diff mbox series

[v9,07/36] function_graph: Allow multiple users to attach to function graph

Message ID 171318542015.254850.16655743605260166696.stgit@devnote2 (mailing list archive)
State Not Applicable
Headers show
Series tracing: fprobe: function_graph: Multi-function graph and fprobe on fgraph | expand

Checks

Context Check Description
netdev/tree_selection success Guessing tree name failed - patch did not apply
bpf/vmtest-bpf-PR fail merge-conflict

Commit Message

Masami Hiramatsu (Google) April 15, 2024, 12:50 p.m. UTC
From: Steven Rostedt (VMware) <rostedt@goodmis.org>

Allow for multiple users to attach to function graph tracer at the same
time. Only 16 simultaneous users can attach to the tracer. This is because
there's an array that stores the pointers to the attached fgraph_ops. When
a function being traced is entered, each of the ftrace_ops entryfunc is
called and if it returns non zero, its index into the array will be added
to the shadow stack.

On exit of the function being traced, the shadow stack will contain the
indexes of the ftrace_ops on the array that want their retfunc to be
called.

Because a function may sleep for a long time (if a task sleeps itself),
the return of the function may be literally days later. If the ftrace_ops
is removed, its place on the array is replaced with a ftrace_ops that
contains the stub functions and that will be called when the function
finally returns.

If another ftrace_ops is added that happens to get the same index into the
array, its return function may be called. But that's actually the way
things current work with the old function graph tracer. If one tracer is
removed and another is added, the new one will get the return calls of the
function traced by the previous one, thus this is not a regression. This
can be fixed by adding a counter to each time the array item is updated and
save that on the shadow stack as well, such that it won't be called if the
index saved does not match the index on the array.

Note, being able to filter functions when both are called is not completely
handled yet, but that shouldn't be too hard to manage.

Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
---
 Changes in v7:
  - Fix max limitation check in ftrace_graph_push_return().
  - Rewrite the shadow stack implementation using bitmap entry. This allows
    us to detect recursive call/tail call easier. (this implementation is
    moved from later patch in the series.
 Changes in v2:
  - Check return value of the ftrace_pop_return_trace() instead of 'ret'
    since 'ret' is set to the address of panic().
  - Fix typo and make lines shorter than 76 chars in description.
---
 include/linux/ftrace.h |    1 
 kernel/trace/fgraph.c  |  360 ++++++++++++++++++++++++++++++++++++++++--------
 2 files changed, 301 insertions(+), 60 deletions(-)

Comments

Steven Rostedt April 20, 2024, 3:52 a.m. UTC | #1
On Mon, 15 Apr 2024 21:50:20 +0900
"Masami Hiramatsu (Google)" <mhiramat@kernel.org> wrote:

> @@ -27,23 +28,157 @@
>  
>  #define FGRAPH_RET_SIZE sizeof(struct ftrace_ret_stack)
>  #define FGRAPH_RET_INDEX DIV_ROUND_UP(FGRAPH_RET_SIZE, sizeof(long))
> +
> +/*
> + * On entry to a function (via function_graph_enter()), a new ftrace_ret_stack
> + * is allocated on the task's ret_stack with indexes entry, then each
> + * fgraph_ops on the fgraph_array[]'s entryfunc is called and if that returns
> + * non-zero, the index into the fgraph_array[] for that fgraph_ops is recorded
> + * on the indexes entry as a bit flag.
> + * As the associated ftrace_ret_stack saved for those fgraph_ops needs to
> + * be found, the index to it is also added to the ret_stack along with the
> + * index of the fgraph_array[] to each fgraph_ops that needs their retfunc
> + * called.
> + *
> + * The top of the ret_stack (when not empty) will always have a reference
> + * to the last ftrace_ret_stack saved. All references to the
> + * ftrace_ret_stack has the format of:
> + *
> + * bits:  0 -  9	offset in words from the previous ftrace_ret_stack
> + *			(bitmap type should have FGRAPH_RET_INDEX always)
> + * bits: 10 - 11	Type of storage
> + *			  0 - reserved
> + *			  1 - bitmap of fgraph_array index
> + *
> + * For bitmap of fgraph_array index
> + *  bits: 12 - 27	The bitmap of fgraph_ops fgraph_array index

I really hate the terminology I came up with here, and would love to
get better terminology for describing what is going on. I looked it
over but I'm constantly getting confused. And I wrote this code!

Perhaps we should use:

 @frame : The data that represents a single function call. When a
          function is traced, all the data used for all the callbacks
          attached to it, is in a single frame. This would replace the
          FGRAPH_RET_SIZE as FGRAPH_FRAME_SIZE.

 @offset : This is the word size position on the stack. It would
           replace INDEX, as I think "index" is being used for more
           than one thing. Perhaps it should be "offset" when dealing
           with where it is on the shadow stack, and "pos" when dealing
           with which callback ops is being referenced.


