@@ -986,6 +986,11 @@ M: Dmitry Fleytman <dmitry@daynix.com>
S: Maintained
F: hw/net/e1000x*
+e1000e
+M: Dmitry Fleytman <dmitry@daynix.com>
+S: Maintained
+F: hw/net/e1000e*
+
Subsystems
----------
Audio
@@ -18,6 +18,7 @@ CONFIG_MEGASAS_SCSI_PCI=y
CONFIG_MPTSAS_SCSI_PCI=y
CONFIG_RTL8139_PCI=y
CONFIG_E1000_PCI=y
+CONFIG_E1000E_PCI=y
CONFIG_VMXNET3_PCI=y
CONFIG_IDE_CORE=y
CONFIG_IDE_QDEV=y
@@ -7,6 +7,7 @@ common-obj-$(CONFIG_EEPRO100_PCI) += eepro100.o
common-obj-$(CONFIG_PCNET_PCI) += pcnet-pci.o
common-obj-$(CONFIG_PCNET_COMMON) += pcnet.o
common-obj-$(CONFIG_E1000_PCI) += e1000.o e1000x_common.o
+common-obj-$(CONFIG_E1000E_PCI) += e1000e.o e1000e_core.o e1000x_common.o
common-obj-$(CONFIG_RTL8139_PCI) += rtl8139.o
common-obj-$(CONFIG_VMXNET3_PCI) += net_tx_pkt.o net_rx_pkt.o
common-obj-$(CONFIG_VMXNET3_PCI) += vmxnet3.o
@@ -417,6 +417,10 @@
#define E1000_ICR_ASSERTED BIT(31)
#define E1000_EIAC_MASK 0x01F00000
+/* [TR]DBAL and [TR]DLEN masks */
+#define E1000_XDBAL_MASK (~(BIT(4) - 1))
+#define E1000_XDLEN_MASK ((BIT(20) - 1) & (~(BIT(7) - 1)))
+
/* IVAR register parsing helpers */
#define E1000_IVAR_INT_ALLOC_VALID (0x8)
new file mode 100644
@@ -0,0 +1,739 @@
+/*
+* QEMU INTEL 82574 GbE NIC emulation
+*
+* Software developer's manuals:
+* http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
+*
+* Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
+* Developed by Daynix Computing LTD (http://www.daynix.com)
+*
+* Authors:
+* Dmitry Fleytman <dmitry@daynix.com>
+* Leonid Bloch <leonid@daynix.com>
+* Yan Vugenfirer <yan@daynix.com>
+*
+* Based on work done by:
+* Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
+* Copyright (c) 2008 Qumranet
+* Based on work done by:
+* Copyright (c) 2007 Dan Aloni
+* Copyright (c) 2004 Antony T Curtis
+*
+* This library is free software; you can redistribute it and/or
+* modify it under the terms of the GNU Lesser General Public
+* License as published by the Free Software Foundation; either
+* version 2 of the License, or (at your option) any later version.
+*
+* This library is distributed in the hope that it will be useful,
+* but WITHOUT ANY WARRANTY; without even the implied warranty of
+* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+* Lesser General Public License for more details.
+*
+* You should have received a copy of the GNU Lesser General Public
+* License along with this library; if not, see <http://www.gnu.org/licenses/>.
+*/
+
+#include "qemu/osdep.h"
+#include "net/net.h"
+#include "net/tap.h"
+#include "qemu/range.h"
+#include "sysemu/sysemu.h"
+#include "hw/pci/msi.h"
+#include "hw/pci/msix.h"
+
+#include "hw/net/e1000_regs.h"
+
+#include "e1000x_common.h"
+#include "e1000e_core.h"
+
+#include "trace.h"
+
+#define TYPE_E1000E "e1000e"
+#define E1000E(obj) OBJECT_CHECK(E1000EState, (obj), TYPE_E1000E)
+
+typedef struct E1000EState {
+ PCIDevice parent_obj;
+ NICState *nic;
+ NICConf conf;
+
+ MemoryRegion mmio;
+ MemoryRegion flash;
+ MemoryRegion io;
+ MemoryRegion msix;
+
+ uint32_t ioaddr;
+
+ uint16_t subsys_ven;
+ uint16_t subsys;
+
+ uint16_t subsys_ven_used;
+ uint16_t subsys_used;
+
+ uint32_t intr_state;
+ bool disable_vnet;
+
+ E1000ECore core;
+
+} E1000EState;
+
+#define E1000E_MMIO_IDX 0
+#define E1000E_FLASH_IDX 1
+#define E1000E_IO_IDX 2
+#define E1000E_MSIX_IDX 3
+
+#define E1000E_MMIO_SIZE (128 * 1024)
+#define E1000E_FLASH_SIZE (128 * 1024)
+#define E1000E_IO_SIZE (32)
+#define E1000E_MSIX_SIZE (16 * 1024)
+
+#define E1000E_MSIX_TABLE (0x0000)
+#define E1000E_MSIX_PBA (0x2000)
+
+#define E1000E_USE_MSI BIT(0)
+#define E1000E_USE_MSIX BIT(1)
+
+static uint64_t
+e1000e_mmio_read(void *opaque, hwaddr addr, unsigned size)
+{
+ E1000EState *s = opaque;
+ return e1000e_core_read(&s->core, addr, size);
+}
+
+static void
+e1000e_mmio_write(void *opaque, hwaddr addr,
+ uint64_t val, unsigned size)
+{
+ E1000EState *s = opaque;
+ e1000e_core_write(&s->core, addr, val, size);
+}
+
+static bool
+e1000e_io_get_reg_index(E1000EState *s, uint32_t *idx)
+{
+ if (s->ioaddr < 0x1FFFF) {
+ *idx = s->ioaddr;
+ return true;
+ }
+
+ if (s->ioaddr < 0x7FFFF) {
+ trace_e1000e_wrn_io_addr_undefined(s->ioaddr);
+ return false;
+ }
+
+ if (s->ioaddr < 0xFFFFF) {
+ trace_e1000e_wrn_io_addr_flash(s->ioaddr);
+ return false;
+ }
+
+ trace_e1000e_wrn_io_addr_unknown(s->ioaddr);
+ return false;
+}
+
+static uint64_t
+e1000e_io_read(void *opaque, hwaddr addr, unsigned size)
+{
+ E1000EState *s = opaque;
+ uint32_t idx;
+ uint64_t val;
+
+ switch (addr) {
+ case E1000_IOADDR:
+ trace_e1000e_io_read_addr(s->ioaddr);
+ return s->ioaddr;
+ case E1000_IODATA:
+ if (e1000e_io_get_reg_index(s, &idx)) {
+ val = e1000e_core_read(&s->core, idx, sizeof(val));
+ trace_e1000e_io_read_data(idx, val);
+ return val;
+ }
+ return 0;
+ default:
+ trace_e1000e_wrn_io_read_unknown(addr);
+ return 0;
+ }
+}
+
+static void
+e1000e_io_write(void *opaque, hwaddr addr,
+ uint64_t val, unsigned size)
+{
+ E1000EState *s = opaque;
+ uint32_t idx;
+
+ switch (addr) {
+ case E1000_IOADDR:
+ trace_e1000e_io_write_addr(val);
+ s->ioaddr = (uint32_t) val;
+ return;
+ case E1000_IODATA:
+ if (e1000e_io_get_reg_index(s, &idx)) {
+ trace_e1000e_io_write_data(idx, val);
+ e1000e_core_write(&s->core, idx, val, sizeof(val));
+ }
+ return;
+ default:
+ trace_e1000e_wrn_io_write_unknown(addr);
+ return;
+ }
+}
+
+static const MemoryRegionOps mmio_ops = {
+ .read = e1000e_mmio_read,
+ .write = e1000e_mmio_write,
+ .endianness = DEVICE_LITTLE_ENDIAN,
+ .impl = {
+ .min_access_size = 4,
+ .max_access_size = 4,
+ },
+};
+
+static const MemoryRegionOps io_ops = {
+ .read = e1000e_io_read,
+ .write = e1000e_io_write,
+ .endianness = DEVICE_LITTLE_ENDIAN,
+ .impl = {
+ .min_access_size = 4,
+ .max_access_size = 4,
+ },
+};
+
+static int
+e1000e_nc_can_receive(NetClientState *nc)
+{
+ E1000EState *s = qemu_get_nic_opaque(nc);
+ return e1000e_can_receive(&s->core);
+}
+
+static ssize_t
+e1000e_nc_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt)
+{
+ E1000EState *s = qemu_get_nic_opaque(nc);
+ return e1000e_receive_iov(&s->core, iov, iovcnt);
+}
+
+static ssize_t
+e1000e_nc_receive(NetClientState *nc, const uint8_t *buf, size_t size)
+{
+ E1000EState *s = qemu_get_nic_opaque(nc);
+ return e1000e_receive(&s->core, buf, size);
+}
+
+static void
+e1000e_set_link_status(NetClientState *nc)
+{
+ E1000EState *s = qemu_get_nic_opaque(nc);
+ e1000e_core_set_link_status(&s->core);
+}
+
+static NetClientInfo net_e1000e_info = {
+ .type = NET_CLIENT_OPTIONS_KIND_NIC,
+ .size = sizeof(NICState),
+ .can_receive = e1000e_nc_can_receive,
+ .receive = e1000e_nc_receive,
+ .receive_iov = e1000e_nc_receive_iov,
+ .link_status_changed = e1000e_set_link_status,
+};
+
+/*
+* EEPROM (NVM) contents documented in Table 36, section 6.1
+* and generally 6.1.2 Software accessed words.
+*/
+static const uint16_t e1000e_eeprom_template[64] = {
+ /* Address | Compat. | ImVer | Compat. */
+ 0x0000, 0x0000, 0x0000, 0x0420, 0xf746, 0x2010, 0xffff, 0xffff,
+ /* PBA |ICtrl1 | SSID | SVID | DevID |-------|ICtrl2 */
+ 0x0000, 0x0000, 0x026b, 0x0000, 0x8086, 0x0000, 0x0000, 0x8058,
+ /* NVM words 1,2,3 |-------------------------------|PCI-EID*/
+ 0x0000, 0x2001, 0x7e7c, 0xffff, 0x1000, 0x00c8, 0x0000, 0x2704,
+ /* PCIe Init. Conf 1,2,3 |PCICtrl|PHY|LD1|-------| RevID | LD0,2 */
+ 0x6cc9, 0x3150, 0x070e, 0x460b, 0x2d84, 0x0100, 0xf000, 0x0706,
+ /* FLPAR |FLANADD|LAN-PWR|FlVndr |ICtrl3 |APTSMBA|APTRxEP|APTSMBC*/
+ 0x6000, 0x0080, 0x0f04, 0x7fff, 0x4f01, 0xc600, 0x0000, 0x20ff,
+ /* APTIF | APTMC |APTuCP |LSWFWID|MSWFWID|NC-SIMC|NC-SIC | VPDP */
+ 0x0028, 0x0003, 0x0000, 0x0000, 0x0000, 0x0003, 0x0000, 0xffff,
+ /* SW Section */
+ 0x0100, 0xc000, 0x121c, 0xc007, 0xffff, 0xffff, 0xffff, 0xffff,
+ /* SW Section |CHKSUM */
+ 0xffff, 0xffff, 0xffff, 0xffff, 0x0000, 0x0120, 0xffff, 0x0000,
+};
+
+static void e1000e_core_realize(E1000EState *s)
+{
+ s->core.owner = &s->parent_obj;
+ s->core.owner_nic = s->nic;
+}
+
+static void
+e1000e_init_msi(E1000EState *s)
+{
+ int res;
+
+ res = msi_init(PCI_DEVICE(s),
+ 0xD0, /* MSI capability offset */
+ 1, /* MAC MSI interrupts */
+ true, /* 64-bit message addresses supported */
+ false); /* Per vector mask supported */
+
+ if (res > 0) {
+ s->intr_state |= E1000E_USE_MSI;
+ } else {
+ trace_e1000e_msi_init_fail(res);
+ }
+}
+
+static void
+e1000e_cleanup_msi(E1000EState *s)
+{
+ if (s->intr_state & E1000E_USE_MSI) {
+ msi_uninit(PCI_DEVICE(s));
+ }
+}
+
+static void
+e1000e_unuse_msix_vectors(E1000EState *s, int num_vectors)
+{
+ int i;
+ for (i = 0; i < num_vectors; i++) {
+ msix_vector_unuse(PCI_DEVICE(s), i);
+ }
+}
+
+static bool
+e1000e_use_msix_vectors(E1000EState *s, int num_vectors)
+{
+ int i;
+ for (i = 0; i < num_vectors; i++) {
+ int res = msix_vector_use(PCI_DEVICE(s), i);
+ if (res < 0) {
+ trace_e1000e_msix_use_vector_fail(i, res);
+ e1000e_unuse_msix_vectors(s, i);
+ return false;
+ }
+ }
+ return true;
+}
+
+static void
+e1000e_init_msix(E1000EState *s)
+{
+ PCIDevice *d = PCI_DEVICE(s);
+ int res = msix_init(PCI_DEVICE(s), E1000E_MSIX_VEC_NUM,
+ &s->msix,
+ E1000E_MSIX_IDX, E1000E_MSIX_TABLE,
+ &s->msix,
+ E1000E_MSIX_IDX, E1000E_MSIX_PBA,
+ 0xA0);
+
+ if (res < 0) {
+ trace_e1000e_msix_init_fail(res);
+ } else {
+ if (!e1000e_use_msix_vectors(s, E1000E_MSIX_VEC_NUM)) {
+ msix_uninit(d, &s->msix, &s->msix);
+ } else {
+ s->intr_state |= E1000E_USE_MSIX;
+ }
+ }
+}
+
+static void
+e1000e_cleanup_msix(E1000EState *s)
+{
+ if (s->intr_state & E1000E_USE_MSIX) {
+ e1000e_unuse_msix_vectors(s, E1000E_MSIX_VEC_NUM);
+ msix_uninit(PCI_DEVICE(s), &s->msix, &s->msix);
+ }
+}
+
+static void
+e1000e_init_net_peer(E1000EState *s, PCIDevice *pci_dev, uint8_t *macaddr)
+{
+ DeviceState *dev = DEVICE(pci_dev);
+ NetClientState *nc;
+ int i;
+
+ s->nic = qemu_new_nic(&net_e1000e_info, &s->conf,
+ object_get_typename(OBJECT(s)), dev->id, s);
+
+ s->core.max_queue_num = s->conf.peers.queues - 1;
+
+ trace_e1000e_mac_set_permanent(MAC_ARG(macaddr));
+ memcpy(s->core.permanent_mac, macaddr, sizeof(s->core.permanent_mac));
+
+ qemu_format_nic_info_str(qemu_get_queue(s->nic), macaddr);
+
+ /* Setup virtio headers */
+ if (s->disable_vnet) {
+ s->core.has_vnet = false;
+ trace_e1000e_cfg_support_virtio(false);
+ return;
+ } else {
+ s->core.has_vnet = true;
+ }
+
+ for (i = 0; i < s->conf.peers.queues; i++) {
+ nc = qemu_get_subqueue(s->nic, i);
+ if (!nc->peer || !qemu_has_vnet_hdr(nc->peer)) {
+ s->core.has_vnet = false;
+ trace_e1000e_cfg_support_virtio(false);
+ return;
+ }
+ }
+
+ trace_e1000e_cfg_support_virtio(true);
+
+ for (i = 0; i < s->conf.peers.queues; i++) {
+ nc = qemu_get_subqueue(s->nic, i);
+ qemu_set_vnet_hdr_len(nc->peer, sizeof(struct virtio_net_hdr));
+ qemu_using_vnet_hdr(nc->peer, true);
+ }
+}
+
+static inline uint64_t
+e1000e_gen_dsn(uint8_t *mac)
+{
+ return (uint64_t)(mac[5]) |
+ (uint64_t)(mac[4]) << 8 |
+ (uint64_t)(mac[3]) << 16 |
+ (uint64_t)(0x00FF) << 24 |
+ (uint64_t)(0x00FF) << 32 |
+ (uint64_t)(mac[2]) << 40 |
+ (uint64_t)(mac[1]) << 48 |
+ (uint64_t)(mac[0]) << 56;
+}
+
+static int
+e1000e_add_pm_capability(PCIDevice *pdev, uint8_t offset, uint16_t pmc)
+{
+ int ret = pci_add_capability(pdev, PCI_CAP_ID_PM, offset, PCI_PM_SIZEOF);
+
+ if (ret >= 0) {
+ pci_set_word(pdev->config + offset + PCI_PM_PMC,
+ PCI_PM_CAP_VER_1_1 |
+ pmc);
+
+ pci_set_word(pdev->wmask + offset + PCI_PM_CTRL,
+ PCI_PM_CTRL_STATE_MASK |
+ PCI_PM_CTRL_PME_ENABLE |
+ PCI_PM_CTRL_DATA_SEL_MASK);
+
+ pci_set_word(pdev->w1cmask + offset + PCI_PM_CTRL,
+ PCI_PM_CTRL_PME_STATUS);
+ }
+
+ return ret;
+}
+
+static void e1000e_write_config(PCIDevice *pci_dev, uint32_t address,
+ uint32_t val, int len)
+{
+ E1000EState *s = E1000E(pci_dev);
+
+ pci_default_write_config(pci_dev, address, val, len);
+
+ if (range_covers_byte(address, len, PCI_COMMAND) &&
+ (pci_dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) {
+ qemu_flush_queued_packets(qemu_get_queue(s->nic));
+ }
+}
+
+static void e1000e_pci_realize(PCIDevice *pci_dev, Error **errp)
+{
+ static const uint16_t e1000e_pmrb_offset = 0x0C8;
+ static const uint16_t e1000e_pcie_offset = 0x0E0;
+ static const uint16_t e1000e_aer_offset = 0x100;
+ static const uint16_t e1000e_dsn_offset = 0x140;
+ E1000EState *s = E1000E(pci_dev);
+ uint8_t *macaddr;
+
+ trace_e1000e_cb_pci_realize();
+
+ pci_dev->config_write = e1000e_write_config;
+
+ pci_dev->config[PCI_CACHE_LINE_SIZE] = 0x10;
+ pci_dev->config[PCI_INTERRUPT_PIN] = 1;
+
+ pci_set_word(pci_dev->config + PCI_SUBSYSTEM_VENDOR_ID, s->subsys_ven);
+ pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID, s->subsys);
+
+ s->subsys_ven_used = s->subsys_ven;
+ s->subsys_used = s->subsys;
+
+ /* Define IO/MMIO regions */
+ memory_region_init_io(&s->mmio, OBJECT(s), &mmio_ops, s,
+ "e1000e-mmio", E1000E_MMIO_SIZE);
+ pci_register_bar(pci_dev, E1000E_MMIO_IDX,
+ PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mmio);
+
+ /*
+ * We provide a dummy implementation for the flash BAR
+ * for drivers that may theoretically probe for its presence.
