diff mbox series

[v3,bpf-next,4/7] bpf: improve deduction of 64-bit bounds from 32-bit bounds

Message ID 20231019235305.656855-5-andrii@kernel.org (mailing list archive)
State Superseded
Delegated to: BPF
Headers show
Series BPF register bounds logic and testing improvements | expand

Checks

Context Check Description
netdev/series_format success Posting correctly formatted
netdev/tree_selection success Clearly marked for bpf-next, async
netdev/fixes_present success Fixes tag not required for -next series
netdev/header_inline success No static functions without inline keyword in header files
netdev/build_32bit success Errors and warnings before: 1372 this patch: 1372
netdev/cc_maintainers warning 8 maintainers not CCed: song@kernel.org yonghong.song@linux.dev jolsa@kernel.org kpsingh@kernel.org john.fastabend@gmail.com sdf@google.com haoluo@google.com martin.lau@linux.dev
netdev/build_clang success Errors and warnings before: 1386 this patch: 1386
netdev/verify_signedoff success Signed-off-by tag matches author and committer
netdev/deprecated_api success None detected
netdev/check_selftest success No net selftest shell script
netdev/verify_fixes success No Fixes tag
netdev/build_allmodconfig_warn success Errors and warnings before: 1397 this patch: 1397
netdev/checkpatch warning WARNING: line length of 88 exceeds 80 columns WARNING: line length of 89 exceeds 80 columns
netdev/kdoc success Errors and warnings before: 0 this patch: 0
netdev/source_inline success Was 0 now: 0
bpf/vmtest-bpf-next-VM_Test-0 success Logs for ShellCheck
bpf/vmtest-bpf-next-VM_Test-7 success Logs for test_maps on s390x with gcc
bpf/vmtest-bpf-next-VM_Test-3 success Logs for build for x86_64 with gcc
bpf/vmtest-bpf-next-VM_Test-2 success Logs for build for s390x with gcc
bpf/vmtest-bpf-next-VM_Test-4 success Logs for build for x86_64 with llvm-16
bpf/vmtest-bpf-next-VM_Test-1 success Logs for build for aarch64 with gcc
bpf/vmtest-bpf-next-VM_Test-9 success Logs for test_maps on x86_64 with llvm-16
bpf/vmtest-bpf-next-VM_Test-5 success Logs for set-matrix
bpf/vmtest-bpf-next-VM_Test-11 success Logs for test_progs on s390x with gcc
bpf/vmtest-bpf-next-VM_Test-8 success Logs for test_maps on x86_64 with gcc
bpf/vmtest-bpf-next-VM_Test-6 fail Logs for test_maps on aarch64 with gcc
bpf/vmtest-bpf-next-VM_Test-12 success Logs for test_progs on x86_64 with gcc
bpf/vmtest-bpf-next-VM_Test-10 success Logs for test_progs on aarch64 with gcc
bpf/vmtest-bpf-next-VM_Test-13 success Logs for test_progs on x86_64 with llvm-16
bpf/vmtest-bpf-next-VM_Test-14 success Logs for test_progs_no_alu32 on aarch64 with gcc
bpf/vmtest-bpf-next-VM_Test-15 success Logs for test_progs_no_alu32 on s390x with gcc
bpf/vmtest-bpf-next-VM_Test-16 success Logs for test_progs_no_alu32 on x86_64 with gcc
bpf/vmtest-bpf-next-VM_Test-17 success Logs for test_progs_no_alu32 on x86_64 with llvm-16
bpf/vmtest-bpf-next-VM_Test-18 success Logs for test_progs_no_alu32_parallel on aarch64 with gcc
bpf/vmtest-bpf-next-VM_Test-19 success Logs for test_progs_no_alu32_parallel on x86_64 with gcc
bpf/vmtest-bpf-next-VM_Test-20 success Logs for test_progs_no_alu32_parallel on x86_64 with llvm-16
bpf/vmtest-bpf-next-VM_Test-21 success Logs for test_progs_parallel on aarch64 with gcc
bpf/vmtest-bpf-next-VM_Test-22 success Logs for test_progs_parallel on x86_64 with gcc
bpf/vmtest-bpf-next-VM_Test-23 success Logs for test_progs_parallel on x86_64 with llvm-16
bpf/vmtest-bpf-next-VM_Test-24 success Logs for test_verifier on aarch64 with gcc
bpf/vmtest-bpf-next-VM_Test-25 success Logs for test_verifier on s390x with gcc
bpf/vmtest-bpf-next-VM_Test-26 success Logs for test_verifier on x86_64 with gcc
bpf/vmtest-bpf-next-VM_Test-27 success Logs for test_verifier on x86_64 with llvm-16
bpf/vmtest-bpf-next-VM_Test-28 success Logs for veristat
bpf/vmtest-bpf-next-PR fail PR summary

Commit Message

Andrii Nakryiko Oct. 19, 2023, 11:53 p.m. UTC
Add a few interesting cases in which we can tighten 64-bit bounds based
on newly learnt information about 32-bit bounds. E.g., when full u64/s64
registers are used in BPF program, and then eventually compared as
u32/s32. The latter comparison doesn't change the value of full
register, but it does impose new restrictions on possible lower 32 bits
of such full registers. And we can use that to derive additional full
register bounds information.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
---
 kernel/bpf/verifier.c | 47 +++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 47 insertions(+)
diff mbox series

Patch

diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
index d5fd41fb3031..0a968dac3294 100644
--- a/kernel/bpf/verifier.c
+++ b/kernel/bpf/verifier.c
@@ -2242,10 +2242,57 @@  static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
 	}
 }
 
+static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
+{
+	/* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit
+	 * values on both sides of 64-bit range in hope to have tigher range.
+	 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from
+	 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff].
+	 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound
+	 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of
+	 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a
+	 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff].
+	 * We just need to make sure that derived bounds we are intersecting
+	 * with are well-formed ranges in respecitve s64 or u64 domain, just
+	 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments.
+	 */
+	__u64 new_umin, new_umax;
+	__s64 new_smin, new_smax;
+
+	/* u32 -> u64 tightening, it's always well-formed */
+	new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value;
+	new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value;
+	reg->umin_value = max_t(u64, reg->umin_value, new_umin);
+	reg->umax_value = min_t(u64, reg->umax_value, new_umax);
+
+	/* s32 -> u64 tightening, s32 should be a valid u32 range (same sign) */
+	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
+		new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
+		new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
+		reg->umin_value = max_t(u64, reg->umin_value, new_umin);
+		reg->umax_value = min_t(u64, reg->umax_value, new_umax);
+	}
+
+	/* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */
+	new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value;
+	new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value;
+	reg->smin_value = max_t(s64, reg->smin_value, new_smin);
+	reg->smax_value = min_t(s64, reg->smax_value, new_smax);
+
+	/* s32 -> s64 tightening, check that s32 range behaves as u32 range */
+	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
+		new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
+		new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
+		reg->smin_value = max_t(s64, reg->smin_value, new_smin);
+		reg->smax_value = min_t(s64, reg->smax_value, new_smax);
+	}
+}
+
 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
 {
 	__reg32_deduce_bounds(reg);
 	__reg64_deduce_bounds(reg);
+	__reg_deduce_mixed_bounds(reg);
 }
 
 /* Attempts to improve var_off based on unsigned min/max information */