> + *
> + * That is, at the end of function_graph_enter, if the first and forth
> + * fgraph_ops on the fgraph_array[] (index 0 and 3) needs their retfunc called
> + * on the return of the function being traced, this is what will be on the
> + * task's shadow ret_stack: (the stack grows upward)
> + *
> + * |                                            | <- task->curr_ret_stack
> + * +--------------------------------------------+
> + * | bitmap_type(bitmap:(BIT(3)|BIT(0)),        |
> + * |             offset:FGRAPH_RET_INDEX)       | <- the offset is from here
> + * +--------------------------------------------+
> + * | struct ftrace_ret_stack                    |
> + * |   (stores the saved ret pointer)           | <- the offset points here
> + * +--------------------------------------------+
> + * |                 (X) | (N)                  | ( N words away from
> + * |                                            |   previous ret_stack)
> + *
> + * If a backtrace is required, and the real return pointer needs to be
> + * fetched, then it looks at the task's curr_ret_stack index, if it
> + * is greater than zero (reserved, or right before poped), it would mask
> + * the value by FGRAPH_RET_INDEX_MASK to get the offset index of the
> + * ftrace_ret_stack structure stored on the shadow stack.
> + */
> +
> +#define FGRAPH_RET_INDEX_SIZE	10

Replace SIZE with BITS.

> +#define FGRAPH_RET_INDEX_MASK	GENMASK(FGRAPH_RET_INDEX_SIZE - 1, 0)

  #define FGRAPH_FRAME_SIZE_BITS	10
  #define FGRAPH_FRAME_SIZE_MASK	GENMASK(FGRAPH_FRAME_SIZE_BITS - 1, 0)


> +
> +#define FGRAPH_TYPE_SIZE	2
> +#define FGRAPH_TYPE_MASK	GENMASK(FGRAPH_TYPE_SIZE - 1, 0)

  #define FGRAPH_TYPE_BITS	2
  #define FGRAPH_TYPE_MASK	GENMASK(FGRAPH_TYPE_BITS - 1, 0)


> +#define FGRAPH_TYPE_SHIFT	FGRAPH_RET_INDEX_SIZE
> +
> +enum {
> +	FGRAPH_TYPE_RESERVED	= 0,
> +	FGRAPH_TYPE_BITMAP	= 1,
> +};
> +
> +#define FGRAPH_INDEX_SIZE	16

replace "INDEX" with "OPS" as it will be the indexes of ops in the
array.

  #define FGRAPH_OPS_BITS	16
  #define FGRAPH_OPS_MASK	GENMASK(FGRAPH_OPS_BITS - 1, 0)

> +#define FGRAPH_INDEX_MASK	GENMASK(FGRAPH_INDEX_SIZE - 1, 0)
> +#define FGRAPH_INDEX_SHIFT	(FGRAPH_TYPE_SHIFT + FGRAPH_TYPE_SIZE)
> +
> +/* Currently the max stack index can't be more than register callers */
> +#define FGRAPH_MAX_INDEX	(FGRAPH_INDEX_SIZE + FGRAPH_RET_INDEX)

FGRAPH_MAX_INDEX isn't even used. Let's delete it.

> +
> +#define FGRAPH_ARRAY_SIZE	FGRAPH_INDEX_SIZE

  #define FGRAPH_ARRAY_SIZE	FGRAPH_INDEX_BITS

> +
>  #define SHADOW_STACK_SIZE (PAGE_SIZE)
>  #define SHADOW_STACK_INDEX (SHADOW_STACK_SIZE / sizeof(long))
>  /* Leave on a buffer at the end */
> -#define SHADOW_STACK_MAX_INDEX (SHADOW_STACK_INDEX - FGRAPH_RET_INDEX)
> +#define SHADOW_STACK_MAX_INDEX (SHADOW_STACK_INDEX - (FGRAPH_RET_INDEX + 1))

We probably should rename this is previous patches as well.

Unfortunately, it's getting close to the time for me to pick up my wife
from the airport to start our vacation. But I think we should rename a
lot of these variables to make things more consistent.

I'll try to look more at the previous patches as well to make my
comments there, when I get some time. Maybe even later today.

-- Steve
Masami Hiramatsu (Google) April 20, 2024, 8:56 a.m. UTC | #2
On Fri, 19 Apr 2024 23:52:58 -0400
Steven Rostedt <rostedt@goodmis.org> wrote:

> On Mon, 15 Apr 2024 21:50:20 +0900
> "Masami Hiramatsu (Google)" <mhiramat@kernel.org> wrote:
> 
> > @@ -27,23 +28,157 @@
> >  
> >  #define FGRAPH_RET_SIZE sizeof(struct ftrace_ret_stack)
> >  #define FGRAPH_RET_INDEX DIV_ROUND_UP(FGRAPH_RET_SIZE, sizeof(long))
> > +
> > +/*
> > + * On entry to a function (via function_graph_enter()), a new ftrace_ret_stack
> > + * is allocated on the task's ret_stack with indexes entry, then each
> > + * fgraph_ops on the fgraph_array[]'s entryfunc is called and if that returns
> > + * non-zero, the index into the fgraph_array[] for that fgraph_ops is recorded
> > + * on the indexes entry as a bit flag.
> > + * As the associated ftrace_ret_stack saved for those fgraph_ops needs to
> > + * be found, the index to it is also added to the ret_stack along with the
> > + * index of the fgraph_array[] to each fgraph_ops that needs their retfunc
> > + * called.
> > + *
> > + * The top of the ret_stack (when not empty) will always have a reference
> > + * to the last ftrace_ret_stack saved. All references to the
> > + * ftrace_ret_stack has the format of:
> > + *
> > + * bits:  0 -  9	offset in words from the previous ftrace_ret_stack
> > + *			(bitmap type should have FGRAPH_RET_INDEX always)
> > + * bits: 10 - 11	Type of storage
> > + *			  0 - reserved
> > + *			  1 - bitmap of fgraph_array index
> > + *
> > + * For bitmap of fgraph_array index
> > + *  bits: 12 - 27	The bitmap of fgraph_ops fgraph_array index
> 
> I really hate the terminology I came up with here, and would love to
> get better terminology for describing what is going on. I looked it
> over but I'm constantly getting confused. And I wrote this code!
> 
> Perhaps we should use:
> 
>  @frame : The data that represents a single function call. When a
>           function is traced, all the data used for all the callbacks
>           attached to it, is in a single frame. This would replace the
>           FGRAPH_RET_SIZE as FGRAPH_FRAME_SIZE.

Agreed.

> 
>  @offset : This is the word size position on the stack. It would
>            replace INDEX, as I think "index" is being used for more
>            than one thing. Perhaps it should be "offset" when dealing
>            with where it is on the shadow stack, and "pos" when dealing
>            with which callback ops is being referenced.

Indeed. @index is usually used from the index in an array. So we can use
@index for fgraph_array[]. But inside a @frame, @offset would be better.

> 
> 
> > + *
> > + * That is, at the end of function_graph_enter, if the first and forth
> > + * fgraph_ops on the fgraph_array[] (index 0 and 3) needs their retfunc called
> > + * on the return of the function being traced, this is what will be on the
> > + * task's shadow ret_stack: (the stack grows upward)
> > + *
> > + * |                                            | <- task->curr_ret_stack
> > + * +--------------------------------------------+
> > + * | bitmap_type(bitmap:(BIT(3)|BIT(0)),        |
> > + * |             offset:FGRAPH_RET_INDEX)       | <- the offset is from here
> > + * +--------------------------------------------+
> > + * | struct ftrace_ret_stack                    |
> > + * |   (stores the saved ret pointer)           | <- the offset points here
> > + * +--------------------------------------------+
> > + * |                 (X) | (N)                  | ( N words away from
> > + * |                                            |   previous ret_stack)
> > + *
> > + * If a backtrace is required, and the real return pointer needs to be
> > + * fetched, then it looks at the task's curr_ret_stack index, if it
> > + * is greater than zero (reserved, or right before poped), it would mask
> > + * the value by FGRAPH_RET_INDEX_MASK to get the offset index of the
> > + * ftrace_ret_stack structure stored on the shadow stack.
> > + */
> > +
> > +#define FGRAPH_RET_INDEX_SIZE	10
> 
> Replace SIZE with BITS.

Agreed.

> 
> > +#define FGRAPH_RET_INDEX_MASK	GENMASK(FGRAPH_RET_INDEX_SIZE - 1, 0)
> 
>   #define FGRAPH_FRAME_SIZE_BITS	10
>   #define FGRAPH_FRAME_SIZE_MASK	GENMASK(FGRAPH_FRAME_SIZE_BITS - 1, 0)
> 
> 
> > +
> > +#define FGRAPH_TYPE_SIZE	2
> > +#define FGRAPH_TYPE_MASK	GENMASK(FGRAPH_TYPE_SIZE - 1, 0)
> 
>   #define FGRAPH_TYPE_BITS	2
>   #define FGRAPH_TYPE_MASK	GENMASK(FGRAPH_TYPE_BITS - 1, 0)
> 
> 
> > +#define FGRAPH_TYPE_SHIFT	FGRAPH_RET_INDEX_SIZE
> > +
> > +enum {
> > +	FGRAPH_TYPE_RESERVED	= 0,
> > +	FGRAPH_TYPE_BITMAP	= 1,
> > +};
> > +
> > +#define FGRAPH_INDEX_SIZE	16
> 
> replace "INDEX" with "OPS" as it will be the indexes of ops in the
> array.
> 
>   #define FGRAPH_OPS_BITS	16
>   #define FGRAPH_OPS_MASK	GENMASK(FGRAPH_OPS_BITS - 1, 0)

OK, this looks good.

> 
> > +#define FGRAPH_INDEX_MASK	GENMASK(FGRAPH_INDEX_SIZE - 1, 0)
> > +#define FGRAPH_INDEX_SHIFT	(FGRAPH_TYPE_SHIFT + FGRAPH_TYPE_SIZE)
> > +
> > +/* Currently the max stack index can't be more than register callers */
> > +#define FGRAPH_MAX_INDEX	(FGRAPH_INDEX_SIZE + FGRAPH_RET_INDEX)
> 
> FGRAPH_MAX_INDEX isn't even used. Let's delete it.

OK.