+ */
+ memory_region_init(&s->flash, OBJECT(s),
+ "e1000e-flash", E1000E_FLASH_SIZE);
+ pci_register_bar(pci_dev, E1000E_FLASH_IDX,
+ PCI_BASE_ADDRESS_SPACE_MEMORY, &s->flash);
+
+ memory_region_init_io(&s->io, OBJECT(s), &io_ops, s,
+ "e1000e-io", E1000E_IO_SIZE);
+ pci_register_bar(pci_dev, E1000E_IO_IDX,
+ PCI_BASE_ADDRESS_SPACE_IO, &s->io);
+
+ memory_region_init(&s->msix, OBJECT(s), "e1000e-msix",
+ E1000E_MSIX_SIZE);
+ pci_register_bar(pci_dev, E1000E_MSIX_IDX,
+ PCI_BASE_ADDRESS_SPACE_MEMORY, &s->msix);
+
+ /* Create networking backend */
+ qemu_macaddr_default_if_unset(&s->conf.macaddr);
+ macaddr = s->conf.macaddr.a;
+
+ e1000e_init_msix(s);
+
+ if (pcie_endpoint_cap_v1_init(pci_dev, e1000e_pcie_offset) < 0) {
+ hw_error("Failed to initialize PCIe capability");
+ }
+
+ e1000e_init_msi(s);
+
+ if (e1000e_add_pm_capability(pci_dev, e1000e_pmrb_offset,
+ PCI_PM_CAP_DSI) < 0) {
+ hw_error("Failed to initialize PM capability");
+ }
+
+ if (pcie_aer_init(pci_dev, e1000e_aer_offset, PCI_ERR_SIZEOF) < 0) {
+ hw_error("Failed to initialize AER capability");
+ }
+
+ pcie_dev_ser_num_init(pci_dev, e1000e_dsn_offset,
+ e1000e_gen_dsn(macaddr));
+
+ e1000e_init_net_peer(s, pci_dev, macaddr);
+
+ /* Initialize core */
+ e1000e_core_realize(s);
+
+ e1000e_core_pci_realize(&s->core,
+ e1000e_eeprom_template,
+ sizeof(e1000e_eeprom_template),
+ macaddr);
+}
+
+static void e1000e_pci_uninit(PCIDevice *pci_dev)
+{
+ E1000EState *s = E1000E(pci_dev);
+
+ trace_e1000e_cb_pci_uninit();
+
+ e1000e_core_pci_uninit(&s->core);
+
+ pcie_aer_exit(pci_dev);
+ pcie_cap_exit(pci_dev);
+
+ qemu_del_nic(s->nic);
+
+ e1000e_cleanup_msix(s);
+ e1000e_cleanup_msi(s);
+}
+
+static void e1000e_qdev_reset(DeviceState *dev)
+{
+ E1000EState *s = E1000E(dev);
+
+ trace_e1000e_cb_qdev_reset();
+
+ e1000e_core_reset(&s->core);
+}
+
+static void e1000e_pre_save(void *opaque)
+{
+ E1000EState *s = opaque;
+
+ trace_e1000e_cb_pre_save();
+
+ e1000e_core_pre_save(&s->core);
+}
+
+static int e1000e_post_load(void *opaque, int version_id)
+{
+ E1000EState *s = opaque;
+
+ trace_e1000e_cb_post_load();
+
+ if ((s->subsys != s->subsys_used) ||
+ (s->subsys_ven != s->subsys_ven_used)) {
+ fprintf(stderr,
+ "ERROR: Cannot migrate while device properties "
+ "(subsys/subsys_ven) differ");
+ return -1;
+ }
+
+ return e1000e_core_post_load(&s->core);
+}
+
+static const VMStateDescription e1000e_vmstate_tx = {
+ .name = "e1000e-tx",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .fields = (VMStateField[]) {
+ VMSTATE_UINT8(props.sum_needed, struct e1000e_tx),
+ VMSTATE_UINT8(props.ipcss, struct e1000e_tx),
+ VMSTATE_UINT8(props.ipcso, struct e1000e_tx),
+ VMSTATE_UINT16(props.ipcse, struct e1000e_tx),
+ VMSTATE_UINT8(props.tucss, struct e1000e_tx),
+ VMSTATE_UINT8(props.tucso, struct e1000e_tx),
+ VMSTATE_UINT16(props.tucse, struct e1000e_tx),
+ VMSTATE_UINT8(props.hdr_len, struct e1000e_tx),
+ VMSTATE_UINT16(props.mss, struct e1000e_tx),
+ VMSTATE_UINT32(props.paylen, struct e1000e_tx),
+ VMSTATE_INT8(props.ip, struct e1000e_tx),
+ VMSTATE_INT8(props.tcp, struct e1000e_tx),
+ VMSTATE_BOOL(props.tse, struct e1000e_tx),
+ VMSTATE_BOOL(props.cptse, struct e1000e_tx),
+ VMSTATE_BOOL(skip_cp, struct e1000e_tx),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+static const VMStateDescription e1000e_vmstate_intr_timer = {
+ .name = "e1000e-intr-timer",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .fields = (VMStateField[]) {
+ VMSTATE_TIMER_PTR(timer, E1000IntrDelayTimer),
+ VMSTATE_BOOL(running, E1000IntrDelayTimer),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+#define VMSTATE_E1000E_INTR_DELAY_TIMER(_f, _s) \
+ VMSTATE_STRUCT(_f, _s, 0, \
+ e1000e_vmstate_intr_timer, E1000IntrDelayTimer)
+
+#define VMSTATE_E1000E_INTR_DELAY_TIMER_ARRAY(_f, _s, _num) \
+ VMSTATE_STRUCT_ARRAY(_f, _s, _num, 0, \
+ e1000e_vmstate_intr_timer, E1000IntrDelayTimer)
+
+static const VMStateDescription e1000e_vmstate = {
+ .name = "e1000e",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .pre_save = e1000e_pre_save,
+ .post_load = e1000e_post_load,
+ .fields = (VMStateField[]) {
+ VMSTATE_PCIE_DEVICE(parent_obj, E1000EState),
+ VMSTATE_MSIX(parent_obj, E1000EState),
+
+ VMSTATE_UINT32(ioaddr, E1000EState),
+ VMSTATE_UINT32(intr_state, E1000EState),
+ VMSTATE_UINT32(core.rxbuf_min_shift, E1000EState),
+ VMSTATE_UINT8(core.rx_desc_len, E1000EState),
+ VMSTATE_UINT32_ARRAY(core.rxbuf_sizes, E1000EState,
+ E1000_PSRCTL_BUFFS_PER_DESC),
+ VMSTATE_UINT32(core.rx_desc_buf_size, E1000EState),
+ VMSTATE_UINT16_ARRAY(core.eeprom, E1000EState, E1000E_EEPROM_SIZE),
+ VMSTATE_UINT16_2DARRAY(core.phy, E1000EState,
+ E1000E_PHY_PAGES, E1000E_PHY_PAGE_SIZE),
+ VMSTATE_UINT32_ARRAY(core.mac, E1000EState, E1000E_MAC_SIZE),
+ VMSTATE_UINT8_ARRAY(core.permanent_mac, E1000EState, ETH_ALEN),
+
+ VMSTATE_UINT32(core.delayed_causes, E1000EState),
+
+ VMSTATE_UINT16(subsys, E1000EState),
+ VMSTATE_UINT16(subsys_ven, E1000EState),
+
+ VMSTATE_E1000E_INTR_DELAY_TIMER(core.rdtr, E1000EState),
+ VMSTATE_E1000E_INTR_DELAY_TIMER(core.radv, E1000EState),
+ VMSTATE_E1000E_INTR_DELAY_TIMER(core.raid, E1000EState),
+ VMSTATE_E1000E_INTR_DELAY_TIMER(core.tadv, E1000EState),
+ VMSTATE_E1000E_INTR_DELAY_TIMER(core.tidv, E1000EState),
+
+ VMSTATE_E1000E_INTR_DELAY_TIMER(core.itr, E1000EState),
+ VMSTATE_BOOL(core.itr_intr_pending, E1000EState),
+
+ VMSTATE_E1000E_INTR_DELAY_TIMER_ARRAY(core.eitr, E1000EState,
+ E1000E_MSIX_VEC_NUM),
+ VMSTATE_BOOL_ARRAY(core.eitr_intr_pending, E1000EState,
+ E1000E_MSIX_VEC_NUM),
+
+ VMSTATE_UINT32(core.itr_guest_value, E1000EState),
+ VMSTATE_UINT32_ARRAY(core.eitr_guest_value, E1000EState,
+ E1000E_MSIX_VEC_NUM),
+
+ VMSTATE_UINT16(core.vet, E1000EState),
+
+ VMSTATE_STRUCT_ARRAY(core.tx, E1000EState, E1000E_NUM_QUEUES, 0,
+ e1000e_vmstate_tx, struct e1000e_tx),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+static PropertyInfo e1000e_prop_disable_vnet,
+ e1000e_prop_subsys_ven,
+ e1000e_prop_subsys;
+
+static Property e1000e_properties[] = {
+ DEFINE_NIC_PROPERTIES(E1000EState, conf),
+ DEFINE_PROP_DEFAULT("disable_vnet_hdr", E1000EState, disable_vnet, false,
+ e1000e_prop_disable_vnet, bool),
+ DEFINE_PROP_DEFAULT("subsys_ven", E1000EState, subsys_ven,
+ PCI_VENDOR_ID_INTEL,
+ e1000e_prop_subsys_ven, uint16_t),
+ DEFINE_PROP_DEFAULT("subsys", E1000EState, subsys, 0,
+ e1000e_prop_subsys, uint16_t),
+ DEFINE_PROP_END_OF_LIST(),
+};
+
+static void e1000e_class_init(ObjectClass *class, void *data)
+{
+ DeviceClass *dc = DEVICE_CLASS(class);
+ PCIDeviceClass *c = PCI_DEVICE_CLASS(class);
+
+ c->realize = e1000e_pci_realize;
+ c->exit = e1000e_pci_uninit;
+ c->vendor_id = PCI_VENDOR_ID_INTEL;
+ c->device_id = E1000_DEV_ID_82574L;
+ c->revision = 0;
+ c->class_id = PCI_CLASS_NETWORK_ETHERNET;
+ c->is_express = 1;
+
+ dc->desc = "Intel 82574L GbE Controller";
+ dc->reset = e1000e_qdev_reset;
+ dc->vmsd = &e1000e_vmstate;
+ dc->props = e1000e_properties;
+
+ e1000e_prop_disable_vnet = qdev_prop_uint8;
+ e1000e_prop_disable_vnet.description = "Do not use virtio headers, "
+ "perform SW offloads emulation "
+ "instead";
+
+ e1000e_prop_subsys_ven = qdev_prop_uint16;
+ e1000e_prop_subsys_ven.description = "PCI device Subsystem Vendor ID";
+
+ e1000e_prop_subsys = qdev_prop_uint16;
+ e1000e_prop_subsys.description = "PCI device Subsystem ID";
+
+ set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
+}
+
+static void e1000e_instance_init(Object *obj)
+{
+ E1000EState *s = E1000E(obj);
+ device_add_bootindex_property(obj, &s->conf.bootindex,
+ "bootindex", "/ethernet-phy@0",
+ DEVICE(obj), NULL);
+}
+
+static const TypeInfo e1000e_info = {
+ .name = TYPE_E1000E,
+ .parent = TYPE_PCI_DEVICE,
+ .instance_size = sizeof(E1000EState),
+ .class_init = e1000e_class_init,
+ .instance_init = e1000e_instance_init,
+};
+
+static void e1000e_register_types(void)
+{
+ type_register_static(&e1000e_info);
+}
+
+type_init(e1000e_register_types)
new file mode 100644
@@ -0,0 +1,3476 @@
+/*
+* Core code for QEMU e1000e emulation
+*
+* Software developer's manuals:
+* http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
+*
+* Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
+* Developed by Daynix Computing LTD (http://www.daynix.com)
+*
+* Authors:
+* Dmitry Fleytman <dmitry@daynix.com>
+* Leonid Bloch <leonid@daynix.com>
+* Yan Vugenfirer <yan@daynix.com>
+*
+* Based on work done by:
+* Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
+* Copyright (c) 2008 Qumranet
+* Based on work done by:
+* Copyright (c) 2007 Dan Aloni
+* Copyright (c) 2004 Antony T Curtis
+*
+* This library is free software; you can redistribute it and/or
+* modify it under the terms of the GNU Lesser General Public
+* License as published by the Free Software Foundation; either
+* version 2 of the License, or (at your option) any later version.
+*
+* This library is distributed in the hope that it will be useful,
+* but WITHOUT ANY WARRANTY; without even the implied warranty of
+* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+* Lesser General Public License for more details.
+*
+* You should have received a copy of the GNU Lesser General Public
+* License along with this library; if not, see <http://www.gnu.org/licenses/>.
+*/
+
+#include "qemu/osdep.h"
+#include "sysemu/sysemu.h"
+#include "net/net.h"
+#include "net/tap.h"
+#include "hw/pci/msi.h"
+#include "hw/pci/msix.h"
+
+#include "net_tx_pkt.h"
+#include "net_rx_pkt.h"
+
+#include "e1000x_common.h"
+#include "e1000e_core.h"
+
+#include "trace.h"
+
+#define E1000E_MIN_XITR (500) /* No more then 7813 interrupts per
+ second according to spec 10.2.4.2 */
+#define E1000E_MAX_TX_FRAGS (64)
+
+static void
+e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
+
+static inline void
+e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
+{
+ if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
+ trace_e1000e_wrn_no_ts_support();
+ }
+}
+
+static inline void
+e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
+{
+ if (cmd_and_length & E1000_TXD_CMD_SNAP) {
+ trace_e1000e_wrn_no_snap_support();
+ }
+}
+
+static inline void
+e1000e_raise_legacy_irq(E1000ECore *core)
+{
+ trace_e1000e_irq_legacy_notify(true);
+ e1000x_inc_reg_if_not_full(core->mac, IAC);
+ pci_set_irq(core->owner, 1);
+}
+
+static inline void
+e1000e_lower_legacy_irq(E1000ECore *core)
+{
+ trace_e1000e_irq_legacy_notify(false);
+ pci_set_irq(core->owner, 0);
+}
+
+static inline void
+e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
+{
+ int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
+ timer->delay_resolution_ns;
+
+ trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
+
+ timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
+
+ timer->running = true;
+}
+
+static void
+e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer)
+{
+ if (timer->running) {
+ e1000e_intrmgr_rearm_timer(timer);
+ }
+}
+
+static void
+e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer)
+{
+ if (timer->running) {
+ timer_del(timer->timer);
+ }
+}
+
+static inline void
+e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
+{
+ if (timer->running) {
+ timer_del(timer->timer);
+ timer->running = false;
+ }
+}
+
+static inline void
+e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
+{
+ trace_e1000e_irq_fire_delayed_interrupts();
+ e1000e_set_interrupt_cause(core, 0);
+}
+
+static void
+e1000e_intrmgr_on_timer(void *opaque)
+{
+ E1000IntrDelayTimer *timer = opaque;
+
+ trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
+
+ timer->running = false;
+ e1000e_intrmgr_fire_delayed_interrupts(timer->core);
+}
+
+static void
+e1000e_intrmgr_on_throttling_timer(void *opaque)
+{
+ E1000IntrDelayTimer *timer = opaque;
+
+ assert(!msix_enabled(timer->core->owner));
+
+ timer->running = false;
+
+ if (!timer->core->itr_intr_pending) {
+ trace_e1000e_irq_throttling_no_pending_interrupts();
+ return;
+ }
+
+ if (msi_enabled(timer->core->owner)) {
+ trace_e1000e_irq_msi_notify_postponed();
+ e1000e_set_interrupt_cause(timer->core, 0);
+ } else {
+ trace_e1000e_irq_legacy_notify_postponed();
+ e1000e_set_interrupt_cause(timer->core, 0);
+ }
+}
+
+static void
+e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
+{
+ E1000IntrDelayTimer *timer = opaque;
+ int idx = timer - &timer->core->eitr[0];
+
+ assert(msix_enabled(timer->core->owner));
+
+ timer->running = false;
+
+ if (!timer->core->eitr_intr_pending[idx]) {
+ trace_e1000e_irq_throttling_no_pending_vec(idx);
+ return;
+ }
+
+ trace_e1000e_irq_msix_notify_postponed_vec(idx);
+ msix_notify(timer->core->owner, idx);
+}
+
+static void
+e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
+{
+ int i;
+
+ core->radv.delay_reg = RADV;
+ core->rdtr.delay_reg = RDTR;
+ core->raid.delay_reg = RAID;
+ core->tadv.delay_reg = TADV;
+ core->tidv.delay_reg = TIDV;
+
+ core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
+ core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
+ core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
+ core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
+ core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
+
+ core->radv.core = core;
+ core->rdtr.core = core;
+ core->raid.core = core;
+ core->tadv.core = core;
+ core->tidv.core = core;
+
+ core->itr.core = core;
+ core->itr.delay_reg = ITR;
+ core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
+
+ for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
+ core->eitr[i].core = core;
+ core->eitr[i].delay_reg = EITR + i;
+ core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
+ }
+
+ if (!create) {
+ return;
+ }
+
+ core->radv.timer =
+ timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv);
+ core->rdtr.timer =
+ timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr);
+ core->raid.timer =
+ timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid);
+
+ core->tadv.timer =
+ timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv);
+ core->tidv.timer =
+ timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv);
+
+ core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
+ e1000e_intrmgr_on_throttling_timer,
+ &core->itr);
+
+ for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
+ core->eitr[i].timer =
+ timer_new_ns(QEMU_CLOCK_VIRTUAL,
+ e1000e_intrmgr_on_msix_throttling_timer,
+ &core->eitr[i]);
+ }
+}
+
+static inline void
+e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
+{
+ e1000e_intrmgr_stop_timer(&core->radv);
+ e1000e_intrmgr_stop_timer(&core->rdtr);
+ e1000e_intrmgr_stop_timer(&core->raid);
+ e1000e_intrmgr_stop_timer(&core->tidv);
+ e1000e_intrmgr_stop_timer(&core->tadv);
+}
+
+static bool
+e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
+{
+ uint32_t delayable_causes;
+ uint32_t rdtr = core->mac[RDTR];
+ uint32_t radv = core->mac[RADV];
+ uint32_t raid = core->mac[RAID];
+
+ if (msix_enabled(core->owner)) {
+ return false;
+ }
+
+ delayable_causes = E1000_ICR_RXQ0 |
+ E1000_ICR_RXQ1 |
+ E1000_ICR_RXT0;
+
+ if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
+ delayable_causes |= E1000_ICR_ACK;
+ }
+
+ /* Clean up all causes that may be delayed */
+ core->delayed_causes |= *causes & delayable_causes;
+ *causes &= ~delayable_causes;
+
+ /* Check if delayed RX interrupts disabled by client
+ or if there are causes that cannot be delayed */
+ if ((rdtr == 0) || (causes != 0)) {
+ return false;
+ }
+
+ /* Check if delayed RX ACK interrupts disabled by client
+ and there is an ACK packet received */
+ if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
+ return false;
+ }
+
+ /* All causes delayed */
+ e1000e_intrmgr_rearm_timer(&core->rdtr);
+
+ if (!core->radv.running && (radv != 0)) {
+ e1000e_intrmgr_rearm_timer(&core->radv);
+ }
+
+ if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
+ e1000e_intrmgr_rearm_timer(&core->raid);
+ }
+
+ return true;
+}
+
+static bool
+e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
+{
+ static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
+ E1000_ICR_TXQ1 |
+ E1000_ICR_TXQE |
+ E1000_ICR_TXDW;
+
+ if (msix_enabled(core->owner)) {
+ return false;
+ }
+
+ /* Clean up all causes that may be delayed */
+ core->delayed_causes |= *causes & delayable_causes;
+ *causes &= ~delayable_causes;
+
+ /* If there are causes that cannot be delayed */
+ if (causes != 0) {
+ return false;
+ }
+
+ /* All causes delayed */
+ e1000e_intrmgr_rearm_timer(&core->tidv);
