Message ID | 20240205110426.764393-3-aleksander.lobakin@intel.com (mailing list archive) |
---|---|
State | Superseded |
Delegated to: | Netdev Maintainers |
Headers | show |
Series | dma: skip calling no-op sync ops when possible | expand |
On Mon, Feb 05, 2024 at 12:04:21PM +0100, Alexander Lobakin wrote: > Quite often, NIC devices do not need dma_sync operations on x86_64 > at least. This is a fundamental property of the platform being DMA coherent, and devices / platforms not having addressing limitations or other need for bounce buffering (like all those whacky trusted platform schemes). Nothing NIC-specific here. > In case some device doesn't work with the shortcut: > * include <linux/dma-map-ops.h> to the driver source; > * call dma_set_skip_sync(dev, false) at the beginning of the probe > callback. This will disable the shortcut and force DMA syncs. No, drivers should never include dma-map-ops.h. If we have a legit reason for drivers to ever call it it would have to move to dma-mapping.h. But I see now reason why there would be such a need. For now I'd suggest simply dropping this paragraph from the commit message. > if (dma_map_direct(dev, ops)) > + /* > + * dma_skip_sync could've been set to false on first SWIOTLB > + * buffer mapping, but @dma_addr is not necessary an SWIOTLB > + * buffer. In this case, fall back to more granular check. > + */ > return dma_direct_need_sync(dev, dma_addr); > + Nit: with such a long block comment adding curly braces would make the code a bit more readable. > +#ifdef CONFIG_DMA_NEED_SYNC > +void dma_setup_skip_sync(struct device *dev) > +{ > + const struct dma_map_ops *ops = get_dma_ops(dev); > + bool skip; > + > + if (dma_map_direct(dev, ops)) > + /* > + * dma_skip_sync will be set to false on first SWIOTLB buffer > + * mapping, if any. During the device initialization, it's > + * enough to check only for DMA coherence. > + */ > + skip = dev_is_dma_coherent(dev); > + else if (!ops->sync_single_for_device && !ops->sync_single_for_cpu) > + /* > + * Synchronization is not possible when none of DMA sync ops > + * is set. This check precedes the below one as it disables > + * the synchronization unconditionally. > + */ > + skip = true; > + else if (ops->flags & DMA_F_CAN_SKIP_SYNC) > + /* > + * Assume that when ``DMA_F_CAN_SKIP_SYNC`` is advertised, > + * the conditions for synchronizing are the same as with > + * the direct DMA. > + */ > + skip = dev_is_dma_coherent(dev); > + else > + skip = false; > + > + dma_set_skip_sync(dev, skip); I'd just assign directly to dev->dma_skip_sync instead of using a local variable and the dma_set_skip_sync call - we are under ifdef CONFIG_DMA_NEED_SYNC here and thus know is is available. > +static inline void swiotlb_disable_dma_skip_sync(struct device *dev) > +{ > + /* > + * If dma_skip_sync was set, reset it to false on first SWIOTLB buffer > + * mapping/allocation to always sync SWIOTLB buffers. > + */ > + if (unlikely(dma_skip_sync(dev))) > + dma_set_skip_sync(dev, false); > +} Nothing really swiotlb-specific here. Also the naming is a bit odd. Maybe have a dma_set_skip_sync helper without the bool to enable skipping, and a dma_clear_skip_sync that clear the flag. The optimization to first check the flag here could just move into that latter helper.