> 
> > +
> > +#define FGRAPH_ARRAY_SIZE	FGRAPH_INDEX_SIZE
> 
>   #define FGRAPH_ARRAY_SIZE	FGRAPH_INDEX_BITS

OK.

> 
> > +
> >  #define SHADOW_STACK_SIZE (PAGE_SIZE)
> >  #define SHADOW_STACK_INDEX (SHADOW_STACK_SIZE / sizeof(long))
> >  /* Leave on a buffer at the end */
> > -#define SHADOW_STACK_MAX_INDEX (SHADOW_STACK_INDEX - FGRAPH_RET_INDEX)
> > +#define SHADOW_STACK_MAX_INDEX (SHADOW_STACK_INDEX - (FGRAPH_RET_INDEX + 1))
> 
> We probably should rename this is previous patches as well.
> 
> Unfortunately, it's getting close to the time for me to pick up my wife
> from the airport to start our vacation. But I think we should rename a
> lot of these variables to make things more consistent.

OK, Thanks for your review!

> 
> I'll try to look more at the previous patches as well to make my
> comments there, when I get some time. Maybe even later today.

Only if you have a time. I think I also refresh the code.

Thank you,

> 
> -- Steve
>
diff mbox series

Patch

diff --git a/include/linux/ftrace.h b/include/linux/ftrace.h
index d5df5f8fc35a..bedc3c5fc36f 100644
--- a/include/linux/ftrace.h
+++ b/include/linux/ftrace.h
@@ -1066,6 +1066,7 @@  extern int ftrace_graph_entry_stub(struct ftrace_graph_ent *trace);
 struct fgraph_ops {
 	trace_func_graph_ent_t		entryfunc;
 	trace_func_graph_ret_t		retfunc;
+	int				idx;
 };
 
 /*
diff --git a/kernel/trace/fgraph.c b/kernel/trace/fgraph.c
index 3f9dd213e7d8..b9a2399b75ee 100644
--- a/kernel/trace/fgraph.c
+++ b/kernel/trace/fgraph.c
@@ -7,6 +7,7 @@ 
  *
  * Highly modified by Steven Rostedt (VMware).
  */
+#include <linux/bits.h>
 #include <linux/jump_label.h>
 #include <linux/suspend.h>
 #include <linux/ftrace.h>
@@ -27,23 +28,157 @@ 
 
 #define FGRAPH_RET_SIZE sizeof(struct ftrace_ret_stack)
 #define FGRAPH_RET_INDEX DIV_ROUND_UP(FGRAPH_RET_SIZE, sizeof(long))
+
+/*
+ * On entry to a function (via function_graph_enter()), a new ftrace_ret_stack
+ * is allocated on the task's ret_stack with indexes entry, then each
+ * fgraph_ops on the fgraph_array[]'s entryfunc is called and if that returns
+ * non-zero, the index into the fgraph_array[] for that fgraph_ops is recorded
+ * on the indexes entry as a bit flag.
+ * As the associated ftrace_ret_stack saved for those fgraph_ops needs to
+ * be found, the index to it is also added to the ret_stack along with the
+ * index of the fgraph_array[] to each fgraph_ops that needs their retfunc
+ * called.
+ *
+ * The top of the ret_stack (when not empty) will always have a reference
+ * to the last ftrace_ret_stack saved. All references to the
+ * ftrace_ret_stack has the format of:
+ *
+ * bits:  0 -  9	offset in words from the previous ftrace_ret_stack
+ *			(bitmap type should have FGRAPH_RET_INDEX always)
+ * bits: 10 - 11	Type of storage
+ *			  0 - reserved
+ *			  1 - bitmap of fgraph_array index
+ *
+ * For bitmap of fgraph_array index
+ *  bits: 12 - 27	The bitmap of fgraph_ops fgraph_array index
+ *
+ * That is, at the end of function_graph_enter, if the first and forth
+ * fgraph_ops on the fgraph_array[] (index 0 and 3) needs their retfunc called
+ * on the return of the function being traced, this is what will be on the
+ * task's shadow ret_stack: (the stack grows upward)
+ *
+ * |                                            | <- task->curr_ret_stack
+ * +--------------------------------------------+
+ * | bitmap_type(bitmap:(BIT(3)|BIT(0)),        |
+ * |             offset:FGRAPH_RET_INDEX)       | <- the offset is from here
+ * +--------------------------------------------+
+ * | struct ftrace_ret_stack                    |
+ * |   (stores the saved ret pointer)           | <- the offset points here
+ * +--------------------------------------------+
+ * |                 (X) | (N)                  | ( N words away from
+ * |                                            |   previous ret_stack)
+ *
+ * If a backtrace is required, and the real return pointer needs to be
+ * fetched, then it looks at the task's curr_ret_stack index, if it
+ * is greater than zero (reserved, or right before poped), it would mask
+ * the value by FGRAPH_RET_INDEX_MASK to get the offset index of the
+ * ftrace_ret_stack structure stored on the shadow stack.
+ */
+
+#define FGRAPH_RET_INDEX_SIZE	10
+#define FGRAPH_RET_INDEX_MASK	GENMASK(FGRAPH_RET_INDEX_SIZE - 1, 0)
+
+#define FGRAPH_TYPE_SIZE	2
+#define FGRAPH_TYPE_MASK	GENMASK(FGRAPH_TYPE_SIZE - 1, 0)
+#define FGRAPH_TYPE_SHIFT	FGRAPH_RET_INDEX_SIZE
+
+enum {
+	FGRAPH_TYPE_RESERVED	= 0,
+	FGRAPH_TYPE_BITMAP	= 1,
+};
+
+#define FGRAPH_INDEX_SIZE	16
+#define FGRAPH_INDEX_MASK	GENMASK(FGRAPH_INDEX_SIZE - 1, 0)
+#define FGRAPH_INDEX_SHIFT	(FGRAPH_TYPE_SHIFT + FGRAPH_TYPE_SIZE)
+
+/* Currently the max stack index can't be more than register callers */
+#define FGRAPH_MAX_INDEX	(FGRAPH_INDEX_SIZE + FGRAPH_RET_INDEX)
+
+#define FGRAPH_ARRAY_SIZE	FGRAPH_INDEX_SIZE
+
 #define SHADOW_STACK_SIZE (PAGE_SIZE)
 #define SHADOW_STACK_INDEX (SHADOW_STACK_SIZE / sizeof(long))
 /* Leave on a buffer at the end */
-#define SHADOW_STACK_MAX_INDEX (SHADOW_STACK_INDEX - FGRAPH_RET_INDEX)
+#define SHADOW_STACK_MAX_INDEX (SHADOW_STACK_INDEX - (FGRAPH_RET_INDEX + 1))
 