+
+ if (!core->tadv.running && (core->mac[TADV] != 0)) {
+ e1000e_intrmgr_rearm_timer(&core->tadv);
+ }
+
+ return true;
+}
+
+static uint32_t
+e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
+{
+ uint32_t res;
+
+ if (msix_enabled(core->owner)) {
+ assert(core->delayed_causes == 0);
+ return 0;
+ }
+
+ res = core->delayed_causes;
+ core->delayed_causes = 0;
+
+ e1000e_intrmgr_stop_delay_timers(core);
+
+ return res;
+}
+
+static void
+e1000e_intrmgr_fire_all_timers(E1000ECore *core)
+{
+ int i;
+ uint32_t val = e1000e_intmgr_collect_delayed_causes(core);
+
+ trace_e1000e_irq_adding_delayed_causes(val, core->mac[ICR]);
+ core->mac[ICR] |= val;
+
+ if (core->itr.running) {
+ timer_del(core->itr.timer);
+ e1000e_intrmgr_on_throttling_timer(&core->itr);
+ }
+
+ for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
+ if (core->eitr[i].running) {
+ timer_del(core->eitr[i].timer);
+ e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
+ }
+ }
+}
+
+static void
+e1000e_intrmgr_resume(E1000ECore *core)
+{
+ int i;
+
+ e1000e_intmgr_timer_resume(&core->radv);
+ e1000e_intmgr_timer_resume(&core->rdtr);
+ e1000e_intmgr_timer_resume(&core->raid);
+ e1000e_intmgr_timer_resume(&core->tidv);
+ e1000e_intmgr_timer_resume(&core->tadv);
+
+ e1000e_intmgr_timer_resume(&core->itr);
+
+ for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
+ e1000e_intmgr_timer_resume(&core->eitr[i]);
+ }
+}
+
+static void
+e1000e_intrmgr_pause(E1000ECore *core)
+{
+ int i;
+
+ e1000e_intmgr_timer_pause(&core->radv);
+ e1000e_intmgr_timer_pause(&core->rdtr);
+ e1000e_intmgr_timer_pause(&core->raid);
+ e1000e_intmgr_timer_pause(&core->tidv);
+ e1000e_intmgr_timer_pause(&core->tadv);
+
+ e1000e_intmgr_timer_pause(&core->itr);
+
+ for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
+ e1000e_intmgr_timer_pause(&core->eitr[i]);
+ }
+}
+
+static void
+e1000e_intrmgr_reset(E1000ECore *core)
+{
+ int i;
+
+ core->delayed_causes = 0;
+
+ e1000e_intrmgr_stop_delay_timers(core);
+
+ e1000e_intrmgr_stop_timer(&core->itr);
+
+ for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
+ e1000e_intrmgr_stop_timer(&core->eitr[i]);
+ }
+}
+
+static void
+e1000e_intrmgr_pci_unint(E1000ECore *core)
+{
+ int i;
+
+ timer_del(core->radv.timer);
+ timer_free(core->radv.timer);
+ timer_del(core->rdtr.timer);
+ timer_free(core->rdtr.timer);
+ timer_del(core->raid.timer);
+ timer_free(core->raid.timer);
+
+ timer_del(core->tadv.timer);
+ timer_free(core->tadv.timer);
+ timer_del(core->tidv.timer);
+ timer_free(core->tidv.timer);
+
+ timer_del(core->itr.timer);
+ timer_free(core->itr.timer);
+
+ for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
+ timer_del(core->eitr[i].timer);
+ timer_free(core->eitr[i].timer);
+ }
+}
+
+static void
+e1000e_intrmgr_pci_realize(E1000ECore *core)
+{
+ e1000e_intrmgr_initialize_all_timers(core, true);
+}
+
+static inline bool
+e1000e_rx_csum_enabled(E1000ECore *core)
+{
+ return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
+}
+
+static inline bool
+e1000e_rx_use_legacy_descriptor(E1000ECore *core)
+{
+ return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
+}
+
+static inline bool
+e1000e_rx_use_ps_descriptor(E1000ECore *core)
+{
+ return !e1000e_rx_use_legacy_descriptor(core) &&
+ (core->mac[RCTL] & E1000_RCTL_DTYP_PS);
+}
+
+static inline bool
+e1000e_rss_enabled(E1000ECore *core)
+{
+ return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
+ !e1000e_rx_csum_enabled(core) &&
+ !e1000e_rx_use_legacy_descriptor(core);
+}
+
+typedef struct E1000E_RSSInfo_st {
+ bool enabled;
+ uint32_t hash;
+ uint32_t queue;
+ uint32_t type;
+} E1000E_RSSInfo;
+
+static uint32_t
+e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
+{
+ bool isip4, isip6, isudp, istcp;
+
+ assert(e1000e_rss_enabled(core));
+
+ net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
+
+ if (isip4) {
+ bool fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
+
+ trace_e1000e_rx_rss_ip4(fragment, istcp, core->mac[MRQC],
+ E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
+ E1000_MRQC_EN_IPV4(core->mac[MRQC]));
+
+ if (!fragment && istcp && E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
+ return E1000_MRQ_RSS_TYPE_IPV4TCP;
+ }
+
+ if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
+ return E1000_MRQ_RSS_TYPE_IPV4;
+ }
+ } else if (isip6) {
+ eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
+
+ bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
+ bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
+
+ trace_e1000e_rx_rss_ip6(core->mac[RFCTL],
+ ex_dis, new_ex_dis, istcp,
+ ip6info->has_ext_hdrs,
+ ip6info->rss_ex_dst_valid,
+ ip6info->rss_ex_src_valid,
+ core->mac[MRQC],
+ E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]),
+ E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
+ E1000_MRQC_EN_IPV6(core->mac[MRQC]));
+
+ if ((!ex_dis || !ip6info->has_ext_hdrs) &&
+ (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
+ ip6info->rss_ex_src_valid))) {
+
+ if (istcp && !ip6info->fragment &&
+ E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) {
+ return E1000_MRQ_RSS_TYPE_IPV6TCP;
+ }
+
+ if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
+ return E1000_MRQ_RSS_TYPE_IPV6EX;
+ }
+
+ }
+
+ if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
+ return E1000_MRQ_RSS_TYPE_IPV6;
+ }
+
+ }
+
+ return E1000_MRQ_RSS_TYPE_NONE;
+}
+
+static uint32_t
+e1000e_rss_calc_hash(E1000ECore *core,
+ struct NetRxPkt *pkt,
+ E1000E_RSSInfo *info)
+{
+ NetRxPktRssType type;
+
+ assert(e1000e_rss_enabled(core));
+
+ switch (info->type) {
+ case E1000_MRQ_RSS_TYPE_IPV4:
+ type = NetPktRssIpV4;
+ break;
+ case E1000_MRQ_RSS_TYPE_IPV4TCP:
+ type = NetPktRssIpV4Tcp;
+ break;
+ case E1000_MRQ_RSS_TYPE_IPV6TCP:
+ type = NetPktRssIpV6Tcp;
+ break;
+ case E1000_MRQ_RSS_TYPE_IPV6:
+ type = NetPktRssIpV6;
+ break;
+ case E1000_MRQ_RSS_TYPE_IPV6EX:
+ type = NetPktRssIpV6Ex;
+ break;
+ default:
+ assert(false);
+ return 0;
+ }
+
+ return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
+}
+
+static void
+e1000e_rss_parse_packet(E1000ECore *core,
+ struct NetRxPkt *pkt,
+ E1000E_RSSInfo *info)
+{
+ trace_e1000e_rx_rss_started();
+
+ if (!e1000e_rss_enabled(core)) {
+ info->enabled = false;
+ info->hash = 0;
+ info->queue = 0;
+ info->type = 0;
+ trace_e1000e_rx_rss_disabled();
+ return;
+ }
+
+ info->enabled = true;
+
+ info->type = e1000e_rss_get_hash_type(core, pkt);
+
+ trace_e1000e_rx_rss_type(info->type);
+
+ if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
+ info->hash = 0;
+ info->queue = 0;
+ return;
+ }
+
+ info->hash = e1000e_rss_calc_hash(core, pkt, info);
+ info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
+}
+
+static void
+e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx)
+{
+ if (tx->props.tse && tx->props.cptse) {
+ net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss);
+ net_tx_pkt_update_ip_checksums(tx->tx_pkt);
+ e1000x_inc_reg_if_not_full(core->mac, TSCTC);
+ return;
+ }
+
+ if (tx->props.sum_needed & E1000_TXD_POPTS_TXSM) {
+ net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0);
+ }
+
+ if (tx->props.sum_needed & E1000_TXD_POPTS_IXSM) {
+ net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
+ }
+}
+
+static bool
+e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index)
+{
+ int target_queue = MIN(core->max_queue_num, queue_index);
+ NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
+
+ e1000e_setup_tx_offloads(core, tx);
+
+ net_tx_pkt_dump(tx->tx_pkt);
+
+ if ((core->phy[0][PHY_CTRL] & MII_CR_LOOPBACK) ||
+ ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
+ return net_tx_pkt_send_loopback(tx->tx_pkt, queue);
+ } else {
+ return net_tx_pkt_send(tx->tx_pkt, queue);
+ }
+}
+
+static void
+e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
+{
+ static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
+ PTC1023, PTC1522 };
+
+ size_t tot_len = net_tx_pkt_get_total_len(tx_pkt);
+
+ e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
+ e1000x_inc_reg_if_not_full(core->mac, TPT);
+ e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
+
+ switch (net_tx_pkt_get_packet_type(tx_pkt)) {
+ case ETH_PKT_BCAST:
+ e1000x_inc_reg_if_not_full(core->mac, BPTC);
+ break;
+ case ETH_PKT_MCAST:
+ e1000x_inc_reg_if_not_full(core->mac, MPTC);
+ break;
+ case ETH_PKT_UCAST:
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ core->mac[GPTC] = core->mac[TPT];
+ core->mac[GOTCL] = core->mac[TOTL];
+ core->mac[GOTCH] = core->mac[TOTH];
+}
+
+static void
+e1000e_process_tx_desc(E1000ECore *core,
+ struct e1000e_tx *tx,
+ struct e1000_tx_desc *dp,
+ int queue_index)
+{
+ uint32_t txd_lower = le32_to_cpu(dp->lower.data);
+ uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
+ unsigned int split_size = txd_lower & 0xffff;
+ uint64_t addr;
+ struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
+ bool eop = txd_lower & E1000_TXD_CMD_EOP;
+
+ if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
+ e1000x_read_tx_ctx_descr(xp, &tx->props);
+ e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length));
+ return;
+ } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
+ /* data descriptor */
+ tx->props.sum_needed = le32_to_cpu(dp->upper.data) >> 8;
+ tx->props.cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
+ e1000e_process_ts_option(core, dp);
+ } else {
+ /* legacy descriptor */
+ e1000e_process_ts_option(core, dp);
+ tx->props.cptse = 0;
+ }
+
+ addr = le64_to_cpu(dp->buffer_addr);
+
+ if (!tx->skip_cp) {
+ if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, addr, split_size)) {
+ tx->skip_cp = true;
+ }
+ }
+
+ if (eop) {
+ if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
+ if (e1000x_vlan_enabled(core->mac) &&
+ e1000x_is_vlan_txd(txd_lower)) {
+ net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
+ le16_to_cpu(dp->upper.fields.special), core->vet);
+ }
+ if (e1000e_tx_pkt_send(core, tx, queue_index)) {
+ e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
+ }
+ }
+
+ tx->skip_cp = false;
+ net_tx_pkt_reset(tx->tx_pkt);
+
+ tx->props.sum_needed = 0;
+ tx->props.cptse = 0;
+ }
+}
+
+static inline uint32_t
+e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
+{
+ if (!msix_enabled(core->owner)) {
+ return E1000_ICR_TXDW;
+ }
+
+ return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
+}
+
+static inline uint32_t
+e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
+ bool min_threshold_hit)
+{
+ if (!msix_enabled(core->owner)) {
+ return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
+ }
+
+ return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
+}
+
+static uint32_t
+e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
+ struct e1000_tx_desc *dp, bool *ide, int queue_idx)
+{
+ uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
+
+ if (!(txd_lower & E1000_TXD_CMD_RS) &&
+ !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
+ return 0;
+ }
+
+ *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
+
+ txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
+
+ dp->upper.data = cpu_to_le32(txd_upper);
+ pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
+ &dp->upper, sizeof(dp->upper));
+ return e1000e_tx_wb_interrupt_cause(core, queue_idx);
+}
+
+typedef struct E1000E_RingInfo_st {
+ int dbah;
+ int dbal;
+ int dlen;
+ int dh;
+ int dt;
+ int idx;
+} E1000E_RingInfo;
+
+static inline bool
+e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r)
+{
+ return core->mac[r->dh] == core->mac[r->dt];
+}
+
+static inline uint64_t
+e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r)
+{
+ uint64_t bah = core->mac[r->dbah];
+ uint64_t bal = core->mac[r->dbal];
+
+ return (bah << 32) + bal;
+}
+
+static inline uint64_t
+e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r)
+{
+ return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
+}
+
+static inline void
+e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count)
+{
+ core->mac[r->dh] += count;
+
+ if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
+ core->mac[r->dh] = 0;
+ }
+}
+
+static inline uint32_t
+e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r)
+{
+ trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
+ core->mac[r->dh], core->mac[r->dt]);
+
+ if (core->mac[r->dh] <= core->mac[r->dt]) {
+ return core->mac[r->dt] - core->mac[r->dh];
+ }
+
+ if (core->mac[r->dh] > core->mac[r->dt]) {
+ return core->mac[r->dlen] / E1000_RING_DESC_LEN +
+ core->mac[r->dt] - core->mac[r->dh];
+ }
+
+ g_assert_not_reached();
+ return 0;
+}
+
+static inline bool
+e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r)
+{
+ return core->mac[r->dlen] > 0;
+}
+
+static inline uint32_t
+e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r)
+{
+ return core->mac[r->dlen];
+}
+
+typedef struct E1000E_TxRing_st {
+ const E1000E_RingInfo *i;
+ struct e1000e_tx *tx;
+} E1000E_TxRing;
+
+static inline int
+e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
+{
+ return (reg_idx - base_reg_idx) / (0x100 >> 2);
+}
+
+static inline void
+e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
+{
+ static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
+ { TDBAH, TDBAL, TDLEN, TDH, TDT, 0 },
+ { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
+ };
+
+ assert(idx < ARRAY_SIZE(i));
+
+ txr->i = &i[idx];
+ txr->tx = &core->tx[idx];
+}
+
+typedef struct E1000E_RxRing_st {
+ const E1000E_RingInfo *i;
+} E1000E_RxRing;
+
+static inline void
+e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
+{
+ static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
+ { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
+ { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
+ };
+
+ assert(idx < ARRAY_SIZE(i));
+
+ rxr->i = &i[idx];
+}
+
+static void
+e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
+{
+ dma_addr_t base;
+ struct e1000_tx_desc desc;
+ bool ide = false;
+ const E1000E_RingInfo *txi = txr->i;
+ uint32_t cause = E1000_ICS_TXQE;
+
+ if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
+ trace_e1000e_tx_disabled();
+ return;
+ }
+
+ while (!e1000e_ring_empty(core, txi)) {
+ base = e1000e_ring_head_descr(core, txi);
+
+ pci_dma_read(core->owner, base, &desc, sizeof(desc));
+
+ trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
+ desc.lower.data, desc.upper.data);
+
+ e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
+ cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
+
+ e1000e_ring_advance(core, txi, 1);
+ }
+
+ if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
+ e1000e_set_interrupt_cause(core, cause);
+ }
+}
+
+static bool
+e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r,
+ size_t total_size)
+{
+ uint32_t bufs = e1000e_ring_free_descr_num(core, r);
+
+ trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
+ core->rx_desc_buf_size);
+
+ return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
+ core->rx_desc_buf_size;
+}
+
+static inline void
+e1000e_start_recv(E1000ECore *core)
+{
+ int i;
+
+ trace_e1000e_rx_start_recv();
+
+ for (i = 0; i <= core->max_queue_num; i++) {
+ qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
+ }
+}
+
+int
+e1000e_can_receive(E1000ECore *core)
+{
+ int i;
+
+ if (!e1000x_rx_ready(core->owner, core->mac)) {
+ return false;
+ }
+
+ for (i = 0; i < E1000E_NUM_QUEUES; i++) {
+ E1000E_RxRing rxr;
+
+ e1000e_rx_ring_init(core, &rxr, i);
+ if (e1000e_ring_enabled(core, rxr.i) &&
+ e1000e_has_rxbufs(core, rxr.i, 1)) {
+ trace_e1000e_rx_can_recv();
+ return true;
+ }
+ }
+
+ trace_e1000e_rx_can_recv_rings_full();
+ return false;
+}
+
+ssize_t
+e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
+{
+ const struct iovec iov = {
+ .iov_base = (uint8_t *)buf,
+ .iov_len = size
+ };
+
+ return e1000e_receive_iov(core, &iov, 1);
+}
+
+static inline bool
+e1000e_rx_l3_cso_enabled(E1000ECore *core)
+{
+ return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
+}
+
+static inline bool
+e1000e_rx_l4_cso_enabled(E1000ECore *core)
+{
+ return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
+}
+
+static bool
+e1000e_receive_filter(E1000ECore *core, const uint8_t *buf, int size)
+{
+ uint32_t rctl = core->mac[RCTL];
+
+ if (e1000x_is_vlan_packet(buf, core->vet) &&
+ e1000x_vlan_rx_filter_enabled(core->mac)) {
+ uint16_t vid = be16_to_cpup((uint16_t *)(buf + 14));
+ uint32_t vfta = le32_to_cpup((uint32_t *)(core->mac + VFTA) +
+ ((vid >> 5) & 0x7f));