From: Christoph Hellwig <hch@lst.de> Date: Tue, 13 Feb 2024 07:11:20 +0100 > On Mon, Feb 05, 2024 at 12:04:21PM +0100, Alexander Lobakin wrote: >> Quite often, NIC devices do not need dma_sync operations on x86_64 >> at least. > > This is a fundamental property of the platform being DMA coherent, > and devices / platforms not having addressing limitations or other > need for bounce buffering (like all those whacky trusted platform > schemes). Nothing NIC-specific here. This sentence is from the original Eric's commit message, but I'll reword it :D > >> In case some device doesn't work with the shortcut: >> * include <linux/dma-map-ops.h> to the driver source; >> * call dma_set_skip_sync(dev, false) at the beginning of the probe >> callback. This will disable the shortcut and force DMA syncs. > > No, drivers should never include dma-map-ops.h. If we have a legit > reason for drivers to ever call it it would have to move to > dma-mapping.h. But I see now reason why there would be such a need. > For now I'd suggest simply dropping this paragraph from the commit > message. That's why I didn't move it to dma-mapping.h -- in general, drivers should not call it, so it would be a workaround. I added this paragraph in v2 as a couple folks asked "what if some weird device will break with this optimization". I can drop it anyway. > >> if (dma_map_direct(dev, ops)) >> + /* >> + * dma_skip_sync could've been set to false on first SWIOTLB >> + * buffer mapping, but @dma_addr is not necessary an SWIOTLB >> + * buffer. In this case, fall back to more granular check. >> + */ >> return dma_direct_need_sync(dev, dma_addr); >> + > > Nit: with such a long block comment adding curly braces would make the > code a bit more readable. > >> +#ifdef CONFIG_DMA_NEED_SYNC >> +void dma_setup_skip_sync(struct device *dev) >> +{ >> + const struct dma_map_ops *ops = get_dma_ops(dev); >> + bool skip; >> + >> + if (dma_map_direct(dev, ops)) >> + /* >> + * dma_skip_sync will be set to false on first SWIOTLB buffer >> + * mapping, if any. During the device initialization, it's >> + * enough to check only for DMA coherence. >> + */ >> + skip = dev_is_dma_coherent(dev); >> + else if (!ops->sync_single_for_device && !ops->sync_single_for_cpu) >> + /* >> + * Synchronization is not possible when none of DMA sync ops >> + * is set. This check precedes the below one as it disables >> + * the synchronization unconditionally. >> + */ >> + skip = true; >> + else if (ops->flags & DMA_F_CAN_SKIP_SYNC) >> + /* >> + * Assume that when ``DMA_F_CAN_SKIP_SYNC`` is advertised, >> + * the conditions for synchronizing are the same as with >> + * the direct DMA. >> + */ >> + skip = dev_is_dma_coherent(dev); >> + else >> + skip = false; >> + >> + dma_set_skip_sync(dev, skip); > > I'd just assign directly to dev->dma_skip_sync instead of using a > local variable and the dma_set_skip_sync call - we are under > ifdef CONFIG_DMA_NEED_SYNC here and thus know is is available. > >> +static inline void swiotlb_disable_dma_skip_sync(struct device *dev) >> +{ >> + /* >> + * If dma_skip_sync was set, reset it to false on first SWIOTLB buffer >> + * mapping/allocation to always sync SWIOTLB buffers. >> + */ >> + if (unlikely(dma_skip_sync(dev))) >> + dma_set_skip_sync(dev, false); >> +} > > Nothing really swiotlb-specific here. Also the naming is a bit odd. > Maybe have a dma_set_skip_sync helper without the bool to enable > skipping, and a dma_clear_skip_sync that clear the flag. The optimization > to first check the flag here could just move into that latter > helper. Sounds good! Thanks, Olek
diff --git a/include/linux/device.h b/include/linux/device.h index 97c4b046c09d..f23e6a32bea0 100644 --- a/include/linux/device.h +++ b/include/linux/device.h @@ -686,6 +686,8 @@ struct device_physical_location { * other devices probe successfully. * @dma_coherent: this particular device is dma coherent, even if the * architecture supports non-coherent devices. + * @dma_skip_sync: DMA sync operations can be skipped for coherent non-SWIOTLB + * buffers. * @dma_ops_bypass: If set to %true then the dma_ops are bypassed for the * streaming DMA operations (->map_* / ->unmap_* / ->sync_*), * and optionall (if the coherent mask is large enough) also @@ -800,6 +802,9 @@ struct device { defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) bool dma_coherent:1; #endif +#ifdef CONFIG_DMA_NEED_SYNC + bool dma_skip_sync:1; +#endif #ifdef CONFIG_DMA_OPS_BYPASS bool dma_ops_bypass : 1; #endif diff --git a/include/linux/dma-map-ops.h b/include/linux/dma-map-ops.h index 4abc60f04209..3406fb950980 100644 --- a/include/linux/dma-map-ops.h +++ b/include/linux/dma-map-ops.h @@ -18,8 +18,11 @@ struct iommu_ops; * * DMA_F_PCI_P2PDMA_SUPPORTED: Indicates the dma_map_ops implementation can * handle PCI P2PDMA