 #define RET_STACK(t, index) ((struct ftrace_ret_stack *)(&(t)->ret_stack[index]))
-#define RET_STACK_INC(c) ({ c += FGRAPH_RET_INDEX; })
-#define RET_STACK_DEC(c) ({ c -= FGRAPH_RET_INDEX; })
 
 DEFINE_STATIC_KEY_FALSE(kill_ftrace_graph);
 int ftrace_graph_active;
 
 static int fgraph_array_cnt;
-#define FGRAPH_ARRAY_SIZE	16
 
 static struct fgraph_ops *fgraph_array[FGRAPH_ARRAY_SIZE];
 
+static inline int get_ret_stack_index(struct task_struct *t, int offset)
+{
+	return t->ret_stack[offset] & FGRAPH_RET_INDEX_MASK;
+}
+
+static inline int get_fgraph_type(struct task_struct *t, int offset)
+{
+	return (t->ret_stack[offset] >> FGRAPH_TYPE_SHIFT) & FGRAPH_TYPE_MASK;
+}
+
+static inline unsigned long
+get_fgraph_index_bitmap(struct task_struct *t, int offset)
+{
+	return (t->ret_stack[offset] >> FGRAPH_INDEX_SHIFT) & FGRAPH_INDEX_MASK;
+}
+
+static inline void
+set_fgraph_index_bitmap(struct task_struct *t, int offset, unsigned long bitmap)
+{
+	t->ret_stack[offset] = (bitmap << FGRAPH_INDEX_SHIFT) |
+		(FGRAPH_TYPE_BITMAP << FGRAPH_TYPE_SHIFT) | FGRAPH_RET_INDEX;
+}
+
+static inline bool is_fgraph_index_set(struct task_struct *t, int offset, int idx)
+{
+	return !!(get_fgraph_index_bitmap(t, offset) & BIT(idx));
+}
+
+static inline void
+add_fgraph_index_bitmap(struct task_struct *t, int offset, unsigned long bitmap)
+{
+	t->ret_stack[offset] |= (bitmap << FGRAPH_INDEX_SHIFT);
+}
+
+/*
+ * @offset: The index into @t->ret_stack to find the ret_stack entry
+ * @index: Where to place the index into @t->ret_stack of that entry
+ *
+ * Calling this with:
+ *
+ *   offset = task->curr_ret_stack;
+ *   do {
+ *	ret_stack = get_ret_stack(task, offset, &offset);
+ *   } while (ret_stack);
+ *
+ * Will iterate through all the ret_stack entries from curr_ret_stack
+ * down to the first one.
+ */
+static inline struct ftrace_ret_stack *
+get_ret_stack(struct task_struct *t, int offset, int *index)
+{
+	int idx;
+
+	BUILD_BUG_ON(FGRAPH_RET_SIZE % sizeof(long));
+
+	if (unlikely(offset <= 0))
+		return NULL;
+
+	idx = get_ret_stack_index(t, --offset);
+	if (WARN_ON_ONCE(idx <= 0 || idx > offset))
+		return NULL;
+
+	offset -= idx;
+
+	*index = offset;
+	return RET_STACK(t, offset);
+}
+
 /* Both enabled by default (can be cleared by function_graph tracer flags */
 static bool fgraph_sleep_time = true;
 