+ if ((vfta & (1 << (vid & 0x1f))) == 0) {
+ trace_e1000e_rx_flt_vlan_mismatch(vid);
+ return false;
+ } else {
+ trace_e1000e_rx_flt_vlan_match(vid);
+ }
+ }
+
+ switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
+ case ETH_PKT_UCAST:
+ if (rctl & E1000_RCTL_UPE) {
+ return true; /* promiscuous ucast */
+ }
+ break;
+
+ case ETH_PKT_BCAST:
+ if (rctl & E1000_RCTL_BAM) {
+ return true; /* broadcast enabled */
+ }
+ break;
+
+ case ETH_PKT_MCAST:
+ if (rctl & E1000_RCTL_MPE) {
+ return true; /* promiscuous mcast */
+ }
+ break;
+
+ default:
+ g_assert_not_reached();
+ }
+
+ return e1000x_rx_group_filter(core->mac, buf);
+}
+
+static inline void
+e1000e_read_lgcy_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
+{
+ struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
+ *buff_addr = le64_to_cpu(d->buffer_addr);
+}
+
+static inline void
+e1000e_read_ext_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
+{
+ union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
+ *buff_addr = le64_to_cpu(d->read.buffer_addr);
+}
+
+static inline void
+e1000e_read_ps_rx_descr(E1000ECore *core, uint8_t *desc,
+ hwaddr (*buff_addr)[MAX_PS_BUFFERS])
+{
+ int i;
+ union e1000_rx_desc_packet_split *d =
+ (union e1000_rx_desc_packet_split *) desc;
+
+ for (i = 0; i < MAX_PS_BUFFERS; i++) {
+ (*buff_addr)[i] = le64_to_cpu(d->read.buffer_addr[i]);
+ }
+
+ trace_e1000e_rx_desc_ps_read((*buff_addr)[0], (*buff_addr)[1],
+ (*buff_addr)[2], (*buff_addr)[3]);
+}
+
+static inline void
+e1000e_read_rx_descr(E1000ECore *core, uint8_t *desc,
+ hwaddr (*buff_addr)[MAX_PS_BUFFERS])
+{
+ if (e1000e_rx_use_legacy_descriptor(core)) {
+ e1000e_read_lgcy_rx_descr(core, desc, &(*buff_addr)[0]);
+ (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
+ } else {
+ if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
+ e1000e_read_ps_rx_descr(core, desc, buff_addr);
+ } else {
+ e1000e_read_ext_rx_descr(core, desc, &(*buff_addr)[0]);
+ (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
+ }
+ }
+}
+
+static void
+e1000e_verify_csum_in_sw(E1000ECore *core,
+ struct NetRxPkt *pkt,
+ uint32_t *status_flags,
+ bool istcp, bool isudp)
+{
+ bool csum_valid;
+ uint32_t csum_error;
+
+ if (e1000e_rx_l3_cso_enabled(core)) {
+ if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
+ trace_e1000e_rx_metadata_l3_csum_validation_failed();
+ } else {
+ csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
+ *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
+ }
+ } else {
+ trace_e1000e_rx_metadata_l3_cso_disabled();
+ }
+
+ if (!e1000e_rx_l4_cso_enabled(core)) {
+ trace_e1000e_rx_metadata_l4_cso_disabled();
+ return;
+ }
+
+ if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
+ trace_e1000e_rx_metadata_l4_csum_validation_failed();
+ return;
+ }
+
+ csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
+
+ if (istcp) {
+ *status_flags |= E1000_RXD_STAT_TCPCS |
+ csum_error;
+ } else if (isudp) {
+ *status_flags |= E1000_RXD_STAT_TCPCS |
+ E1000_RXD_STAT_UDPCS |
+ csum_error;
+ }
+}
+
+static inline bool
+e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
+{
+ if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
+ return false;
+ }
+
+ if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
+ return !net_rx_pkt_has_tcp_data(rx_pkt);
+ }
+
+ return true;
+}
+
+static void
+e1000e_build_rx_metadata(E1000ECore *core,
+ struct NetRxPkt *pkt,
+ bool is_eop,
+ const E1000E_RSSInfo *rss_info,
+ uint32_t *rss, uint32_t *mrq,
+ uint32_t *status_flags,
+ uint16_t *ip_id,
+ uint16_t *vlan_tag)
+{
+ struct virtio_net_hdr *vhdr;
+ bool isip4, isip6, istcp, isudp;
+ uint32_t pkt_type;
+
+ *status_flags = E1000_RXD_STAT_DD;
+
+ /* No additional metadata needed for non-EOP descriptors */
+ if (!is_eop) {
+ goto func_exit;
+ }
+
+ *status_flags |= E1000_RXD_STAT_EOP;
+
+ net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
+ trace_e1000e_rx_metadata_protocols(isip4, isip6, isudp, istcp);
+
+ /* VLAN state */
+ if (net_rx_pkt_is_vlan_stripped(pkt)) {
+ *status_flags |= E1000_RXD_STAT_VP;
+ *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
+ trace_e1000e_rx_metadata_vlan(*vlan_tag);
+ }
+
+ /* Packet parsing results */
+ if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
+ if (rss_info->enabled) {
+ *rss = cpu_to_le32(rss_info->hash);
+ *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
+ trace_e1000e_rx_metadata_rss(*rss, *mrq);
+ }
+ } else if (isip4) {
+ *status_flags |= E1000_RXD_STAT_IPIDV;
+ *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
+ trace_e1000e_rx_metadata_ip_id(*ip_id);
+ }
+
+ if (istcp && e1000e_is_tcp_ack(core, pkt)) {
+ *status_flags |= E1000_RXD_STAT_ACK;
+ trace_e1000e_rx_metadata_ack();
+ }
+
+ if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
+ trace_e1000e_rx_metadata_ipv6_filtering_disabled();
+ pkt_type = E1000_RXD_PKT_MAC;
+ } else if (istcp || isudp) {
+ pkt_type = isip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
+ } else if (isip4 || isip6) {
+ pkt_type = isip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
+ } else {
+ pkt_type = E1000_RXD_PKT_MAC;
+ }
+
+ *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
+ trace_e1000e_rx_metadata_pkt_type(pkt_type);
+
+ /* RX CSO information */
+ if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
+ trace_e1000e_rx_metadata_ipv6_sum_disabled();
+ goto func_exit;
+ }
+
+ if (!net_rx_pkt_has_virt_hdr(pkt)) {
+ trace_e1000e_rx_metadata_no_virthdr();
+ e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
+ goto func_exit;
+ }
+
+ vhdr = net_rx_pkt_get_vhdr(pkt);
+
+ if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
+ !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
+ trace_e1000e_rx_metadata_virthdr_no_csum_info();
+ e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
+ goto func_exit;
+ }
+
+ if (e1000e_rx_l3_cso_enabled(core)) {
+ *status_flags |= isip4 ? E1000_RXD_STAT_IPCS : 0;
+ } else {
+ trace_e1000e_rx_metadata_l3_cso_disabled();
+ }
+
+ if (e1000e_rx_l4_cso_enabled(core)) {
+ if (istcp) {
+ *status_flags |= E1000_RXD_STAT_TCPCS;
+ } else if (isudp) {
+ *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
+ }
+ } else {
+ trace_e1000e_rx_metadata_l4_cso_disabled();
+ }
+
+ trace_e1000e_rx_metadata_status_flags(*status_flags);
+
+func_exit:
+ *status_flags = cpu_to_le32(*status_flags);
+}
+
+static inline void
+e1000e_write_lgcy_rx_descr(E1000ECore *core, uint8_t *desc,
+ struct NetRxPkt *pkt,
+ const E1000E_RSSInfo *rss_info,
+ uint16_t length)
+{
+ uint32_t status_flags, rss, mrq;
+ uint16_t ip_id;
+
+ struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
+
+ memset(d, 0, sizeof(*d));
+
+ assert(!rss_info->enabled);
+
+ d->length = cpu_to_le16(length);
+
+ e1000e_build_rx_metadata(core, pkt, pkt != NULL,
+ rss_info,
+ &rss, &mrq,
+ &status_flags, &ip_id,
+ &d->special);
+ d->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
+ d->status = (uint8_t) le32_to_cpu(status_flags);
+}
+
+static inline void
+e1000e_write_ext_rx_descr(E1000ECore *core, uint8_t *desc,
+ struct NetRxPkt *pkt,
+ const E1000E_RSSInfo *rss_info,
+ uint16_t length)
+{
+ union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
+
+ memset(d, 0, sizeof(*d));
+
+ d->wb.upper.length = cpu_to_le16(length);
+
+ e1000e_build_rx_metadata(core, pkt, pkt != NULL,
+ rss_info,
+ &d->wb.lower.hi_dword.rss,
+ &d->wb.lower.mrq,
+ &d->wb.upper.status_error,
+ &d->wb.lower.hi_dword.csum_ip.ip_id,
+ &d->wb.upper.vlan);
+}
+
+static inline void
+e1000e_write_ps_rx_descr(E1000ECore *core, uint8_t *desc,
+ struct NetRxPkt *pkt,
+ const E1000E_RSSInfo *rss_info,
+ size_t ps_hdr_len,
+ uint16_t(*written)[MAX_PS_BUFFERS])
+{
+ int i;
+ union e1000_rx_desc_packet_split *d =
+ (union e1000_rx_desc_packet_split *) desc;
+
+ memset(d, 0, sizeof(*d));
+
+ d->wb.middle.length0 = cpu_to_le16((*written)[0]);
+
+ for (i = 0; i < PS_PAGE_BUFFERS; i++) {
+ d->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
+ }
+
+ e1000e_build_rx_metadata(core, pkt, pkt != NULL,
+ rss_info,
+ &d->wb.lower.hi_dword.rss,
+ &d->wb.lower.mrq,
+ &d->wb.middle.status_error,
+ &d->wb.lower.hi_dword.csum_ip.ip_id,
+ &d->wb.middle.vlan);
+
+ d->wb.upper.header_status =
+ cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0));
+
+ trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
+ (*written)[2], (*written)[3]);
+}
+
+static inline void
+e1000e_write_rx_descr(E1000ECore *core, uint8_t *desc,
+struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
+ size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
+{
+ if (e1000e_rx_use_legacy_descriptor(core)) {
+ assert(ps_hdr_len == 0);
+ e1000e_write_lgcy_rx_descr(core, desc, pkt, rss_info, (*written)[0]);
+ } else {
+ if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
+ e1000e_write_ps_rx_descr(core, desc, pkt, rss_info,
+ ps_hdr_len, written);
+ } else {
+ assert(ps_hdr_len == 0);
+ e1000e_write_ext_rx_descr(core, desc, pkt, rss_info,
+ (*written)[0]);
+ }
+ }
+}
+
+typedef struct e1000e_ba_state_st {
+ uint16_t written[MAX_PS_BUFFERS];
+ uint8_t cur_idx;
+} e1000e_ba_state;
+
+static inline void
+e1000e_write_hdr_to_rx_buffers(E1000ECore *core,
+ hwaddr (*ba)[MAX_PS_BUFFERS],
+ e1000e_ba_state *bastate,
+ const char *data,
+ dma_addr_t data_len)
+{
+ assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
+
+ pci_dma_write(core->owner, (*ba)[0] + bastate->written[0], data, data_len);
+ bastate->written[0] += data_len;
+
+ bastate->cur_idx = 1;
+}
+
+static void
+e1000e_write_to_rx_buffers(E1000ECore *core,
+ hwaddr (*ba)[MAX_PS_BUFFERS],
+ e1000e_ba_state *bastate,
+ const char *data,
+ dma_addr_t data_len)
+{
+ while (data_len > 0) {
+ uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
+ uint32_t cur_buf_bytes_left = cur_buf_len -
+ bastate->written[bastate->cur_idx];
+ uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
+
+ trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
+ (*ba)[bastate->cur_idx],
+ bastate->written[bastate->cur_idx],
+ data,
+ bytes_to_write);
+
+ pci_dma_write(core->owner,
+ (*ba)[bastate->cur_idx] + bastate->written[bastate->cur_idx],
+ data, bytes_to_write);
+
+ bastate->written[bastate->cur_idx] += bytes_to_write;
+ data += bytes_to_write;
+ data_len -= bytes_to_write;
+
+ if (bastate->written[bastate->cur_idx] == cur_buf_len) {
+ bastate->cur_idx++;
+ }
+
+ assert(bastate->cur_idx < MAX_PS_BUFFERS);
+ }
+}
+
+static void
+e1000e_update_rx_stats(E1000ECore *core,
+ size_t data_size,
+ size_t data_fcs_size)
+{
+ e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size);
+
+ switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
+ case ETH_PKT_BCAST:
+ e1000x_inc_reg_if_not_full(core->mac, BPRC);
+ break;
+
+ case ETH_PKT_MCAST:
+ e1000x_inc_reg_if_not_full(core->mac, MPRC);
+ break;
+
+ default:
+ break;
+ }
+}
+
+static inline bool
+e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi)
+{
+ return e1000e_ring_free_descr_num(core, rxi) ==
+ e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
+}
+
+static bool
+e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
+{
+ bool isip4, isip6, isudp, istcp;
+ bool fragment;
+
+ if (!e1000e_rx_use_ps_descriptor(core)) {
+ return false;
+ }
+
+ net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
+
+ if (isip4) {
+ fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
+ } else if (isip6) {
+ fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
+ } else {
+ return false;
+ }
+
+ if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
+ return false;
+ }
+
+ if (!fragment && (isudp || istcp)) {
+ *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
+ } else {
+ *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
+ }
+
+ if ((*hdr_len > core->rxbuf_sizes[0]) ||
+ (*hdr_len > net_rx_pkt_get_total_len(pkt))) {
+ return false;
+ }
+
+ return true;
+}
+
+static void
+e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt,
+ const E1000E_RxRing *rxr,
+ const E1000E_RSSInfo *rss_info)
+{
+ PCIDevice *d = core->owner;
+ dma_addr_t base;
+ uint8_t desc[E1000_MAX_RX_DESC_LEN];
+ size_t desc_size;
+ size_t desc_offset = 0;
+ size_t iov_ofs = 0;
+
+ struct iovec *iov = net_rx_pkt_get_iovec(pkt);
+ size_t size = net_rx_pkt_get_total_len(pkt);
+ size_t total_size = size + e1000x_fcs_len(core->mac);
+ const E1000E_RingInfo *rxi;
+ size_t ps_hdr_len = 0;
+ bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
+
+ rxi = rxr->i;
+
+ do {
+ hwaddr ba[MAX_PS_BUFFERS];
+ e1000e_ba_state bastate = { { 0 } };
+ bool is_last = false;
+ bool is_first = true;
+
+ desc_size = total_size - desc_offset;
+
+ if (desc_size > core->rx_desc_buf_size) {
+ desc_size = core->rx_desc_buf_size;
+ }
+
+ base = e1000e_ring_head_descr(core, rxi);
+
+ pci_dma_read(d, base, &desc, core->rx_desc_len);
+
+ trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
+
+ e1000e_read_rx_descr(core, desc, &ba);
+
+ if (ba[0]) {
+ if (desc_offset < size) {
+ static const uint32_t fcs_pad;
+ size_t iov_copy;
+ size_t copy_size = size - desc_offset;
+ if (copy_size > core->rx_desc_buf_size) {
+ copy_size = core->rx_desc_buf_size;
+ }
+
+ /* For PS mode copy the packet header first */
+ if (do_ps) {
+ if (is_first) {
+ size_t ps_hdr_copied = 0;
+ do {
+ iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
+ iov->iov_len - iov_ofs);
+
+ e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
+ iov->iov_base, iov_copy);
+
+ copy_size -= iov_copy;
+ ps_hdr_copied += iov_copy;
+
+ iov_ofs += iov_copy;
+ if (iov_ofs == iov->iov_len) {
+ iov++;
+ iov_ofs = 0;
+ }
+ } while (ps_hdr_copied < ps_hdr_len);
+
+ is_first = false;
+ } else {
+ /* Leave buffer 0 of each descriptor except first */
+ /* empty as per spec 7.1.5.1 */
+ e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
+ NULL, 0);
+ }
+ }
+
+ /* Copy packet payload */
+ while (copy_size) {
+ iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
+
+ e1000e_write_to_rx_buffers(core, &ba, &bastate,
+ iov->iov_base + iov_ofs, iov_copy);
+
+ copy_size -= iov_copy;
+ iov_ofs += iov_copy;
+ if (iov_ofs == iov->iov_len) {
+ iov++;
+ iov_ofs = 0;
+ }
+ }
+
+ if (desc_offset + desc_size >= total_size) {
+ /* Simulate FCS checksum presence in the last descriptor */
+ e1000e_write_to_rx_buffers(core, &ba, &bastate,
+ (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
+ }
+ }
+ desc_offset += desc_size;
+ if (desc_offset >= total_size) {
+ is_last = true;
+ }
+ } else { /* as per intel docs; skip descriptors with null buf addr */
+ trace_e1000e_rx_null_descriptor();
+ }
+
+ e1000e_write_rx_descr(core, desc, is_last ? core->rx_pkt : NULL,
+ rss_info, do_ps ? ps_hdr_len : 0, &bastate.written);
+ pci_dma_write(d, base, &desc, core->rx_desc_len);
+
+ e1000e_ring_advance(core, rxi,
+ core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
+
+ } while (desc_offset < total_size);
+
+ e1000e_update_rx_stats(core, size, total_size);
+}
+
+static inline void
+e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
+{
+ if (net_rx_pkt_has_virt_hdr(pkt)) {
+ struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
+
+ if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
+ net_rx_pkt_fix_l4_csum(pkt);
+ }
+ }
+}
+
+ssize_t
+e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
+{
+ static const int maximum_ethernet_hdr_len = (14 + 4);
+ /* Min. octets in an ethernet frame sans FCS */
+ static const int min_buf_size = 60;
+
+ uint32_t n = 0;
+ uint8_t min_buf[min_buf_size];
+ struct iovec min_iov;
+ uint8_t *filter_buf;
+ size_t size, orig_size;
+ size_t iov_ofs = 0;
+ E1000E_RxRing rxr;
+ E1000E_RSSInfo rss_info;
+ size_t total_size;
+ ssize_t retval;
+ bool rdmts_hit;
+
+ trace_e1000e_rx_receive_iov(iovcnt);
+
+ if (!e1000x_hw_rx_enabled(core->mac)) {
+ return -1;
+ }
+
+ /* Pull virtio header in */
+ if (core->has_vnet) {
+ net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
+ iov_ofs = sizeof(struct virtio_net_hdr);
+ }
+
+ filter_buf = iov->iov_base + iov_ofs;
+ orig_size = iov_size(iov, iovcnt);
+ size = orig_size - iov_ofs;
+
+ /* Pad to minimum Ethernet frame length */
+ if (size < sizeof(min_buf)) {
+ iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size);
+ memset(&min_buf[size], 0, sizeof(min_buf) - size);
+ e1000x_inc_reg_if_not_full(core->mac, RUC);
+ min_iov.iov_base = filter_buf = min_buf;
+ min_iov.iov_len = size = sizeof(min_buf);
+ iovcnt = 1;
+ iov = &min_iov;
+ iov_ofs = 0;