pages in the map_sg/unmap_sg operation. + * DMA_F_CAN_SKIP_SYNC: DMA sync operations can be skipped if the device is + * coherent and it's not an SWIOTLB buffer. */ #define DMA_F_PCI_P2PDMA_SUPPORTED (1 << 0) +#define DMA_F_CAN_SKIP_SYNC BIT(1) struct dma_map_ops { unsigned int flags; @@ -111,6 +114,23 @@ static inline void set_dma_ops(struct device *dev, } #endif /* CONFIG_DMA_OPS */ +#ifdef CONFIG_DMA_NEED_SYNC +void dma_setup_skip_sync(struct device *dev); + +static inline void dma_set_skip_sync(struct device *dev, bool skip) +{ + dev->dma_skip_sync = skip; +} +#else /* !CONFIG_DMA_NEED_SYNC */ +static inline void dma_setup_skip_sync(struct device *dev) +{ +} + +static inline void dma_set_skip_sync(struct device *dev, bool skip) +{ +} +#endif /* !CONFIG_DMA_NEED_SYNC */ + #ifdef CONFIG_DMA_CMA extern struct cma *dma_contiguous_default_area; diff --git a/include/linux/dma-mapping.h b/include/linux/dma-mapping.h index 569a4da68f56..03711ae6c4db 100644 --- a/include/linux/dma-mapping.h +++ b/include/linux/dma-mapping.h @@ -370,7 +370,11 @@ __dma_sync_single_range_for_device(struct device *dev, dma_addr_t addr, static inline bool dma_skip_sync(const struct device *dev) { - return !IS_ENABLED(CONFIG_DMA_NEED_SYNC); +#ifdef CONFIG_DMA_NEED_SYNC + return dev->dma_skip_sync; +#else + return true; +#endif } static inline bool dma_need_sync(struct device *dev, dma_addr_t dma_addr) diff --git a/drivers/base/dd.c b/drivers/base/dd.c index 85152537dbf1..67ad3e1d51f6 100644 --- a/drivers/base/dd.c +++ b/drivers/base/dd.c @@ -642,6 +642,8 @@ static int really_probe(struct device *dev, struct device_driver *drv) goto pinctrl_bind_failed; } + dma_setup_skip_sync(dev); + ret = driver_sysfs_add(dev); if (ret) { pr_err("%s: driver_sysfs_add(%s) failed\n", diff --git a/kernel/dma/mapping.c b/kernel/dma/mapping.c index 8716e5e8281c..b815e1bbc2d0 100644 --- a/kernel/dma/mapping.c +++ b/kernel/dma/mapping.c @@ -846,8 +846,14 @@ bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr) const struct dma_map_ops *ops = get_dma_ops(dev); if (dma_map_direct(dev, ops)) + /* + * dma_skip_sync could've been set to false on first SWIOTLB + * buffer mapping, but @dma_addr is not necessary an SWIOTLB + * buffer. In this case, fall back to more granular check. + */ return dma_direct_need_sync(dev, dma_addr); - return ops->sync_single_for_cpu || ops->sync_single_for_device; + + return true; } EXPORT_SYMBOL_GPL(__dma_need_sync); @@ -861,3 +867,37 @@ unsigned long dma_get_merge_boundary(struct device *dev) return ops->get_merge_boundary(dev); } EXPORT_SYMBOL_GPL(dma_get_merge_boundary); + +#ifdef CONFIG_DMA_NEED_SYNC +void dma_setup_skip_sync(struct device *dev) +{ + const struct dma_map_ops *ops = get_dma_ops(dev); + bool skip; + + if (dma_map_direct(dev, ops)) + /* + * dma_skip_sync will be set to false on first SWIOTLB buffer + * mapping, if any. During the device initialization, it's + * enough to check only for DMA coherence. + */ + skip = dev_is_dma_coherent(dev); + else if (!ops->sync_single_for_device && !ops->sync_single_for_cpu) + /* + * Synchronization is not possible when none of DMA sync ops + * is set. This check precedes the below one as it disables + * the synchronization unconditionally. + */ + skip = true; + else if (ops->flags & DMA_F_CAN_SKIP_SYNC) + /* + * Assume that when ``DMA_F_CAN_SKIP_SYNC`` is advertised, + * the conditions for synchronizing are the same as with + * the direct DMA. + */ + skip = dev_is_dma_coherent(dev); + else + skip = false; + + dma_set_skip_sync(dev, skip); +} +#endif /* CONFIG_DMA_NEED_SYNC */ diff --git a/kernel/dma/swiotlb.c b/kernel/dma/swiotlb.c index b079a9a8e087..b62ea0a4f106 100644 --- a/kernel/dma/swiotlb.c +++ b/kernel/dma/swiotlb.c @@ -1286,6 +1286,16 @@ static unsigned long mem_used(struct io_tlb_mem *mem) #endif /* CONFIG_DEBUG_FS */ +static inline void swiotlb_disable_dma_skip_sync(struct device *dev) +{ + /* + * If dma_skip_sync was set, reset it to false on first SWIOTLB buffer + * mapping/allocation to always sync SWIOTLB buffers. + */ + if (unlikely(dma_skip_sync(dev))) + dma_set_skip_sync(dev, false); +} + phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr, size_t mapping_size, size_t alloc_size, unsigned int alloc_align_mask, enum dma_data_direction dir, @@ -1323,6 +1333,8 @@ phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr, return (phys_addr_t)DMA_MAPPING_ERROR; } + swiotlb_disable_dma_skip_sync(dev); + /* * Save away the mapping from the original address to the DMA address. * This is needed when we sync the memory. Then we sync the buffer if @@ -1640,6 +1652,8 @@ struct page *swiotlb_alloc(struct device *dev, size_t size) if (index == -1) return NULL; + swiotlb_disable_dma_skip_sync(dev); + tlb_addr = slot_addr(pool->start, index); return pfn_to_page(PFN_DOWN(tlb_addr));