@@ -97,10 +232,12 @@  void ftrace_graph_stop(void)
 /* Add a function return address to the trace stack on thread info.*/
 static int
 ftrace_push_return_trace(unsigned long ret, unsigned long func,
-			 unsigned long frame_pointer, unsigned long *retp)
+			 unsigned long frame_pointer, unsigned long *retp,
+			 int fgraph_idx)
 {
 	struct ftrace_ret_stack *ret_stack;
 	unsigned long long calltime;
+	unsigned long val;
 	int index;
 
 	if (unlikely(ftrace_graph_is_dead()))
@@ -109,6 +246,21 @@  ftrace_push_return_trace(unsigned long ret, unsigned long func,
 	if (!current->ret_stack)
 		return -EBUSY;
 
+	/*
+	 * At first, check whether the previous fgraph callback is pushed by
+	 * the fgraph on the same function entry.
+	 * But if @func is the self tail-call function, we also need to ensure
+	 * the ret_stack is not for the previous call by checking whether the
+	 * bit of @fgraph_idx is set or not.
+	 */
+	ret_stack = get_ret_stack(current, current->curr_ret_stack, &index);
+	if (ret_stack && ret_stack->func == func &&
+	    get_fgraph_type(current, index + FGRAPH_RET_INDEX) == FGRAPH_TYPE_BITMAP &&
+	    !is_fgraph_index_set(current, index + FGRAPH_RET_INDEX, fgraph_idx))
+		return index + FGRAPH_RET_INDEX;
+
+	val = (FGRAPH_TYPE_RESERVED << FGRAPH_TYPE_SHIFT) | FGRAPH_RET_INDEX;
+
 	BUILD_BUG_ON(SHADOW_STACK_SIZE % sizeof(long));
 
 	/*
@@ -118,17 +270,44 @@  ftrace_push_return_trace(unsigned long ret, unsigned long func,
 	smp_rmb();
 
 	/* The return trace stack is full */
-	if (current->curr_ret_stack >= SHADOW_STACK_MAX_INDEX) {
+	if (current->curr_ret_stack + FGRAPH_RET_INDEX + 1 >= SHADOW_STACK_MAX_INDEX) {
 		atomic_inc(&current->trace_overrun);
 		return -EBUSY;
 	}
 
 	calltime = trace_clock_local();
 
-	index = current->curr_ret_stack;
-	RET_STACK_INC(current->curr_ret_stack);
+	index = READ_ONCE(current->curr_ret_stack);
 	ret_stack = RET_STACK(current, index);
+	index += FGRAPH_RET_INDEX;
+
+	/* ret offset = FGRAPH_RET_INDEX ; type = reserved */
+	current->ret_stack[index] = val;
+	ret_stack->ret = ret;
+	/*
+	 * The unwinders expect curr_ret_stack to point to either zero
+	 * or an index where to find the next ret_stack. Even though the
+	 * ret stack might be bogus, we want to write the ret and the
+	 * index to find the ret_stack before we increment the stack point.
+	 * If an interrupt comes in now before we increment the curr_ret_stack
+	 * it may blow away what we wrote. But that's fine, because the
+	 * index will still be correct (even though the 'ret' won't be).
+	 * What we worry about is the index being correct after we increment
+	 * the curr_ret_stack and before we update that index, as if an
+	 * interrupt comes in and does an unwind stack dump, it will need
+	 * at least a correct index!
+	 */
+	barrier();
+	current->curr_ret_stack = index + 1;
+	/*
+	 * This next barrier is to ensure that an interrupt coming in
+	 * will not corrupt what we are about to write.
+	 */
 	barrier();
+
+	/* Still keep it reserved even if an interrupt came in */
+	current->ret_stack[index] = val;
+
 	ret_stack->ret = ret;
 	ret_stack->func = func;
 	ret_stack->calltime = calltime;
@@ -138,7 +317,7 @@  ftrace_push_return_trace(unsigned long ret, unsigned long func,
 #ifdef HAVE_FUNCTION_GRAPH_RET_ADDR_PTR
 	ret_stack->retp = retp;
 #endif
-	return 0;
+	return index;
 }
 
 /*
@@ -155,10 +334,14 @@  ftrace_push_return_trace(unsigned long ret, unsigned long func,
 # define MCOUNT_INSN_SIZE 0
 #endif
 
+/* If the caller does not use ftrace, call this function. */
 int function_graph_enter(unsigned long ret, unsigned long func,
 			 unsigned long frame_pointer, unsigned long *retp)
 {
 	struct ftrace_graph_ent trace;
+	unsigned long bitmap = 0;
+	int index;
+	int i;
 
 #ifndef CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS
 	/*
@@ -171,44 +354,59 @@  int function_graph_enter(unsigned long ret, unsigned long func,
 	    ftrace_find_rec_direct(ret - MCOUNT_INSN_SIZE))
 		return -EBUSY;
 #endif
+
 	trace.func = func;
 	trace.depth = ++current->curr_ret_depth;
 
-	if (ftrace_push_return_trace(ret, func, frame_pointer, retp))
+	index = ftrace_push_return_trace(ret, func, frame_pointer, retp, 0);
+	if (index < 0)
 		goto out;
 