+ } else if (iov->iov_len < maximum_ethernet_hdr_len) {
+ /* This is very unlikely, but may happen. */
+ iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len);
+ filter_buf = min_buf;
+ }
+
+ /* Discard oversized packets if !LPE and !SBP. */
+ if (e1000x_is_oversized(core->mac, size)) {
+ return orig_size;
+ }
+
+ net_rx_pkt_set_packet_type(core->rx_pkt,
+ get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf)));
+
+ if (!e1000e_receive_filter(core, filter_buf, size)) {
+ trace_e1000e_rx_flt_dropped();
+ return orig_size;
+ }
+
+ net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
+ e1000x_vlan_enabled(core->mac), core->vet);
+
+ e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
+ e1000e_rx_ring_init(core, &rxr, rss_info.queue);
+
+ trace_e1000e_rx_rss_dispatched_to_queue(rxr.i->idx);
+
+ total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
+ e1000x_fcs_len(core->mac);
+
+ if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
+ e1000e_rx_fix_l4_csum(core, core->rx_pkt);
+
+ e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
+
+ retval = orig_size;
+
+ /* Perform small receive detection (RSRPD) */
+ if (total_size < core->mac[RSRPD]) {
+ n |= E1000_ICS_SRPD;
+ }
+
+ /* Perform ACK receive detection */
+ if (e1000e_is_tcp_ack(core, core->rx_pkt)) {
+ n |= E1000_ICS_ACK;
+ }
+
+ /* Check if receive descriptor minimum threshold hit */
+ rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
+ n |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
+
+ trace_e1000e_rx_written_to_guest(n);
+ } else {
+ n |= E1000_ICS_RXO;
+ retval = 0;
+
+ trace_e1000e_rx_not_written_to_guest(n);
+ }
+
+ if (!e1000e_intrmgr_delay_rx_causes(core, &n)) {
+ trace_e1000e_rx_interrupt_set(n);
+ e1000e_set_interrupt_cause(core, n);
+ } else {
+ trace_e1000e_rx_interrupt_delayed(n);
+ }
+
+ return retval;
+}
+
+static inline bool
+e1000e_have_autoneg(E1000ECore *core)
+{
+ return core->phy[0][PHY_CTRL] & MII_CR_AUTO_NEG_EN;
+}
+
+static void e1000e_update_flowctl_status(E1000ECore *core)
+{
+ if (e1000e_have_autoneg(core) &&
+ core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE) {
+ trace_e1000e_link_autoneg_flowctl(true);
+ core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
+ } else {
+ trace_e1000e_link_autoneg_flowctl(false);
+ }
+}
+
+static inline void
+e1000e_link_down(E1000ECore *core)
+{
+ e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
+ e1000e_update_flowctl_status(core);
+}
+
+static inline void
+e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
+{
+ /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */
+ core->phy[0][PHY_CTRL] = val & ~(0x3f |
+ MII_CR_RESET |
+ MII_CR_RESTART_AUTO_NEG);
+
+ if ((val & MII_CR_RESTART_AUTO_NEG) &&
+ e1000e_have_autoneg(core)) {
+ e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
+ }
+}
+
+static void
+e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
+{
+ core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
+
+ if (val & BIT(10)) {
+ e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
+ }
+}
+
+static void
+e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
+{
+ core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
+}
+
+void
+e1000e_core_set_link_status(E1000ECore *core)
+{
+ NetClientState *nc = qemu_get_queue(core->owner_nic);
+ uint32_t old_status = core->mac[STATUS];
+
+ trace_e1000e_link_status_changed(nc->link_down ? false : true);
+
+ if (nc->link_down) {
+ e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
+ } else {
+ if (e1000e_have_autoneg(core) &&
+ !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
+ e1000x_restart_autoneg(core->mac, core->phy[0],
+ core->autoneg_timer);
+ } else {
+ e1000x_update_regs_on_link_up(core->mac, core->phy[0]);
+ }
+ }
+
+ if (core->mac[STATUS] != old_status) {
+ e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
+ }
+}
+
+static void
+e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
+{
+ trace_e1000e_core_ctrl_write(index, val);
+
+ /* RST is self clearing */
+ core->mac[CTRL] = val & ~E1000_CTRL_RST;
+ core->mac[CTRL_DUP] = core->mac[CTRL];
+
+ trace_e1000e_link_set_params(
+ !!(val & E1000_CTRL_ASDE),
+ (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
+ !!(val & E1000_CTRL_FRCSPD),
+ !!(val & E1000_CTRL_FRCDPX),
+ !!(val & E1000_CTRL_RFCE),
+ !!(val & E1000_CTRL_TFCE));
+
+ if (val & E1000_CTRL_RST) {
+ trace_e1000e_core_ctrl_sw_reset();
+ e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
+ }
+
+ if (val & E1000_CTRL_PHY_RST) {
+ trace_e1000e_core_ctrl_phy_reset();
+ core->mac[STATUS] |= E1000_STATUS_PHYRA;
+ }
+}
+
+static void
+e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
+{
+ trace_e1000e_rx_set_rfctl(val);
+
+ if (!(val & E1000_RFCTL_ISCSI_DIS)) {
+ trace_e1000e_wrn_iscsi_filtering_not_supported();
+ }
+
+ if (!(val & E1000_RFCTL_NFSW_DIS)) {
+ trace_e1000e_wrn_nfsw_filtering_not_supported();
+ }
+
+ if (!(val & E1000_RFCTL_NFSR_DIS)) {
+ trace_e1000e_wrn_nfsr_filtering_not_supported();
+ }
+
+ core->mac[RFCTL] = val;
+}
+
+static void
+e1000e_calc_per_desc_buf_size(E1000ECore *core)
+{
+ int i;
+ core->rx_desc_buf_size = 0;
+
+ for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
+ core->rx_desc_buf_size += core->rxbuf_sizes[i];
+ }
+}
+
+static void
+e1000e_parse_rxbufsize(E1000ECore *core)
+{
+ uint32_t rctl = core->mac[RCTL];
+
+ memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
+
+ if (rctl & E1000_RCTL_DTYP_MASK) {
+ uint32_t bsize;
+
+ bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
+ core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
+
+ bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
+ core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
+
+ bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
+ core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
+
+ bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
+ core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
+ } else if (rctl & E1000_RCTL_FLXBUF_MASK) {
+ int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
+ core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
+ } else {
+ core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl);
+ }
+
+ trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1],
+ core->rxbuf_sizes[2], core->rxbuf_sizes[3]);
+
+ e1000e_calc_per_desc_buf_size(core);
+}
+
+static void
+e1000e_calc_rxdesclen(E1000ECore *core)
+{
+ if (e1000e_rx_use_legacy_descriptor(core)) {
+ core->rx_desc_len = sizeof(struct e1000_rx_desc);
+ } else {
+ if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
+ core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
+ } else {
+ core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
+ }
+ }
+ trace_e1000e_rx_desc_len(core->rx_desc_len);
+}
+
+static void
+e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
+{
+ core->mac[RCTL] = val;
+ trace_e1000e_rx_set_rctl(core->mac[RCTL]);
+
+ if (val & E1000_RCTL_EN) {
+ e1000e_parse_rxbufsize(core);
+ e1000e_calc_rxdesclen(core);
+ core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
+ E1000_RING_DESC_LEN_SHIFT;
+
+ e1000e_start_recv(core);
+ }
+}
+
+static
+void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
+(E1000ECore *, int, uint16_t) = {
+ [0] = {
+ [PHY_CTRL] = e1000e_set_phy_ctrl,
+ [PHY_PAGE] = e1000e_set_phy_page,
+ [PHY_OEM_BITS] = e1000e_set_phy_oem_bits
+ }
+};
+
+static inline void
+e1000e_clear_ims_bits(E1000ECore *core, uint32_t bits)
+{
+ trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
+ core->mac[IMS] &= ~bits;
+}
+
+static inline bool
+e1000e_postpone_interrupt(bool *interrupt_pending,
+ E1000IntrDelayTimer *timer)
+{
+ if (timer->running) {
+ trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
+
+ *interrupt_pending = true;
+ return true;
+ }
+
+ if (timer->core->mac[timer->delay_reg] != 0) {
+ e1000e_intrmgr_rearm_timer(timer);
+ }
+
+ return false;
+}
+
+static inline bool
+e1000e_itr_should_postpone(E1000ECore *core)
+{
+ return e1000e_postpone_interrupt(&core->itr_intr_pending, &core->itr);
+}
+
+static inline bool
+e1000e_eitr_should_postpone(E1000ECore *core, int idx)
+{
+ return e1000e_postpone_interrupt(&core->eitr_intr_pending[idx],
+ &core->eitr[idx]);
+}
+
+static void
+e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
+{
+ uint32_t effective_eiac;
+
+ if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
+ uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
+ if (vec < E1000E_MSIX_VEC_NUM) {
+ if (!e1000e_eitr_should_postpone(core, vec)) {
+ trace_e1000e_irq_msix_notify_vec(vec);
+ msix_notify(core->owner, vec);
+ }
+ } else {
+ trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
+ }
+ } else {
+ trace_e1000e_wrn_msix_invalid(cause, int_cfg);
+ }
+
+ if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
+ trace_e1000e_irq_ims_clear_eiame(core->mac[IAM], cause);
+ e1000e_clear_ims_bits(core, core->mac[IAM] & cause);
+ }
+
+ trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]);
+
+ if (core->mac[EIAC] & E1000_ICR_OTHER) {
+ effective_eiac = (core->mac[EIAC] & E1000_EIAC_MASK) |
+ E1000_ICR_OTHER_CAUSES;
+ } else {
+ effective_eiac = core->mac[EIAC] & E1000_EIAC_MASK;
+ }
+ core->mac[ICR] &= ~effective_eiac;
+}
+
+static void
+e1000e_msix_notify(E1000ECore *core, uint32_t causes)
+{
+ if (causes & E1000_ICR_RXQ0) {
+ e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
+ E1000_IVAR_RXQ0(core->mac[IVAR]));
+ }
+
+ if (causes & E1000_ICR_RXQ1) {
+ e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
+ E1000_IVAR_RXQ1(core->mac[IVAR]));
+ }
+
+ if (causes & E1000_ICR_TXQ0) {
+ e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
+ E1000_IVAR_TXQ0(core->mac[IVAR]));
+ }
+
+ if (causes & E1000_ICR_TXQ1) {
+ e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
+ E1000_IVAR_TXQ1(core->mac[IVAR]));
+ }
+
+ if (causes & E1000_ICR_OTHER) {
+ e1000e_msix_notify_one(core, E1000_ICR_OTHER,
+ E1000_IVAR_OTHER(core->mac[IVAR]));
+ }
+}
+
+static void
+e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
+{
+ if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
+ uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
+ if (vec < E1000E_MSIX_VEC_NUM) {
+ trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
+ msix_clr_pending(core->owner, vec);
+ } else {
+ trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
+ }
+ } else {
+ trace_e1000e_wrn_msix_invalid(cause, int_cfg);
+ }
+}
+
+static void
+e1000e_msix_clear(E1000ECore *core, uint32_t causes)
+{
+ if (causes & E1000_ICR_RXQ0) {
+ e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
+ E1000_IVAR_RXQ0(core->mac[IVAR]));
+ }
+
+ if (causes & E1000_ICR_RXQ1) {
+ e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
+ E1000_IVAR_RXQ1(core->mac[IVAR]));
+ }
+
+ if (causes & E1000_ICR_TXQ0) {
+ e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
+ E1000_IVAR_TXQ0(core->mac[IVAR]));
+ }
+
+ if (causes & E1000_ICR_TXQ1) {
+ e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
+ E1000_IVAR_TXQ1(core->mac[IVAR]));
+ }
+
+ if (causes & E1000_ICR_OTHER) {
+ e1000e_msix_clear_one(core, E1000_ICR_OTHER,
+ E1000_IVAR_OTHER(core->mac[IVAR]));
+ }
+}
+
+static inline void
+e1000e_fix_icr_asserted(E1000ECore *core)
+{
+ core->mac[ICR] &= ~E1000_ICR_ASSERTED;
+ if (core->mac[ICR]) {
+ core->mac[ICR] |= E1000_ICR_ASSERTED;
+ }
+
+ trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
+}
+
+static void
+e1000e_send_msi(E1000ECore *core, bool msix)
+{
+ uint32_t causes = core->mac[ICR] & core->mac[IMS] & ~E1000_ICR_ASSERTED;
+
+ if (msix) {
+ e1000e_msix_notify(core, causes);
+ } else {
+ if (!e1000e_itr_should_postpone(core)) {
+ trace_e1000e_irq_msi_notify(causes);
+ msi_notify(core->owner, 0);
+ }
+ }
+}
+
+static void
+e1000e_update_interrupt_state(E1000ECore *core)
+{
+ bool interrupts_pending;
+ bool is_msix = msix_enabled(core->owner);
+
+ /* Set ICR[OTHER] for MSI-X */
+ if (is_msix) {
+ if (core->mac[ICR] & core->mac[IMS] & E1000_ICR_OTHER_CAUSES) {
+ core->mac[ICR] |= E1000_ICR_OTHER;
+ trace_e1000e_irq_add_msi_other(core->mac[ICR]);
+ }
+ }
+
+ e1000e_fix_icr_asserted(core);
+
+ /*
+ * Make sure ICR and ICS registers have the same value.
+ * The spec says that the ICS register is write-only. However in practice,
+ * on real hardware ICS is readable, and for reads it has the same value as
+ * ICR (except that ICS does not have the clear on read behaviour of ICR).
+ *
+ * The VxWorks PRO/1000 driver uses this behaviour.
+ */
+ core->mac[ICS] = core->mac[ICR];
+
+ interrupts_pending = (core->mac[IMS] & core->mac[ICR]) ? true : false;
+
+ trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
+ core->mac[ICR], core->mac[IMS]);
+
+ if (is_msix || msi_enabled(core->owner)) {
+ if (interrupts_pending) {
+ e1000e_send_msi(core, is_msix);
+ }
+ } else {
+ if (interrupts_pending) {
+ if (!e1000e_itr_should_postpone(core)) {
+ e1000e_raise_legacy_irq(core);
+ }
+ } else {
+ e1000e_lower_legacy_irq(core);
+ }
+ }
+}
+
+static inline void
+e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
+{
+ trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
+
+ val |= e1000e_intmgr_collect_delayed_causes(core);
+ core->mac[ICR] |= val;
+
+ trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
+
+ e1000e_update_interrupt_state(core);
+}
+
+static inline void
+e1000e_autoneg_timer(void *opaque)
+{
+ E1000ECore *core = opaque;
+ if (!qemu_get_queue(core->owner_nic)->link_down) {
+ e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]);
+ e1000e_update_flowctl_status(core);
+ /* signal link status change to the guest */
+ e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
+ }
+}
+
+static inline uint16_t
+e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
+{
+ uint16_t index = (addr & 0x1ffff) >> 2;
+ return index + (mac_reg_access[index] & 0xfffe);
+}
+
+static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
+ [0] = {
+ [PHY_CTRL] = PHY_ANYPAGE | PHY_RW,
+ [PHY_STATUS] = PHY_ANYPAGE | PHY_R,
+ [PHY_ID1] = PHY_ANYPAGE | PHY_R,
+ [PHY_ID2] = PHY_ANYPAGE | PHY_R,
+ [PHY_AUTONEG_ADV] = PHY_ANYPAGE | PHY_RW,
+ [PHY_LP_ABILITY] = PHY_ANYPAGE | PHY_R,
+ [PHY_AUTONEG_EXP] = PHY_ANYPAGE | PHY_R,
+ [PHY_NEXT_PAGE_TX] = PHY_ANYPAGE | PHY_RW,
+ [PHY_LP_NEXT_PAGE] = PHY_ANYPAGE | PHY_R,
+ [PHY_1000T_CTRL] = PHY_ANYPAGE | PHY_RW,
+ [PHY_1000T_STATUS] = PHY_ANYPAGE | PHY_R,
+ [PHY_EXT_STATUS] = PHY_ANYPAGE | PHY_R,
+ [PHY_PAGE] = PHY_ANYPAGE | PHY_RW,
+
+ [PHY_COPPER_CTRL1] = PHY_RW,
+ [PHY_COPPER_STAT1] = PHY_R,
+ [PHY_COPPER_CTRL3] = PHY_RW,
+ [PHY_RX_ERR_CNTR] = PHY_R,
+ [PHY_OEM_BITS] = PHY_RW,
+ [PHY_BIAS_1] = PHY_RW,
+ [PHY_BIAS_2] = PHY_RW,
+ [PHY_COPPER_INT_ENABLE] = PHY_RW,
+ [PHY_COPPER_STAT2] = PHY_R,
+ [PHY_COPPER_CTRL2] = PHY_RW
+ },
+ [2] = {
+ [PHY_MAC_CTRL1] = PHY_RW,
+ [PHY_MAC_INT_ENABLE] = PHY_RW,
+ [PHY_MAC_STAT] = PHY_R,
+ [PHY_MAC_CTRL2] = PHY_RW
+ },
+ [3] = {
+ [PHY_LED_03_FUNC_CTRL1] = PHY_RW,
+ [PHY_LED_03_POL_CTRL] = PHY_RW,
+ [PHY_LED_TIMER_CTRL] = PHY_RW,
+ [PHY_LED_45_CTRL] = PHY_RW
+ },
+ [5] = {
+ [PHY_1000T_SKEW] = PHY_R,
+ [PHY_1000T_SWAP] = PHY_R
+ },
+ [6] = {
+ [PHY_CRC_COUNTERS] = PHY_R
+ }
+};
+
+static bool
+e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
+ char cap, uint8_t *page)
+{
+ *page =
+ (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
+ : core->phy[0][PHY_PAGE];
+
+ if (*page >= E1000E_PHY_PAGES) {
+ return false;
+ }
+
+ return e1000e_phy_regcap[*page][addr] & cap;
+}
+
+static void
+e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
+ uint32_t addr, uint16_t data)
+{
+ assert(page < E1000E_PHY_PAGES);
+ assert(addr < E1000E_PHY_PAGE_SIZE);
+
+ if (e1000e_phyreg_writeops[page][addr]) {
+ e1000e_phyreg_writeops[page][addr](core, addr, data);
+ } else {
+ core->phy[page][addr] = data;
+ }
+}
+
+static void
+e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
+{
+ uint32_t data = val & E1000_MDIC_DATA_MASK;
+ uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
+ uint8_t page;
+
+ if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
+ val = core->mac[MDIC] | E1000_MDIC_ERROR;
+ } else if (val & E1000_MDIC_OP_READ) {
+ if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
+ trace_e1000e_core_mdic_read_unhandled(page, addr);
+ val |= E1000_MDIC_ERROR;
+ } else {
+ val = (val ^ data) | core->phy[page][addr];
+ trace_e1000e_core_mdic_read(page, addr, val);
+ }
+ } else if (val & E1000_MDIC_OP_WRITE) {
+ if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
