg->ioctl_rwsem);
- result = scsi_execute(sdev, scsi_cmd, DMA_TO_DEVICE, cmd_buf,
- CMD_BUFSIZE, NULL, NULL, to,
- CMD_RETRIES, 0, 0, NULL);
+ result = scsi_execute_cmd(sdev, scsi_cmd, REQ_OP_DRV_OUT,
+ cmd_buf, CMD_BUFSIZE, to,
+ CMD_RETRIES, NULL);
down_read(&cfg->ioctl_rwsem);
rc = check_state(cfg);
if (rc) {