-	/* Only trace if the calling function expects to */
-	if (!fgraph_array[0]->entryfunc(&trace))
+	for (i = 0; i < fgraph_array_cnt; i++) {
+		struct fgraph_ops *gops = fgraph_array[i];
+
+		if (gops == &fgraph_stub)
+			continue;
+
+		if (gops->entryfunc(&trace))
+			bitmap |= BIT(i);
+	}
+
+	if (!bitmap)
 		goto out_ret;
 
+	/*
+	 * Since this function uses fgraph_idx = 0 as a tail-call checking
+	 * flag, set that bit always.
+	 */
+	set_fgraph_index_bitmap(current, index, bitmap | BIT(0));
+
 	return 0;
  out_ret:
-	RET_STACK_DEC(current->curr_ret_stack);
+	current->curr_ret_stack -= FGRAPH_RET_INDEX + 1;
  out:
 	current->curr_ret_depth--;
 	return -EBUSY;
 }
 
 /* Retrieve a function return address to the trace stack on thread info.*/
-static void
+static struct ftrace_ret_stack *
 ftrace_pop_return_trace(struct ftrace_graph_ret *trace, unsigned long *ret,
-			unsigned long frame_pointer)
+			unsigned long frame_pointer, int *index)
 {
 	struct ftrace_ret_stack *ret_stack;
-	int index;
 
-	index = current->curr_ret_stack;
-	RET_STACK_DEC(index);
+	ret_stack = get_ret_stack(current, current->curr_ret_stack, index);
 
-	if (unlikely(index < 0 || index > SHADOW_STACK_MAX_INDEX)) {
+	if (unlikely(!ret_stack)) {
 		ftrace_graph_stop();
-		WARN_ON(1);
+		WARN(1, "Bad function graph ret_stack pointer: %d",
+		     current->curr_ret_stack);
 		/* Might as well panic, otherwise we have no where to go */
 		*ret = (unsigned long)panic;
-		return;
+		return NULL;
 	}
 
-	ret_stack = RET_STACK(current, index);
 #ifdef HAVE_FUNCTION_GRAPH_FP_TEST
 	/*
 	 * The arch may choose to record the frame pointer used
@@ -228,26 +426,29 @@  ftrace_pop_return_trace(struct ftrace_graph_ret *trace, unsigned long *ret,
 		ftrace_graph_stop();
 		WARN(1, "Bad frame pointer: expected %lx, received %lx\n"
 		     "  from func %ps return to %lx\n",
-		     current->ret_stack[index].fp,
+		     ret_stack->fp,
 		     frame_pointer,
 		     (void *)ret_stack->func,
 		     ret_stack->ret);
 		*ret = (unsigned long)panic;
-		return;
+		return NULL;
 	}
 #endif
 
+	*index += FGRAPH_RET_INDEX;
 	*ret = ret_stack->ret;
 	trace->func = ret_stack->func;
 	trace->calltime = ret_stack->calltime;
 	trace->overrun = atomic_read(&current->trace_overrun);
-	trace->depth = current->curr_ret_depth--;
+	trace->depth = current->curr_ret_depth;
 	/*
 	 * We still want to trace interrupts coming in if
 	 * max_depth is set to 1. Make sure the decrement is
 	 * seen before ftrace_graph_return.
 	 */
 	barrier();
+
+	return ret_stack;
 }
 
 /*
@@ -285,30 +486,47 @@  struct fgraph_ret_regs;
 static unsigned long __ftrace_return_to_handler(struct fgraph_ret_regs *ret_regs,
 						unsigned long frame_pointer)
 {
+	struct ftrace_ret_stack *ret_stack;
 	struct ftrace_graph_ret trace;
+	unsigned long bitmap;
 	unsigned long ret;
+	int index;
+	int i;
 
-	ftrace_pop_return_trace(&trace, &ret, frame_pointer);
+	ret_stack = ftrace_pop_return_trace(&trace, &ret, frame_pointer, &index);
+
+	if (unlikely(!ret_stack)) {
+		ftrace_graph_stop();
+		WARN_ON(1);
+		/* Might as well panic. What else to do? */
+		return (unsigned long)panic;
+	}
+
+	trace.rettime = trace_clock_local();
 #ifdef CONFIG_FUNCTION_GRAPH_RETVAL
 	trace.retval = fgraph_ret_regs_return_value(ret_regs);
 #endif
-	trace.rettime = trace_clock_local();
-	fgraph_array[0]->retfunc(&trace);
+
+	bitmap = get_fgraph_index_bitmap(current, index);
+	for (i = 0; i < FGRAPH_ARRAY_SIZE; i++) {
+		struct fgraph_ops *gops = fgraph_array[i];
+
+		if (!(bitmap & BIT(i)))
+			continue;
+		if (gops == &fgraph_stub)
+			continue;
+
+		gops->retfunc(&trace);
+	}
+
 	/*
 	 * The ftrace_graph_return() may still access the current
 	 * ret_stack structure, we need to make sure the update of
 	 * curr_ret_stack is after that.
 	 */
 	barrier();
-	RET_STACK_DEC(current->curr_ret_stack);
-
-	if (unlikely(!ret)) {
-		ftrace_graph_stop();
-		WARN_ON(1);
-		/* Might as well panic. What else to do? */
-		ret = (unsigned long)panic;
-	}
-
+	current->curr_ret_stack -= FGRAPH_RET_INDEX + 1;
+	current->curr_ret_depth--;
 	return ret;
 }
 