+ trace_e1000e_core_mdic_write_unhandled(page, addr);
+ val |= E1000_MDIC_ERROR;
+ } else {
+ trace_e1000e_core_mdic_write(page, addr, data);
+ e1000e_phy_reg_write(core, page, addr, data);
+ }
+ }
+ core->mac[MDIC] = val | E1000_MDIC_READY;
+
+ if (val & E1000_MDIC_INT_EN) {
+ e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
+ }
+}
+
+static void
+e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
+{
+ core->mac[index] = val & 0xffff;
+ trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
+ e1000e_start_recv(core);
+}
+
+static void
+e1000e_set_status(E1000ECore *core, int index, uint32_t val)
+{
+ if ((val & E1000_STATUS_PHYRA) == 0) {
+ core->mac[index] &= ~E1000_STATUS_PHYRA;
+ }
+}
+
+static void
+e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
+{
+ trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
+ !!(val & E1000_CTRL_EXT_SPD_BYPS));
+
+ /* Zero self-clearing bits */
+ val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
+ core->mac[CTRL_EXT] = val;
+}
+
+static void
+e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
+{
+ int i;
+
+ core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
+
+ if (msix_enabled(core->owner)) {
+ return;
+ }
+
+ for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
+ if (core->mac[PBACLR] & BIT(i)) {
+ msix_clr_pending(core->owner, i);
+ }
+ }
+}
+
+static void
+e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
+{
+ core->mac[FCRTH] = val & 0xFFF8;
+}
+
+static void
+e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
+{
+ core->mac[FCRTL] = val & 0x8000FFF8;
+}
+
+static inline void
+e1000e_set_16bit(E1000ECore *core, int index, uint32_t val)
+{
+ core->mac[index] = val & 0xffff;
+}
+
+static void
+e1000e_set_12bit(E1000ECore *core, int index, uint32_t val)
+{
+ core->mac[index] = val & 0xfff;
+}
+
+static void
+e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
+{
+ core->mac[VET] = val & 0xffff;
+ core->vet = le16_to_cpu(core->mac[VET]);
+ trace_e1000e_vlan_vet(core->vet);
+}
+
+static void
+e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
+{
+ core->mac[index] = val & E1000_XDLEN_MASK;
+}
+
+static void
+e1000e_set_dbal(E1000ECore *core, int index, uint32_t val)
+{
+ core->mac[index] = val & E1000_XDBAL_MASK;
+}
+
+static void
+e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
+{
+ E1000E_TxRing txr;
+ core->mac[index] = val;
+
+ if (core->mac[TARC0] & E1000_TARC_ENABLE) {
+ e1000e_tx_ring_init(core, &txr, 0);
+ e1000e_start_xmit(core, &txr);
+ }
+
+ if (core->mac[TARC1] & E1000_TARC_ENABLE) {
+ e1000e_tx_ring_init(core, &txr, 1);
+ e1000e_start_xmit(core, &txr);
+ }
+}
+
+static void
+e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
+{
+ E1000E_TxRing txr;
+ int qidx = e1000e_mq_queue_idx(TDT, index);
+ uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1;
+
+ core->mac[index] = val & 0xffff;
+
+ if (core->mac[tarc_reg] & E1000_TARC_ENABLE) {
+ e1000e_tx_ring_init(core, &txr, qidx);
+ e1000e_start_xmit(core, &txr);
+ }
+}
+
+static void
+e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
+{
+ trace_e1000e_irq_write_ics(val);
+ e1000e_set_interrupt_cause(core, val);
+}
+
+static void
+e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
+{
+ if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
+ (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
+ trace_e1000e_irq_icr_process_iame();
+ e1000e_clear_ims_bits(core, core->mac[IAM]);
+ }
+
+ trace_e1000e_irq_icr_write(val, core->mac[ICR], core->mac[ICR] & ~val);
+ core->mac[ICR] &= ~val;
+ e1000e_update_interrupt_state(core);
+}
+
+static void
+e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
+{
+ trace_e1000e_irq_ims_clear_set_imc(val);
+ e1000e_clear_ims_bits(core, val);
+ e1000e_update_interrupt_state(core);
+}
+
+static void
+e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
+{
+ static const uint32_t ims_ext_mask =
+ E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
+ E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
+ E1000_IMS_OTHER;
+
+ static const uint32_t ims_valid_mask =
+ E1000_IMS_TXDW | E1000_IMS_TXQE | E1000_IMS_LSC |
+ E1000_IMS_RXDMT0 | E1000_IMS_RXO | E1000_IMS_RXT0 |
+ E1000_IMS_MDAC | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
+ E1000_IMS_ACK | E1000_IMS_MNG | E1000_IMS_RXQ0 |
+ E1000_IMS_RXQ1 | E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
+ E1000_IMS_OTHER;
+
+ uint32_t valid_val = val & ims_valid_mask;
+
+ trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
+ core->mac[IMS] |= valid_val;
+
+ if ((valid_val & ims_ext_mask) &&
+ (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
+ msix_enabled(core->owner)) {
+ e1000e_msix_clear(core, valid_val);
+ }
+
+ if ((valid_val == ims_valid_mask) &&
+ (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
+ trace_e1000e_irq_fire_all_timers(val);
+ e1000e_intrmgr_fire_all_timers(core);
+ }
+
+ e1000e_update_interrupt_state(core);
+}
+
+static void
+e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
+{
+ e1000e_set_16bit(core, index, val);
+
+ if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
+ trace_e1000e_irq_rdtr_fpd_running();
+ e1000e_intrmgr_fire_delayed_interrupts(core);
+ } else {
+ trace_e1000e_irq_rdtr_fpd_not_running();
+ }
+}
+
+static void
+e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
+{
+ e1000e_set_16bit(core, index, val);
+
+ if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
+ trace_e1000e_irq_tidv_fpd_running();
+ e1000e_intrmgr_fire_delayed_interrupts(core);
+ } else {
+ trace_e1000e_irq_tidv_fpd_not_running();
+ }
+}
+
+static uint32_t
+e1000e_mac_readreg(E1000ECore *core, int index)
+{
+ return core->mac[index];
+}
+
+static uint32_t
+e1000e_mac_ics_read(E1000ECore *core, int index)
+{
+ trace_e1000e_irq_read_ics(core->mac[ICS]);
+ return core->mac[ICS];
+}
+
+static uint32_t
+e1000e_mac_ims_read(E1000ECore *core, int index)
+{
+ trace_e1000e_irq_read_ims(core->mac[IMS]);
+ return core->mac[IMS];
+}
+
+#define E1000E_LOW_BITS_READ_FUNC(num) \
+ static uint32_t \
+ e1000e_mac_low##num##_read(E1000ECore *core, int index) \
+ { \
+ return core->mac[index] & (BIT(num) - 1); \
+ } \
+
+#define E1000E_LOW_BITS_READ(num) \
+ e1000e_mac_low##num##_read
+
+E1000E_LOW_BITS_READ_FUNC(4);
+E1000E_LOW_BITS_READ_FUNC(6);
+E1000E_LOW_BITS_READ_FUNC(11);
+E1000E_LOW_BITS_READ_FUNC(13);
+E1000E_LOW_BITS_READ_FUNC(16);
+
+static uint32_t
+e1000e_mac_swsm_read(E1000ECore *core, int index)
+{
+ uint32_t val = core->mac[SWSM];
+ core->mac[SWSM] = val | 1;
+ return val;
+}
+
+static uint32_t
+e1000e_mac_itr_read(E1000ECore *core, int index)
+{
+ return core->itr_guest_value;
+}
+
+static uint32_t
+e1000e_mac_eitr_read(E1000ECore *core, int index)
+{
+ return core->eitr_guest_value[index - EITR];
+}
+
+static uint32_t
+e1000e_mac_icr_read(E1000ECore *core, int index)
+{
+ uint32_t ret = core->mac[ICR];
+ trace_e1000e_irq_icr_read_entry(ret);
+
+ if (core->mac[IMS] == 0) {
+ trace_e1000e_irq_icr_clear_zero_ims();
+ core->mac[ICR] = 0;
+ }
+
+ if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
+ (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
+ trace_e1000e_irq_icr_clear_iame();
+ core->mac[ICR] = 0;
+ trace_e1000e_irq_icr_process_iame();
+ e1000e_clear_ims_bits(core, core->mac[IAM]);
+ }
+
+ trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
+ e1000e_update_interrupt_state(core);
+ return ret;
+}
+
+static uint32_t
+e1000e_mac_read_clr4(E1000ECore *core, int index)
+{
+ uint32_t ret = core->mac[index];
+
+ core->mac[index] = 0;
+ return ret;
+}
+
+static uint32_t
+e1000e_mac_read_clr8(E1000ECore *core, int index)
+{
+ uint32_t ret = core->mac[index];
+
+ core->mac[index] = 0;
+ core->mac[index - 1] = 0;
+ return ret;
+}
+
+static uint32_t
+e1000e_get_ctrl(E1000ECore *core, int index)
+{
+ uint32_t val = core->mac[CTRL];
+
+ trace_e1000e_link_read_params(
+ !!(val & E1000_CTRL_ASDE),
+ (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
+ !!(val & E1000_CTRL_FRCSPD),
+ !!(val & E1000_CTRL_FRCDPX),
+ !!(val & E1000_CTRL_RFCE),
+ !!(val & E1000_CTRL_TFCE));
+
+ return val;
+}
+
+static uint32_t
+e1000e_get_status(E1000ECore *core, int index)
+{
+ uint32_t res = core->mac[STATUS];
+
+ if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
+ res |= E1000_STATUS_GIO_MASTER_ENABLE;
+ }
+
+ if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
+ res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
+ } else {
+ res |= E1000_STATUS_FD;
+ }
+
+ if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
+ (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
+ switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
+ case E1000_CTRL_SPD_10:
+ res |= E1000_STATUS_SPEED_10;
+ break;
+ case E1000_CTRL_SPD_100:
+ res |= E1000_STATUS_SPEED_100;
+ break;
+ case E1000_CTRL_SPD_1000:
+ default:
+ res |= E1000_STATUS_SPEED_1000;
+ break;
+ }
+ } else {
+ res |= E1000_STATUS_SPEED_1000;
+ }
+
+ trace_e1000e_link_status(
+ !!(res & E1000_STATUS_LU),
+ !!(res & E1000_STATUS_FD),
+ (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
+ (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
+
+ return res;
+}
+
+static uint32_t
+e1000e_get_tarc(E1000ECore *core, int index)
+{
+ return core->mac[index] & ((BIT(11) - 1) |
+ BIT(27) |
+ BIT(28) |
+ BIT(29) |
+ BIT(30));
+}
+
+static void
+e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
+{
+ core->mac[index] = val;
+}
+
+static void
+e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
+{
+ uint32_t macaddr[2];
+
+ core->mac[index] = val;
+
+ macaddr[0] = cpu_to_le32(core->mac[RA]);
+ macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
+ qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
+ (uint8_t *) macaddr);
+
+ trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
+}
+
+static void
+e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
+{
+ static const uint32_t ro_bits = E1000_EECD_PRES |
+ E1000_EECD_AUTO_RD |
+ E1000_EECD_SIZE_EX_MASK;
+
+ core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
+}
+
+static void
+e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
+{
+ uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
+ uint32_t flags = 0;
+ uint32_t data = 0;
+
+ if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
+ data = core->eeprom[addr];
+ flags = E1000_EERW_DONE;
+ }
+
+ core->mac[EERD] = flags |
+ (addr << E1000_EERW_ADDR_SHIFT) |
+ (data << E1000_EERW_DATA_SHIFT);
+}
+
+static void
+e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
+{
+ uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
+ uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
+ uint32_t flags = 0;
+
+ if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
+ core->eeprom[addr] = data;
+ flags = E1000_EERW_DONE;
+ }
+
+ core->mac[EERD] = flags |
+ (addr << E1000_EERW_ADDR_SHIFT) |
+ (data << E1000_EERW_DATA_SHIFT);
+}
+
+static void
+e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
+{
+ core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
+}
+
+static void
+e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
+{
+ uint32_t interval = val & 0xffff;
+
+ trace_e1000e_irq_itr_set(val);
+
+ core->itr_guest_value = interval;
+ core->mac[index] = MAX(interval, E1000E_MIN_XITR);
+}
+
+static void
+e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
+{
+ uint32_t interval = val & 0xffff;
+ uint32_t eitr_num = index - EITR;
+
+ trace_e1000e_irq_eitr_set(eitr_num, val);
+
+ core->eitr_guest_value[eitr_num] = interval;
+ core->mac[index] = MAX(interval, E1000E_MIN_XITR);
+}
+
+static void
+e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
+{
+ if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
+ hw_error("e1000e: PSRCTL.BSIZE0 cannot be zero");
+ }
+
+ if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
+ hw_error("e1000e: PSRCTL.BSIZE1 cannot be zero");
+ }
+
+ core->mac[PSRCTL] = val;
+}
+
+static void
+e1000e_update_rx_offloads(E1000ECore *core)
+{
+ int cso_state = e1000e_rx_l4_cso_enabled(core);
+
+ trace_e1000e_rx_set_cso(cso_state);
+
+ if (core->has_vnet) {
+ qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
+ cso_state, 0, 0, 0, 0);
+ }
+}
+
+static void
+e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
+{
+ core->mac[RXCSUM] = val;
+ e1000e_update_rx_offloads(core);
+}
+
+static void
+e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
+{
+ uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
+ core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
+}
+
+#define e1000e_getreg(x) [x] = e1000e_mac_readreg
+static uint32_t (*e1000e_macreg_readops[])(E1000ECore *, int) = {
+ e1000e_getreg(PBA),
+ e1000e_getreg(WUFC),
+ e1000e_getreg(MANC),
+ e1000e_getreg(TOTL),
+ e1000e_getreg(RDT0),
+ e1000e_getreg(RDBAH0),
+ e1000e_getreg(TDBAL1),
+ e1000e_getreg(RDLEN0),
+ e1000e_getreg(RDH1),
+ e1000e_getreg(LATECOL),
+ e1000e_getreg(SEC),
+ e1000e_getreg(XONTXC),
+ e1000e_getreg(WUS),
+ e1000e_getreg(GORCL),
+ e1000e_getreg(MGTPRC),
+ e1000e_getreg(EERD),
+ e1000e_getreg(EIAC),
+ e1000e_getreg(PSRCTL),
+ e1000e_getreg(MANC2H),
+ e1000e_getreg(RXCSUM),
+ e1000e_getreg(GSCL_3),
+ e1000e_getreg(GSCN_2),
+ e1000e_getreg(RSRPD),
+ e1000e_getreg(RDBAL1),
+ e1000e_getreg(FCAH),
+ e1000e_getreg(FCRTH),
+ e1000e_getreg(FLOP),
+ e1000e_getreg(FLASHT),
+ e1000e_getreg(RXSTMPH),
+ e1000e_getreg(TXSTMPL),
+ e1000e_getreg(TIMADJL),
+ e1000e_getreg(TXDCTL),
+ e1000e_getreg(RDH0),
+ e1000e_getreg(TDT1),
+ e1000e_getreg(TNCRS),
+ e1000e_getreg(RJC),
+ e1000e_getreg(IAM),
+ e1000e_getreg(GSCL_2),
+ e1000e_getreg(RDBAH1),
+ e1000e_getreg(FLSWDATA),
+ e1000e_getreg(RXSATRH),
+ e1000e_getreg(TIPG),
+ e1000e_getreg(FLMNGCTL),
+ e1000e_getreg(FLMNGCNT),
+ e1000e_getreg(TSYNCTXCTL),
+ e1000e_getreg(EXTCNF_SIZE),
+ e1000e_getreg(EXTCNF_CTRL),
+ e1000e_getreg(EEMNGDATA),
+ e1000e_getreg(CTRL_EXT),
+ e1000e_getreg(SYSTIMH),
+ e1000e_getreg(EEMNGCTL),
+ e1000e_getreg(FLMNGDATA),
+ e1000e_getreg(TSYNCRXCTL),
+ e1000e_getreg(TDH),
+ e1000e_getreg(LEDCTL),
+ e1000e_getreg(STATUS),
+ e1000e_getreg(TCTL),
+ e1000e_getreg(TDBAL),
+ e1000e_getreg(TDLEN),
+ e1000e_getreg(TDH1),
+ e1000e_getreg(RADV),
+ e1000e_getreg(ECOL),
+ e1000e_getreg(DC),
+ e1000e_getreg(RLEC),
+ e1000e_getreg(XOFFTXC),
+ e1000e_getreg(RFC),
+ e1000e_getreg(RNBC),
+ e1000e_getreg(MGTPTC),
+ e1000e_getreg(TIMINCA),
+ e1000e_getreg(RXCFGL),
+ e1000e_getreg(MFUTP01),
+ e1000e_getreg(FACTPS),
+ e1000e_getreg(GSCL_1),
+ e1000e_getreg(GSCN_0),
+ e1000e_getreg(GCR2),
+ e1000e_getreg(RDT1),
+ e1000e_getreg(PBACLR),
+ e1000e_getreg(FCTTV),
+ e1000e_getreg(EEWR),
+ e1000e_getreg(FLSWCTL),
+ e1000e_getreg(RXDCTL1),
+ e1000e_getreg(RXSATRL),
+ e1000e_getreg(SYSTIML),
+ e1000e_getreg(RXUDP),
+ e1000e_getreg(TORL),
+ e1000e_getreg(TDLEN1),
+ e1000e_getreg(MCC),
+ e1000e_getreg(WUC),
+ e1000e_getreg(EECD),
+ e1000e_getreg(MFUTP23),
+ e1000e_getreg(RAID),
+ e1000e_getreg(FCRTV),
+ e1000e_getreg(TXDCTL1),
+ e1000e_getreg(RCTL),
+ e1000e_getreg(TDT),
+ e1000e_getreg(MDIC),
+ e1000e_getreg(FCRUC),
+ e1000e_getreg(VET),
+ e1000e_getreg(RDBAL0),
+ e1000e_getreg(TDBAH1),
+ e1000e_getreg(RDTR),
+ e1000e_getreg(SCC),
+ e1000e_getreg(COLC),
+ e1000e_getreg(CEXTERR),
+ e1000e_getreg(XOFFRXC),
+ e1000e_getreg(IPAV),
+ e1000e_getreg(GOTCL),
+ e1000e_getreg(MGTPDC),
+ e1000e_getreg(GCR),
+ e1000e_getreg(IVAR),
+ e1000e_getreg(POEMB),
+ e1000e_getreg(MFVAL),
+ e1000e_getreg(FUNCTAG),
+ e1000e_getreg(GSCL_4),
+ e1000e_getreg(GSCN_3),
+ e1000e_getreg(MRQC),
+ e1000e_getreg(RDLEN1),
+ e1000e_getreg(FCT),
+ e1000e_getreg(FLA),
+ e1000e_getreg(FLOL),
+ e1000e_getreg(RXDCTL),
+ e1000e_getreg(RXSTMPL),
+ e1000e_getreg(TXSTMPH),
+ e1000e_getreg(TIMADJH),
+ e1000e_getreg(FCRTL),
+ e1000e_getreg(TDBAH),
+ e1000e_getreg(TADV),
+ e1000e_getreg(XONRXC),
+ e1000e_getreg(TSCTFC),
+ e1000e_getreg(RFCTL),
+ e1000e_getreg(GSCN_1),
+ e1000e_getreg(FCAL),
+ e1000e_getreg(FLSWCNT),
+
+ [TOTH] = e1000e_mac_read_clr8,
+ [GOTCH] = e1000e_mac_read_clr8,
+ [PRC64] = e1000e_mac_read_clr4,
+ [PRC255] = e1000e_mac_read_clr4,
+ [PRC1023] = e1000e_mac_read_clr4,
+ [PTC64] = e1000e_mac_read_clr4,
+ [PTC255] = e1000e_mac_read_clr4,
+ [PTC1023] = e1000e_mac_read_clr4,
+ [GPRC] = e1000e_mac_read_clr4,
+ [TPT] = e1000e_mac_read_clr4,
+ [RUC] = e1000e_mac_read_clr4,
+ [BPRC] = e1000e_mac_read_clr4,
+ [MPTC] = e1000e_mac_read_clr4,
+ [IAC] = e1000e_mac_read_clr4,
+ [ICR] = e1000e_mac_icr_read,
+ [RDFH] = E1000E_LOW_BITS_READ(13),
+ [RDFHS] = E1000E_LOW_BITS_READ(13),
+ [RDFPC] = E1000E_LOW_BITS_READ(13),
+ [TDFH] = E1000E_LOW_BITS_READ(13),
+ [TDFHS] = E1000E_LOW_BITS_READ(13),
+ [STATUS] = e1000e_get_status,
+ [TARC0] = e1000e_get_tarc,
+ [PBS] = E1000E_LOW_BITS_READ(6),
+ [ICS] = e1000e_mac_ics_read,
+ [AIT] = E1000E_LOW_BITS_READ(16),
+ [TORH] = e1000e_mac_read_clr8,
+ [GORCH] = e1000e_mac_read_clr8,
+ [PRC127] = e1000e_mac_read_clr4,
+ [PRC511] = e1000e_mac_read_clr4,
+ [PRC1522] = e1000e_mac_read_clr4,
+ [PTC127] = e1000e_mac_read_clr4,
+ [PTC511] = e1000e_mac_read_clr4,
+ [PTC1522] = e1000e_mac_read_clr4,
+ [GPTC] = e1000e_mac_read_clr4,
+ [TPR] = e1000e_mac_read_clr4,
+ [ROC] = e1000e_mac_read_clr4,
+ [MPRC] = e1000e_mac_read_clr4,
+ [BPTC] = e1000e_mac_read_clr4,
+ [TSCTC] = e1000e_mac_read_clr4,
+ [ITR] = e1000e_mac_itr_read,
+ [RDFT] = E1000E_LOW_BITS_READ(13),
+ [RDFTS] = E1000E_LOW_BITS_READ(13),
+ [TDFPC] = E1000E_LOW_BITS_READ(13),
+ [TDFT] = E1000E_LOW_BITS_READ(13),
+ [TDFTS] = E1000E_LOW_BITS_READ(13),
+ [CTRL] = e1000e_get_ctrl,
+ [TARC1] = e1000e_get_tarc,
+ [SWSM] = e1000e_mac_swsm_read,
+ [IMS] = e1000e_mac_ims_read,
+
+ [CRCERRS ... MPC] = e1000e_mac_readreg,
+ [IP6AT ... IP6AT + 3] = e1000e_mac_readreg,
+ [IP4AT ... IP4AT + 6] = e1000e_mac_readreg,
+ [RA ... RA + 31] = e1000e_mac_readreg,
+ [WUPM ... WUPM + 31] = e1000e_mac_readreg,
+ [MTA ... MTA + 127] = e1000e_mac_readreg,
+ [VFTA ... VFTA + 127] = e1000e_mac_readreg,
+ [FFMT ... FFMT + 254] = E1000E_LOW_BITS_READ(4),
+ [FFVT ... FFVT + 254] = e1000e_mac_readreg,
+ [MDEF ... MDEF + 7] = e1000e_mac_readreg,
+ [FFLT ... FFLT + 10] = E1000E_LOW_BITS_READ(11),
+ [FTFT ... FTFT + 254] = e1000e_mac_readreg,
+ [PBM ... PBM + 10239] = e1000e_mac_readreg,
+ [RETA ... RETA + 31] = e1000e_mac_readreg,
+ [RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
+ [MAVTV0 ... MAVTV3] = e1000e_mac_readreg,
+ [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
+};
+enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
+
+#define e1000e_putreg(x) [x] = e1000e_mac_writereg
+static void (*e1000e_macreg_writeops[])(E1000ECore *, int, uint32_t) = {
+ e1000e_putreg(PBA),
+ e1000e_putreg(SWSM),
+ e1000e_putreg(WUFC),
+ e1000e_putreg(RDBAH1),
+ e1000e_putreg(TDBAH),
+ e1000e_putreg(TXDCTL),
+ e1000e_putreg(RDBAH0),
+ e1000e_putreg(LEDCTL),
+ e1000e_putreg(FCAL),
+ e1000e_putreg(FCRUC),
+ e1000e_putreg(AIT),
+ e1000e_putreg(TDFH),
+ e1000e_putreg(TDFT),
+ e1000e_putreg(TDFHS),
+ e1000e_putreg(TDFTS),
+ e1000e_putreg(TDFPC),
+ e1000e_putreg(WUC),
+ e1000e_putreg(WUS),
+ e1000e_putreg(RDFH),
+ e1000e_putreg(RDFT),
+ e1000e_putreg(RDFHS),
+ e1000e_putreg(RDFTS),
+ e1000e_putreg(RDFPC),
+ e1000e_putreg(IPAV),
+ e1000e_putreg(TDBAH1),
+ e1000e_putreg(TIMINCA),
+ e1000e_putreg(IAM),
+ e1000e_putreg(EIAC),
+ e1000e_putreg(IVAR),
+ e1000e_putreg(TARC0),
+ e1000e_putreg(TARC1),
+ e1000e_putreg(FLSWDATA),
+ e1000e_putreg(POEMB),
+ e1000e_putreg(PBS),
+ e1000e_putreg(MFUTP01),
+ e1000e_putreg(MFUTP23),
+ e1000e_putreg(MANC),
+ e1000e_putreg(MANC2H),
+ e1000e_putreg(MFVAL),
+ e1000e_putreg(EXTCNF_CTRL),
+ e1000e_putreg(FACTPS),
+ e1000e_putreg(FUNCTAG),
+ e1000e_putreg(GSCL_1),
+ e1000e_putreg(GSCL_2),
+ e1000e_putreg(GSCL_3),
+ e1000e_putreg(GSCL_4),
+ e1000e_putreg(GSCN_0),
+ e1000e_putreg(GSCN_1),
+ e1000e_putreg(GSCN_2),
+ e1000e_putreg(GSCN_3),
+ e1000e_putreg(GCR2),
+ e1000e_putreg(MRQC),
+ e1000e_putreg(FLOP),
+ e1000e_putreg(FLOL),
+ e1000e_putreg(FLSWCTL),
+ e1000e_putreg(FLSWCNT),
+ e1000e_putreg(FLA),
+ e1000e_putreg(RXDCTL1),
+ e1000e_putreg(TXDCTL1),
+ e1000e_putreg(TIPG),
+ e1000e_putreg(RXSTMPH),
+ e1000e_putreg(RXSTMPL),
+ e1000e_putreg(RXSATRL),
+ e1000e_putreg(RXSATRH),
+ e1000e_putreg(TXSTMPL),
+ e1000e_putreg(TXSTMPH),
+ e1000e_putreg(SYSTIML),
+ e1000e_putreg(SYSTIMH),
+ e1000e_putreg(TIMADJL),
+ e1000e_putreg(TIMADJH),
+ e1000e_putreg(RXUDP),
+ e1000e_putreg(RXCFGL),
+ e1000e_putreg(TSYNCRXCTL),
+ e1000e_putreg(TSYNCTXCTL),
+ e1000e_putreg(FLSWDATA),
+ e1000e_putreg(EXTCNF_SIZE),
+ e1000e_putreg(EEMNGCTL),
+ e1000e_putreg(RA),
+
+ [TDH1] = e1000e_set_16bit,
+ [TDT1] = e1000e_set_tdt,
+ [TCTL] = e1000e_set_tctl,
+ [TDT] = e1000e_set_tdt,
+ [MDIC] = e1000e_set_mdic,
+ [ICS] = e1000e_set_ics,
+ [TDH] = e1000e_set_16bit,
+ [RDH0] = e1000e_set_16bit,
+ [RDT0] = e1000e_set_rdt,
+ [IMC] = e1000e_set_imc,
+ [IMS] = e1000e_set_ims,
+ [ICR] = e1000e_set_icr,
+ [EECD] = e1000e_set_eecd,
+ [RCTL] = e1000e_set_rx_control,
+ [CTRL] = e1000e_set_ctrl,
+ [RDTR] = e1000e_set_rdtr,
+ [RADV] = e1000e_set_16bit,
+ [TADV] = e1000e_set_16bit,
+ [ITR] = e1000e_set_itr,
+ [EERD] = e1000e_set_eerd,
+ [GCR] = e1000e_set_gcr,
+ [PSRCTL] = e1000e_set_psrctl,
+ [RXCSUM] = e1000e_set_rxcsum,
+ [RAID] = e1000e_set_16bit,
+ [RSRPD] = e1000e_set_12bit,
+ [TIDV] = e1000e_set_tidv,
+ [TDLEN1] = e1000e_set_dlen,
+ [TDLEN] = e1000e_set_dlen,
+ [RDLEN0] = e1000e_set_dlen,
+ [RDLEN1] = e1000e_set_dlen,
+ [TDBAL] = e1000e_set_dbal,
+ [TDBAL1] = e1000e_set_dbal,
+ [RDBAL0] = e1000e_set_dbal,
+ [RDBAL1] = e1000e_set_dbal,
+ [RDH1] = e1000e_set_16bit,
+ [RDT1] = e1000e_set_rdt,
+ [STATUS] = e1000e_set_status,
+ [PBACLR] = e1000e_set_pbaclr,
+ [CTRL_EXT] = e1000e_set_ctrlext,
+ [FCAH] = e1000e_set_16bit,
+ [FCT] = e1000e_set_16bit,
+ [FCTTV] = e1000e_set_16bit,
+ [FCRTV] = e1000e_set_16bit,
+ [FCRTH] = e1000e_set_fcrth,
+ [FCRTL] = e1000e_set_fcrtl,
+ [VET] = e1000e_set_vet,
+ [RXDCTL] = e1000e_set_rxdctl,
+ [FLASHT] = e1000e_set_16bit,
+ [EEWR] = e1000e_set_eewr,
+ [CTRL_DUP] = e1000e_set_ctrl,
+ [RFCTL] = e1000e_set_rfctl,
+ [RA + 1] = e1000e_mac_setmacaddr,
+
+ [IP6AT ... IP6AT + 3] = e1000e_mac_writereg,
+ [IP4AT ... IP4AT + 6] = e1000e_mac_writereg,
+ [RA + 2 ... RA + 31] = e1000e_mac_writereg,
+ [WUPM ... WUPM + 31] = e1000e_mac_writereg,
+ [MTA ... MTA + 127] = e1000e_mac_writereg,
+ [VFTA ... VFTA + 127] = e1000e_mac_writereg,
+ [FFMT ... FFMT + 254] = e1000e_mac_writereg,
+ [FFVT ... FFVT + 254] = e1000e_mac_writereg,
+ [PBM ... PBM + 10239] = e1000e_mac_writereg,
+ [MDEF ... MDEF + 7] = e1000e_mac_writereg,
+ [FFLT ... FFLT + 10] = e1000e_mac_writereg,
+ [FTFT ... FTFT + 254] = e1000e_mac_writereg,
+ [RETA ... RETA + 31] = e1000e_mac_writereg,
+ [RSSRK ... RSSRK + 31] = e1000e_mac_writereg,
+ [MAVTV0 ... MAVTV3] = e1000e_mac_writereg,
+ [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
+};
+enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
+
+enum { MAC_ACCESS_PARTIAL = 1 };
+
+/* The array below combines alias offsets of the index values for the
+ * MAC registers that have aliases, with the indication of not fully
+ * implemented registers (lowest bit). This combination is possible
+ * because all of the offsets are even. */
+static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
+ /* Alias index offsets */
+ [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
+ [RDH0_A] = 0x09bc, [RDT0_A] = 0x09bc, [RDTR_A] = 0x09c6,
+ [RDFH_A] = 0xe904, [RDFT_A] = 0xe904,
+ [TDH_A] = 0x0cf8, [TDT_A] = 0x0cf8, [TIDV_A] = 0x0cf8,
+ [TDFH_A] = 0xed00, [TDFT_A] = 0xed00,
+ [RA_A ... RA_A + 31] = 0x14f0,
+ [VFTA_A ... VFTA_A + 127] = 0x1400,
+ [RDBAL0_A ... RDLEN0_A] = 0x09bc,
+ [TDBAL_A ... TDLEN_A] = 0x0cf8,
+ /* Access options */
+ [RDFH] = MAC_ACCESS_PARTIAL, [RDFT] = MAC_ACCESS_PARTIAL,
+ [RDFHS] = MAC_ACCESS_PARTIAL, [RDFTS] = MAC_ACCESS_PARTIAL,
+ [RDFPC] = MAC_ACCESS_PARTIAL,
+ [TDFH] = MAC_ACCESS_PARTIAL, [TDFT] = MAC_ACCESS_PARTIAL,
+ [TDFHS] = MAC_ACCESS_PARTIAL, [TDFTS] = MAC_ACCESS_PARTIAL,
+ [TDFPC] = MAC_ACCESS_PARTIAL, [EECD] = MAC_ACCESS_PARTIAL,
+ [PBM] = MAC_ACCESS_PARTIAL, [FLA] = MAC_ACCESS_PARTIAL,
+ [FCAL] = MAC_ACCESS_PARTIAL, [FCAH] = MAC_ACCESS_PARTIAL,
+ [FCT] = MAC_ACCESS_PARTIAL, [FCTTV] = MAC_ACCESS_PARTIAL,
+ [FCRTV] = MAC_ACCESS_PARTIAL, [FCRTL] = MAC_ACCESS_PARTIAL,
+ [FCRTH] = MAC_ACCESS_PARTIAL, [TXDCTL] = MAC_ACCESS_PARTIAL,
+ [TXDCTL1] = MAC_ACCESS_PARTIAL,
+ [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
+};
+
+void
+e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
+{
+ uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
+
+ if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
+ if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
+ trace_e1000e_wrn_regs_write_trivial(index << 2);
+ }
+ trace_e1000e_core_write(index << 2, size, val);
+ e1000e_macreg_writeops[index](core, index, val);
+ } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
+ trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
+ } else {
+ trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
+ }
+}
+
+uint64_t
+e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
+{
+ uint64_t val;
+ uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
+
+ if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
+ if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
+ trace_e1000e_wrn_regs_read_trivial(index << 2);
+ }
+ val = e1000e_macreg_readops[index](core, index);
+ trace_e1000e_core_read(index << 2, size, val);
+ return val;
+ } else {
+ trace_e1000e_wrn_regs_read_unknown(index << 2, size);
+ }
+ return 0;
+}
+
+static inline void
+e1000e_autoneg_pause(E1000ECore *core)
+{
+ timer_del(core->autoneg_timer);
+}
+
+static void
+e1000e_autoneg_resume(E1000ECore *core)
+{
+ if (e1000e_have_autoneg(core) &&
+ !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
+ qemu_get_queue(core->owner_nic)->link_down = false;
+ timer_mod(core->autoneg_timer,
+ qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
+ }
+}
+
+static void
+e1000e_vm_state_change(void *opaque, int running, RunState state)
+{
+ E1000ECore *core = opaque;
+
+ if (running) {
+ trace_e1000e_vm_state_running();
+ e1000e_intrmgr_resume(core);
+ e1000e_autoneg_resume(core);
+ } else {
+ trace_e1000e_vm_state_stopped();
+ e1000e_autoneg_pause(core);
+ e1000e_intrmgr_pause(core);
+ }
+}
+
+void
+e1000e_core_pci_realize(E1000ECore *core,
+ const uint16_t *eeprom_templ,
+ uint32_t eeprom_size,
+ const uint8_t *macaddr)
+{
+ int i;
+
+ core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
+ e1000e_autoneg_timer, core);
+ e1000e_intrmgr_pci_realize(core);
+
+ core->vmstate =
+ qemu_add_vm_change_state_handler(e1000e_vm_state_change, core);
+
+ for (i = 0; i < E1000E_NUM_QUEUES; i++) {
+ net_tx_pkt_init(&core->tx[i].tx_pkt, core->owner,
+ E1000E_MAX_TX_FRAGS, core->has_vnet);
+ }
+
+ net_rx_pkt_init(&core->rx_pkt, core->has_vnet);
+
+ e1000x_core_prepare_eeprom(core->eeprom,
+ eeprom_templ,
+ eeprom_size,
+ PCI_DEVICE_GET_CLASS(core->owner)->device_id,
+ macaddr);
+ e1000e_update_rx_offloads(core);
+}
+
+void
+e1000e_core_pci_uninit(E1000ECore *core)
+{
+ int i;
+
+ timer_del(core->autoneg_timer);
+ timer_free(core->autoneg_timer);
+
+ e1000e_intrmgr_pci_unint(core);
+
+ qemu_del_vm_change_state_handler(core->vmstate);
+
+ for (i = 0; i < E1000E_NUM_QUEUES; i++) {
+ net_tx_pkt_reset(core->tx[i].tx_pkt);
+ net_tx_pkt_uninit(core->tx[i].tx_pkt);
+ }
+
+ net_rx_pkt_uninit(core->rx_pkt);
+}
+
+static const uint16_t
+e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
+ [0] = {
+ [PHY_CTRL] = MII_CR_SPEED_SELECT_MSB |
+ MII_CR_FULL_DUPLEX |
+ MII_CR_AUTO_NEG_EN,
+
+ [PHY_STATUS] = MII_SR_EXTENDED_CAPS |
+ MII_SR_LINK_STATUS |
+ MII_SR_AUTONEG_CAPS |
+ MII_SR_PREAMBLE_SUPPRESS |
+ MII_SR_EXTENDED_STATUS |
+ MII_SR_10T_HD_CAPS |
+ MII_SR_10T_FD_CAPS |
+ MII_SR_100X_HD_CAPS |
+ MII_SR_100X_FD_CAPS,
+
+ [PHY_ID1] = 0x141,
+ [PHY_ID2] = E1000_PHY_ID2_82574x,
+ [PHY_AUTONEG_ADV] = 0xde1,
+ [PHY_LP_ABILITY] = 0x7e0,
+ [PHY_AUTONEG_EXP] = BIT(2),
+ [PHY_NEXT_PAGE_TX] = BIT(0) | BIT(13),
+ [PHY_1000T_CTRL] = BIT(8) | BIT(9) | BIT(10) | BIT(11),
+ [PHY_1000T_STATUS] = 0x3c00,
+ [PHY_EXT_STATUS] = BIT(12) | BIT(13),
+
+ [PHY_COPPER_CTRL1] = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
+ BIT(12) | BIT(13),
+ [PHY_COPPER_STAT1] = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
+ },
+ [2] = {
+ [PHY_MAC_CTRL1] = BIT(3) | BIT(7),
+ [PHY_MAC_CTRL2] = BIT(1) | BIT(2) | BIT(6) | BIT(12)
+ },
+ [3] = {
+ [PHY_LED_TIMER_CTRL] = BIT(0) | BIT(2) | BIT(14)
+ }
+};
+
+static const uint32_t e1000e_mac_reg_init[] = {
+ [PBA] = 0x00140014,
+ [LEDCTL] = BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
+ [EXTCNF_CTRL] = BIT(3),
+ [EEMNGCTL] = BIT(31),
+ [FLASHT] = 0x2,
+ [FLSWCTL] = BIT(30) | BIT(31),
+ [FLOL] = BIT(0),
+ [RXDCTL] = BIT(16),
+ [RXDCTL1] = BIT(16),
+ [TIPG] = 0x8 | (0x8 << 10) | (0x6 << 20),
+ [RXCFGL] = 0x88F7,
+ [RXUDP] = 0x319,
+ [CTRL] = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
+ E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
+ E1000_CTRL_ADVD3WUC,
+ [STATUS] = E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
+ [PSRCTL] = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
+ (4 << E1000_PSRCTL_BSIZE1_SHIFT) |
+ (4 << E1000_PSRCTL_BSIZE2_SHIFT),
+ [TARC0] = 0x3 | E1000_TARC_ENABLE,
+ [TARC1] = 0x3 | E1000_TARC_ENABLE,
+ [EECD] = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
+ [EERD] = E1000_EERW_DONE,
+ [EEWR] = E1000_EERW_DONE,
+ [GCR] = E1000_L0S_ADJUST |
+ E1000_L1_ENTRY_LATENCY_MSB |
+ E1000_L1_ENTRY_LATENCY_LSB,
+ [TDFH] = 0x600,
+ [TDFT] = 0x600,
+ [TDFHS] = 0x600,
+ [TDFTS] = 0x600,
+ [POEMB] = 0x30D,
+ [PBS] = 0x028,
+ [MANC] = E1000_MANC_DIS_IP_CHK_ARP,
+ [FACTPS] = E1000_FACTPS_LAN0_ON | 0x20000000,
+ [SWSM] = 1,
+ [RXCSUM] = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
+ [ITR] = E1000E_MIN_XITR,
+ [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
+};
+
+void
+e1000e_core_reset(E1000ECore *core)
+{
+ int i;
+
+ timer_del(core->autoneg_timer);
+
+ e1000e_intrmgr_reset(core);
+
+ memset(core->phy, 0, sizeof core->phy);
+ memmove(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
+ memset(core->mac, 0, sizeof core->mac);
+ memmove(core->mac, e1000e_mac_reg_init, sizeof e1000e_mac_reg_init);
+
+ core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
+
+ if (qemu_get_queue(core->owner_nic)->link_down) {
+ e1000e_link_down(core);
+ }
+
+ e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
+
+ for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
+ net_tx_pkt_reset(core->tx[i].tx_pkt);
+ memset(&core->tx[i].props, 0, sizeof(core->tx[i].props));
+ core->tx[i].skip_cp = false;
+ }
+}
+
+void e1000e_core_pre_save(E1000ECore *core)
+{
+ int i;
+ NetClientState *nc = qemu_get_queue(core->owner_nic);
+
+ /*
+ * If link is down and auto-negotiation is supported and ongoing,
+ * complete auto-negotiation immediately. This allows us to look
+ * at MII_SR_AUTONEG_COMPLETE to infer link status on load.
+ */
+ if (nc->link_down && e1000e_have_autoneg(core)) {
+ core->phy[0][PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
+ e1000e_update_flowctl_status(core);
+ }
+
+ for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
+ if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
+ core->tx[i].skip_cp = true;
+ }
+ }
+}
+
+int
+e1000e_core_post_load(E1000ECore *core)
+{
+ NetClientState *nc = qemu_get_queue(core->owner_nic);
+
+ /* nc.link_down can't be migrated, so infer link_down according
+ * to link status bit in core.mac[STATUS].
+ */
+ nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
+
+ return 0;
+}
new file mode 100644
@@ -0,0 +1,146 @@
+/*
+* Core code for QEMU e1000e emulation
+*
+* Software developer's manuals:
+* http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
+*
+* Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
+* Developed by Daynix Computing LTD (http://www.daynix.com)
+*
+* Authors:
+* Dmitry Fleytman <dmitry@daynix.com>
+* Leonid Bloch <leonid@daynix.com>
+* Yan Vugenfirer <yan@daynix.com>
+*
+* Based on work done by:
+* Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
+* Copyright (c) 2008 Qumranet
+* Based on work done by:
+* Copyright (c) 2007 Dan Aloni
+* Copyright (c) 2004 Antony T Curtis
+*
+* This library is free software; you can redistribute it and/or
+* modify it under the terms of the GNU Lesser General Public
+* License as published by the Free Software Foundation; either
+* version 2 of the License, or (at your option) any later version.
+*
+* This library is distributed in the hope that it will be useful,
+* but WITHOUT ANY WARRANTY; without even the implied warranty of
+* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+* Lesser General Public License for more details.
+*
+* You should have received a copy of the GNU Lesser General Public
+* License along with this library; if not, see <http://www.gnu.org/licenses/>.