@@ -343,15 +561,17 @@  unsigned long ftrace_return_to_handler(unsigned long frame_pointer)
 struct ftrace_ret_stack *
 ftrace_graph_get_ret_stack(struct task_struct *task, int idx)
 {
+	struct ftrace_ret_stack *ret_stack = NULL;
 	int index = task->curr_ret_stack;
 
-	BUILD_BUG_ON(FGRAPH_RET_SIZE % sizeof(long));
-
-	index -= FGRAPH_RET_INDEX * (idx + 1);
 	if (index < 0)
 		return NULL;
 
-	return RET_STACK(task, index);
+	do {
+		ret_stack = get_ret_stack(task, index, &index);
+	} while (ret_stack && --idx >= 0);
+
+	return ret_stack;
 }
 
 /**
@@ -374,17 +594,26 @@  unsigned long ftrace_graph_ret_addr(struct task_struct *task, int *idx,
 				    unsigned long ret, unsigned long *retp)
 {
 	struct ftrace_ret_stack *ret_stack;
-	int index = task->curr_ret_stack;
-	int i;
+	int i = task->curr_ret_stack;
 
 	if (ret != (unsigned long)dereference_kernel_function_descriptor(return_to_handler))
 		return ret;
 
-	RET_STACK_DEC(index);
-
-	for (i = index; i >= 0; RET_STACK_DEC(i)) {
-		ret_stack = RET_STACK(task, i);
-		if (ret_stack->retp == retp)
+	while (i > 0) {
+		ret_stack = get_ret_stack(current, i, &i);
+		if (!ret_stack)
+			break;
+		/*
+		 * For the tail-call, there would be 2 or more ftrace_ret_stacks on
+		 * the ret_stack, which records "return_to_handler" as the return
+		 * address excpt for the last one.
+		 * But on the real stack, there should be 1 entry because tail-call
+		 * reuses the return address on the stack and jump to the next function.
+		 * Thus we will continue to find real return address.
+		 */
+		if (ret_stack->retp == retp &&
+		    ret_stack->ret !=
+		    (unsigned long)dereference_kernel_function_descriptor(return_to_handler))
 			return ret_stack->ret;
 	}
 
@@ -394,21 +623,29 @@  unsigned long ftrace_graph_ret_addr(struct task_struct *task, int *idx,
 unsigned long ftrace_graph_ret_addr(struct task_struct *task, int *idx,
 				    unsigned long ret, unsigned long *retp)
 {
-	int task_idx;
+	struct ftrace_ret_stack *ret_stack;
+	int task_idx = task->curr_ret_stack;
+	int i;
 
 	if (ret != (unsigned long)dereference_kernel_function_descriptor(return_to_handler))
 		return ret;
 
-	task_idx = task->curr_ret_stack;
-	RET_STACK_DEC(task_idx);
-
-	if (!task->ret_stack || task_idx < *idx)
+	if (!idx)
 		return ret;
 
-	task_idx -= *idx;
-	RET_STACK_INC(*idx);
+	i = *idx;
+	do {
+		ret_stack = get_ret_stack(task, task_idx, &task_idx);
+		if (ret_stack && ret_stack->ret ==
+		    (unsigned long)dereference_kernel_function_descriptor(return_to_handler))
+			continue;
+		i--;
+	} while (i >= 0 && ret_stack);
+
+	if (ret_stack)
+		return ret_stack->ret;
 
-	return RET_STACK(task, task_idx);
+	return ret;
 }
 #endif /* HAVE_FUNCTION_GRAPH_RET_ADDR_PTR */
 
@@ -514,10 +751,10 @@  ftrace_graph_probe_sched_switch(void *ignore, bool preempt,
 	 */
 	timestamp -= next->ftrace_timestamp;
 
-	for (index = next->curr_ret_stack - FGRAPH_RET_INDEX; index >= 0; ) {
-		ret_stack = RET_STACK(next, index);
-		ret_stack->calltime += timestamp;
-		index -= FGRAPH_RET_INDEX;
+	for (index = next->curr_ret_stack; index > 0; ) {
+		ret_stack = get_ret_stack(next, index, &index);
+		if (ret_stack)
+			ret_stack->calltime += timestamp;
 	}
 }
 
@@ -568,6 +805,8 @@  graph_init_task(struct task_struct *t, unsigned long *ret_stack)
 {
 	atomic_set(&t->trace_overrun, 0);
 	t->ftrace_timestamp = 0;
+	t->curr_ret_stack = 0;
+	t->curr_ret_depth = -1;
 	/* make curr_ret_stack visible before we add the ret_stack */
 	smp_wmb();
 	t->ret_stack = ret_stack;
@@ -689,6 +928,7 @@  int register_ftrace_graph(struct fgraph_ops *gops)
 	fgraph_array[i] = gops;
 	if (i + 1 > fgraph_array_cnt)
 		fgraph_array_cnt = i + 1;
+	gops->idx = i;
 
 	ftrace_graph_active++;