+*/
+
+#define E1000E_PHY_PAGE_SIZE (0x20)
+#define E1000E_PHY_PAGES (0x07)
+#define E1000E_MAC_SIZE (0x8000)
+#define E1000E_EEPROM_SIZE (64)
+#define E1000E_MSIX_VEC_NUM (5)
+#define E1000E_NUM_QUEUES (2)
+
+typedef struct E1000Core E1000ECore;
+
+enum { PHY_R = BIT(0),
+ PHY_W = BIT(1),
+ PHY_RW = PHY_R | PHY_W,
+ PHY_ANYPAGE = BIT(2) };
+
+typedef struct E1000IntrDelayTimer_st {
+ QEMUTimer *timer;
+ bool running;
+ uint32_t delay_reg;
+ uint32_t delay_resolution_ns;
+ E1000ECore *core;
+} E1000IntrDelayTimer;
+
+struct E1000Core {
+ uint32_t mac[E1000E_MAC_SIZE];
+ uint16_t phy[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE];
+ uint16_t eeprom[E1000E_EEPROM_SIZE];
+
+ uint32_t rxbuf_sizes[E1000_PSRCTL_BUFFS_PER_DESC];
+ uint32_t rx_desc_buf_size;
+ uint32_t rxbuf_min_shift;
+ uint8_t rx_desc_len;
+
+ QEMUTimer *autoneg_timer;
+
+ struct e1000e_tx {
+ e1000x_txd_props props;
+
+ bool skip_cp;
+ struct NetTxPkt *tx_pkt;
+ } tx[E1000E_NUM_QUEUES];
+
+ struct NetRxPkt *rx_pkt;
+
+ bool has_vnet;
+ int max_queue_num;
+
+ /* Interrupt moderation management */
+ uint32_t delayed_causes;
+
+ E1000IntrDelayTimer radv;
+ E1000IntrDelayTimer rdtr;
+ E1000IntrDelayTimer raid;
+
+ E1000IntrDelayTimer tadv;
+ E1000IntrDelayTimer tidv;
+
+ E1000IntrDelayTimer itr;
+ bool itr_intr_pending;
+
+ E1000IntrDelayTimer eitr[E1000E_MSIX_VEC_NUM];
+ bool eitr_intr_pending[E1000E_MSIX_VEC_NUM];
+
+ VMChangeStateEntry *vmstate;
+
+ uint32_t itr_guest_value;
+ uint32_t eitr_guest_value[E1000E_MSIX_VEC_NUM];
+
+ uint16_t vet;
+
+ uint8_t permanent_mac[ETH_ALEN];
+
+ NICState *owner_nic;
+ PCIDevice *owner;
+ void (*owner_start_recv)(PCIDevice *d);
+};
+
+void
+e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size);
+
+uint64_t
+e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size);
+
+void
+e1000e_core_pci_realize(E1000ECore *regs,
+ const uint16_t *eeprom_templ,
+ uint32_t eeprom_size,
+ const uint8_t *macaddr);
+
+void
+e1000e_core_reset(E1000ECore *core);
+
+void
+e1000e_core_pre_save(E1000ECore *core);
+
+int
+e1000e_core_post_load(E1000ECore *core);
+
+void
+e1000e_core_set_link_status(E1000ECore *core);
+
+void
+e1000e_core_pci_uninit(E1000ECore *core);
+
+int
+e1000e_can_receive(E1000ECore *core);
+
+ssize_t
+e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size);
+
+ssize_t
+e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt);
@@ -1999,3 +1999,163 @@ e1000x_rx_oversized(size_t size) "Received packet dropped because it was oversiz
e1000x_mac_indicate(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5) "Indicating MAC to guest: %02x:%02x:%02x:%02x:%02x:%02x"
e1000x_link_negotiation_start(void) "Start link auto negotiation"
e1000x_link_negotiation_done(void) "Auto negotiation is completed"
+
+# hw/net/e1000e_core.c
+e1000e_core_write(uint64_t index, uint32_t size, uint64_t val) "Write to register 0x%"PRIx64", %d byte(s), value: 0x%"PRIx64
+e1000e_core_read(uint64_t index, uint32_t size, uint64_t val) "Read from register 0x%"PRIx64", %d byte(s), value: 0x%"PRIx64
+e1000e_core_mdic_read(uint8_t page, uint32_t addr, uint32_t data) "MDIC READ: PHY[%u][%u] = 0x%x"
+e1000e_core_mdic_read_unhandled(uint8_t page, uint32_t addr) "MDIC READ: PHY[%u][%u] UNHANDLED"
+e1000e_core_mdic_write(uint8_t page, uint32_t addr, uint32_t data) "MDIC WRITE: PHY[%u][%u] = 0x%x"
+e1000e_core_mdic_write_unhandled(uint8_t page, uint32_t addr) "MDIC WRITE: PHY[%u][%u] UNHANDLED"
+e1000e_core_eeeprom_write(uint16_t bit_in, uint16_t bit_out, uint16_t reading) "eeprom bitnum in %d out %d, reading %d"
+e1000e_core_ctrl_write(uint64_t index, uint32_t val) "Write CTRL register 0x%"PRIx64", value: 0x%X"
+e1000e_core_ctrl_sw_reset(void) "Doing SW reset"
+e1000e_core_ctrl_phy_reset(void) "Doing PHY reset"
+
+e1000e_link_autoneg_flowctl(bool enabled) "Auto-negotiated flow control state is %d"
+e1000e_link_set_params(bool autodetect, uint32_t speed, bool force_spd, bool force_dplx, bool rx_fctl, bool tx_fctl) "Set link params: Autodetect: %d, Speed: %d, Force speed: %d, Force duplex: %d, RX flow control %d, TX flow control %d"
+e1000e_link_read_params(bool autodetect, uint32_t speed, bool force_spd, bool force_dplx, bool rx_fctl, bool tx_fctl) "Get link params: Autodetect: %d, Speed: %d, Force speed: %d, Force duplex: %d, RX flow control %d, TX flow control %d"
+e1000e_link_set_ext_params(bool asd_check, bool speed_select_bypass) "Set extended link params: ASD check: %d, Speed select bypass: %d"
+e1000e_link_status(bool link_up, bool full_dplx, uint32_t speed, uint32_t asdv) "Link up: %d, Duplex: %d, Speed: %d, ASDV: %d"
+e1000e_link_status_changed(bool status) "New link status: %d"
+
+e1000e_wrn_regs_write_ro(uint64_t index, uint32_t size, uint64_t val) "WARNING: Write to RO register 0x%"PRIx64", %d byte(s), value: 0x%"PRIx64
+e1000e_wrn_regs_write_unknown(uint64_t index, uint32_t size, uint64_t val) "WARNING: Write to unknown register 0x%"PRIx64", %d byte(s), value: 0x%"PRIx64
+e1000e_wrn_regs_read_unknown(uint64_t index, uint32_t size) "WARNING: Read from unknown register 0x%"PRIx64", %d byte(s)"
+e1000e_wrn_regs_read_trivial(uint32_t index) "WARNING: Reading register at offset: 0x%05x. It is not fully implemented."
+e1000e_wrn_regs_write_trivial(uint32_t index) "WARNING: Writing to register at offset: 0x%05x. It is not fully implemented."
+e1000e_wrn_no_ts_support(void) "WARNING: Guest requested TX timestamping which is not supported"
+e1000e_wrn_no_snap_support(void) "WARNING: Guest requested TX SNAP header update which is not supported"
+e1000e_wrn_iscsi_filtering_not_supported(void) "WARNING: Guest requested iSCSI filtering which is not supported"
+e1000e_wrn_nfsw_filtering_not_supported(void) "WARNING: Guest requested NFS write filtering which is not supported"
+e1000e_wrn_nfsr_filtering_not_supported(void) "WARNING: Guest requested NFS read filtering which is not supported"
+
+e1000e_tx_disabled(void) "TX Disabled"
+e1000e_tx_descr(void *addr, uint32_t lower, uint32_t upper) "%p : %x %x"
+
+e1000e_ring_free_space(int ridx, uint32_t rdlen, uint32_t rdh, uint32_t rdt) "ring #%d: LEN: %u, DH: %u, DT: %u"
+
+e1000e_rx_can_recv_rings_full(void) "Cannot receive: all rings are full"
+e1000e_rx_can_recv(void) "Can receive"
+e1000e_rx_has_buffers(int ridx, uint32_t free_desc, size_t total_size, uint32_t desc_buf_size) "ring #%d: free descr: %u, packet size %lu, descr buffer size %u"
+e1000e_rx_null_descriptor(void) "Null RX descriptor!!"
+e1000e_rx_flt_vlan_mismatch(uint16_t vid) "VID mismatch: 0x%X"
+e1000e_rx_flt_vlan_match(uint16_t vid) "VID match: 0x%X"
+e1000e_rx_desc_ps_read(uint64_t a0, uint64_t a1, uint64_t a2, uint64_t a3) "buffers: [0x%"PRIx64", 0x%"PRIx64", 0x%"PRIx64", 0x%"PRIx64"]"
+e1000e_rx_desc_ps_write(uint16_t a0, uint16_t a1, uint16_t a2, uint16_t a3) "bytes written: [%u, %u, %u, %u]"
+e1000e_rx_desc_buff_sizes(uint32_t b0, uint32_t b1, uint32_t b2, uint32_t b3) "buffer sizes: [%u, %u, %u, %u]"
+e1000e_rx_desc_len(uint8_t rx_desc_len) "RX descriptor length: %u"
+e1000e_rx_desc_buff_write(uint8_t idx, uint64_t addr, uint16_t offset, const void* source, uint32_t len) "buffer #%u, addr: 0x%"PRIx64", offset: %u, from: %p, length: %u"
+e1000e_rx_descr(int ridx, uint64_t base, uint8_t len) "Next RX descriptor: ring #%d, PA: 0x%"PRIx64", length: %u"
+e1000e_rx_set_rctl(uint32_t rctl) "RCTL = 0x%x"
+e1000e_rx_receive_iov(int iovcnt) "Received vector of %d fragments"
+e1000e_rx_packet_size(size_t full, size_t vhdr, size_t data) "Received packet of %lu bytes total, %lu virt header, %lu data"
+e1000e_rx_flt_dropped(void) "Received packet dropped by RX filter"
+e1000e_rx_written_to_guest(uint32_t causes) "Received packet written to guest (ICR causes %u)"
+e1000e_rx_not_written_to_guest(uint32_t causes) "Received packet NOT written to guest (ICR causes %u)"
+e1000e_rx_interrupt_set(uint32_t causes) "Receive interrupt set (ICR causes %u)"
+e1000e_rx_interrupt_delayed(uint32_t causes) "Receive interrupt delayed (ICR causes %u)"
+e1000e_rx_set_cso(int cso_state) "RX CSO state set to %d"
+e1000e_rx_set_rdt(int queue_idx, uint32_t val) "Setting RDT[%d] = %u"
+e1000e_rx_set_rfctl(uint32_t val) "Setting RFCTL = 0x%X"
+e1000e_rx_start_recv(void)
+
+e1000e_rx_rss_started(void) "Starting RSS processing"
+e1000e_rx_rss_disabled(void) "RSS is disabled"
+e1000e_rx_rss_type(uint32_t type) "RSS type is %u"
+e1000e_rx_rss_ip4(bool isfragment, bool istcp, uint32_t mrqc, bool tcpipv4_enabled, bool ipv4_enabled) "RSS IPv4: fragment %d, tcp %d, mrqc 0x%X, tcpipv4 enabled %d, ipv4 enabled %d"
+e1000e_rx_rss_ip6(uint32_t rfctl, bool ex_dis, bool new_ex_dis, bool istcp, bool has_ext_headers, bool ex_dst_valid, bool ex_src_valid, uint32_t mrqc, bool tcpipv6_enabled, bool ipv6ex_enabled, bool ipv6_enabled) "RSS IPv6: rfctl 0x%X, ex_dis: %d, new_ex_dis: %d, tcp %d, has_ext_headers %d, ex_dst_valid %d, ex_src_valid %d, mrqc 0x%X, tcpipv6 enabled %d, ipv6ex enabled %d, ipv6 enabled %d"
+e1000e_rx_rss_dispatched_to_queue(int queue_idx) "Packet being dispatched to queue %d"
+
+e1000e_rx_metadata_protocols(bool isip4, bool isip6, bool isudp, bool istcp) "protocols: ip4: %d, ip6: %d, udp: %d, tcp: %d"
+e1000e_rx_metadata_vlan(uint16_t vlan_tag) "VLAN tag is 0x%X"
+e1000e_rx_metadata_rss(uint32_t rss, uint32_t mrq) "RSS data: rss: 0x%X, mrq: 0x%X"
+e1000e_rx_metadata_ip_id(uint16_t ip_id) "the IPv4 ID is 0x%X"
+e1000e_rx_metadata_ack(void) "the packet is TCP ACK"
+e1000e_rx_metadata_pkt_type(uint32_t pkt_type) "the packet type is %u"
+e1000e_rx_metadata_no_virthdr(void) "the packet has no virt-header"
+e1000e_rx_metadata_virthdr_no_csum_info(void) "virt-header does not contain checksum info"
+e1000e_rx_metadata_l3_cso_disabled(void) "IP4 CSO is disabled"
+e1000e_rx_metadata_l4_cso_disabled(void) "TCP/UDP CSO is disabled"
+e1000e_rx_metadata_l3_csum_validation_failed(void) "Cannot validate L3 checksum"
+e1000e_rx_metadata_l4_csum_validation_failed(void) "Cannot validate L4 checksum"
+e1000e_rx_metadata_status_flags(uint32_t status_flags) "status_flags is 0x%X"
+e1000e_rx_metadata_ipv6_sum_disabled(void) "IPv6 RX checksummimg disabled by RFCTL"
+e1000e_rx_metadata_ipv6_filtering_disabled(void) "IPv6 RX filtering disabled by RFCTL"
+
+e1000e_vlan_vet(uint16_t vet) "Setting VLAN ethernet type 0x%X"
+
+e1000e_irq_set_cause(uint32_t cause) "IRQ cause set 0x%x"
+e1000e_irq_msi_notify(uint32_t cause) "MSI notify 0x%x"
+e1000e_irq_throttling_no_pending_interrupts(void) "No pending interrupts to notify"
+e1000e_irq_msi_notify_postponed(void) "Sending MSI postponed by ITR"
+e1000e_irq_legacy_notify_postponed(void) "Raising legacy IRQ postponed by ITR"
+e1000e_irq_throttling_no_pending_vec(int idx) "No pending interrupts for vector %d"
+e1000e_irq_msix_notify_postponed_vec(int idx) "Sending MSI-X postponed by EITR[%d]"
+e1000e_irq_msix_notify(uint32_t cause) "MSI-X notify 0x%x"
+e1000e_irq_legacy_notify(bool level) "IRQ line state: %d"
+e1000e_irq_msix_notify_vec(uint32_t vector) "MSI-X notify vector 0x%x"
+e1000e_irq_postponed_by_xitr(uint32_t reg) "Interrupt postponed by [E]ITR register 0x%x"
+e1000e_irq_clear_ims(uint32_t bits, uint32_t old_ims, uint32_t new_ims) "Clearing IMS bits 0x%x: 0x%x --> 0x%x"
+e1000e_irq_set_ims(uint32_t bits, uint32_t old_ims, uint32_t new_ims) "Setting IMS bits 0x%x: 0x%x --> 0x%x"
+e1000e_irq_fix_icr_asserted(uint32_t new_val) "ICR_ASSERTED bit fixed: 0x%x"
+e1000e_irq_add_msi_other(uint32_t new_val) "ICR_OTHER bit added: 0x%x"
+e1000e_irq_pending_interrupts(uint32_t pending, uint32_t icr, uint32_t ims) "ICR PENDING: 0x%x (ICR: 0x%x, IMS: 0x%x)"
+e1000e_irq_set_cause_entry(uint32_t val, uint32_t icr) "Going to set IRQ cause 0x%x, ICR: 0x%x"
+e1000e_irq_set_cause_exit(uint32_t val, uint32_t icr) "Set IRQ cause 0x%x, ICR: 0x%x"
+e1000e_irq_icr_write(uint32_t bits, uint32_t old_icr, uint32_t new_icr) "Clearing ICR bits 0x%x: 0x%x --> 0x%x"
+e1000e_irq_write_ics(uint32_t val) "Adding ICR bits 0x%x"
+e1000e_irq_icr_process_iame(void) "Clearing IMS bits due to IAME"
+e1000e_irq_read_ics(uint32_t ics) "Current ICS: 0x%x"
+e1000e_irq_read_ims(uint32_t ims) "Current IMS: 0x%x"
+e1000e_irq_icr_read_entry(uint32_t icr) "Starting ICR read. Current ICR: 0x%x"
+e1000e_irq_icr_read_exit(uint32_t icr) "Ending ICR read. Current ICR: 0x%x"
+e1000e_irq_icr_clear_zero_ims(void) "Clearing ICR on read due to zero IMS"
+e1000e_irq_icr_clear_iame(void) "Clearing ICR on read due to IAME"
+e1000e_irq_ims_clear_eiame(uint32_t iam, uint32_t cause) "Clearing IMS due to EIAME, IAM: 0x%X, cause: 0x%X"
+e1000e_irq_icr_clear_eiac(uint32_t icr, uint32_t eiac) "Clearing ICR bits due to EIAC, ICR: 0x%X, EIAC: 0x%X"
+e1000e_irq_ims_clear_set_imc(uint32_t val) "Clearing IMS bits due to IMC write 0x%x"
+e1000e_irq_fire_delayed_interrupts(void) "Firing delayed interrupts"
+e1000e_irq_rearm_timer(uint32_t reg, int64_t delay_ns) "Mitigation timer armed for register 0x%X, delay %ld ns"
+e1000e_irq_throttling_timer(uint32_t reg) "Mitigation timer shot for register 0x%X"
+e1000e_irq_rdtr_fpd_running(void) "FPD written while RDTR was running"
+e1000e_irq_rdtr_fpd_not_running(void) "FPD written while RDTR was not running"
+e1000e_irq_tidv_fpd_running(void) "FPD written while TIDV was running"
+e1000e_irq_tidv_fpd_not_running(void) "FPD written while TIDV was not running"
+e1000e_irq_eitr_set(uint32_t eitr_num, uint32_t val) "EITR[%u] = %u"
+e1000e_irq_itr_set(uint32_t val) "ITR = %u"
+e1000e_irq_fire_all_timers(uint32_t val) "Firing all delay/throttling timers on all interrupts enable (0x%X written to IMS)"
+e1000e_irq_adding_delayed_causes(uint32_t val, uint32_t icr) "Merging delayed causes 0x%X to ICR 0x%X"
+e1000e_irq_msix_pending_clearing(uint32_t cause, uint32_t int_cfg, uint32_t vec) "Clearing MSI-X pending bit for cause 0x%x, IVAR config 0x%x, vector %u"
+
+e1000e_wrn_msix_vec_wrong(uint32_t cause, uint32_t cfg) "Invalid configuration for cause 0x%x: 0x%x"
+e1000e_wrn_msix_invalid(uint32_t cause, uint32_t cfg) "Invalid entry for cause 0x%x: 0x%x"
+
+e1000e_mac_set_permanent(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5) "Set permanent MAC: %02x:%02x:%02x:%02x:%02x:%02x"
+e1000e_mac_set_sw(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5) "Set SW MAC: %02x:%02x:%02x:%02x:%02x:%02x"
+
+# hw/net/e1000e.c
+e1000e_cb_pci_realize(void) "E1000E PCI realize entry"
+e1000e_cb_pci_uninit(void) "E1000E PCI unit entry"
+e1000e_cb_qdev_reset(void) "E1000E qdev reset entry"
+e1000e_cb_pre_save(void) "E1000E pre save entry"
+e1000e_cb_post_load(void) "E1000E post load entry"
+
+e1000e_io_write_addr(uint64_t addr) "IOADDR write 0x%"PRIx64
+e1000e_io_write_data(uint64_t addr, uint64_t val) "IODATA write 0x%"PRIx64", value: 0x%"PRIx64
+e1000e_io_read_addr(uint64_t addr) "IOADDR read 0x%"PRIx64
+e1000e_io_read_data(uint64_t addr, uint64_t val) "IODATA read 0x%"PRIx64", value: 0x%"PRIx64
+e1000e_wrn_io_write_unknown(uint64_t addr) "IO write unknown address 0x%"PRIx64
+e1000e_wrn_io_read_unknown(uint64_t addr) "IO read unknown address 0x%"PRIx64
+e1000e_wrn_io_addr_undefined(uint64_t addr) "IO undefined register 0x%"PRIx64
+e1000e_wrn_io_addr_flash(uint64_t addr) "IO flash access (0x%"PRIx64") not implemented"
+e1000e_wrn_io_addr_unknown(uint64_t addr) "IO unknown register 0x%"PRIx64
+
+e1000e_msi_init_fail(int32_t res) "Failed to initialize MSI, error %d"
+e1000e_msix_init_fail(int32_t res) "Failed to initialize MSI-X, error %d"
+e1000e_msix_use_vector_fail(uint32_t vec, int32_t res) "Failed to use MSI-X vector %d, error %d"
+
+e1000e_cfg_support_virtio(bool support) "Virtio header supported: %d"
+
+e1000e_vm_state_running(void) "VM state is running"
+e1000e_vm_state_stopped(void) "VM state is stopped"