new file mode 100644
@@ -0,0 +1,76 @@
+#
+# AVR instruction decode definitions.
+#
+# Copyright (c) 2019 Michael Rolnik <mrolnik@gmail.com>
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License, or (at your option) any later version.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, see <http://www.gnu.org/licenses/>.
+#
+
+#
+# regs_16_31_by_one = [16 .. 31]
+# regs_16_23_by_one = [16 .. 23]
+# regs_24_30_by_two = [24, 26, 28, 30]
+# regs_00_30_by_two = [0, 2, 4, 6, 8, .. 30]
+
+%rd 4:5
+%rr 9:1 0:4
+
+%rd_a 4:4 !function=to_regs_16_31_by_one
+%rd_b 4:3 !function=to_regs_16_23_by_one
+%rd_c 4:2 !function=to_regs_24_30_by_two
+%rr_a 0:4 !function=to_regs_16_31_by_one
+%rr_b 0:3 !function=to_regs_16_23_by_one
+
+%imm6 6:2 0:4
+%imm8 8:4 0:4
+
+%io_imm 9:2 0:4
+%ldst_d_imm 13:1 10:2 0:3
+
+
+&rd_rr rd rr
+&rd_imm rd imm
+
+@op_rd_rr .... .. . ..... .... &rd_rr rd=%rd rr=%rr
+@op_rd_imm6 .... .... .. .. .... &rd_imm rd=%rd_c imm=%imm6
+@op_rd_imm8 .... .... .... .... &rd_imm rd=%rd_a imm=%imm8
+@fmul .... .... . ... . ... &rd_rr rd=%rd_b rr=%rr_b
+
+#
+# Arithmetic Instructions
+#
+ADD 0000 11 . ..... .... @op_rd_rr
+ADC 0001 11 . ..... .... @op_rd_rr
+ADIW 1001 0110 .. .. .... @op_rd_imm6
+SUB 0001 10 . ..... .... @op_rd_rr
+SUBI 0101 .... .... .... @op_rd_imm8
+SBC 0000 10 . ..... .... @op_rd_rr
+SBCI 0100 .... .... .... @op_rd_imm8
+SBIW 1001 0111 .. .. .... @op_rd_imm6
+AND 0010 00 . ..... .... @op_rd_rr
+ANDI 0111 .... .... .... @op_rd_imm8
+OR 0010 10 . ..... .... @op_rd_rr
+ORI 0110 .... .... .... @op_rd_imm8
+EOR 0010 01 . ..... .... @op_rd_rr
+COM 1001 010 rd:5 0000
+NEG 1001 010 rd:5 0001
+INC 1001 010 rd:5 0011
+DEC 1001 010 rd:5 1010
+MUL 1001 11 . ..... .... @op_rd_rr
+MULS 0000 0010 .... .... &rd_rr rd=%rd_a rr=%rr_a
+MULSU 0000 0011 0 ... 0 ... @fmul
+FMUL 0000 0011 0 ... 1 ... @fmul
+FMULS 0000 0011 1 ... 0 ... @fmul
+FMULSU 0000 0011 1 ... 1 ... @fmul
+DES 1001 0100 imm:4 1011
@@ -129,6 +129,22 @@ struct DisasContext {
};
+static int to_regs_16_31_by_one(DisasContext *ctx, int indx)
+{
+ return 16 + (indx % 16);
+}
+
+static int to_regs_16_23_by_one(DisasContext *ctx, int indx)
+{
+ return 16 + (indx % 8);
+}
+
+static int to_regs_24_30_by_two(DisasContext *ctx, int indx)
+{
+ return 24 + (indx % 4) * 2;
+}
+
+
static bool avr_have_feature(DisasContext *ctx, int feature)
{
if (!avr_feature(ctx->env, feature)) {
@@ -141,3 +157,810 @@ static bool avr_have_feature(DisasContext *ctx, int feature)
static bool decode_insn(DisasContext *ctx, uint16_t insn);
#include "decode_insn.inc.c"
+
+/*
+ * Arithmetic Instructions
+ */
+
+/*
+ * Utility functions for updating status registers:
+ *
+ * - gen_add_CHf()
+ * - gen_add_Vf()
+ * - gen_sub_CHf()
+ * - gen_sub_Vf()
+ * - gen_NSf()
+ * - gen_ZNSf()
+ *
+ */
+
+static void gen_add_CHf(TCGv R, TCGv Rd, TCGv Rr)
+{
+ TCGv t1 = tcg_temp_new_i32();
+ TCGv t2 = tcg_temp_new_i32();
+ TCGv t3 = tcg_temp_new_i32();
+
+ tcg_gen_and_tl(t1, Rd, Rr); /* t1 = Rd & Rr */
+ tcg_gen_andc_tl(t2, Rd, R); /* t2 = Rd & ~R */
+ tcg_gen_andc_tl(t3, Rr, R); /* t3 = Rr & ~R */
+ tcg_gen_or_tl(t1, t1, t2); /* t1 = t1 | t2 | t3 */
+ tcg_gen_or_tl(t1, t1, t3);
+
+ tcg_gen_shri_tl(cpu_Cf, t1, 7); /* Cf = t1(7) */
+ tcg_gen_shri_tl(cpu_Hf, t1, 3); /* Hf = t1(3) */
+ tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
+
+ tcg_temp_free_i32(t3);
+ tcg_temp_free_i32(t2);
+ tcg_temp_free_i32(t1);
+}
+
+
+static void gen_add_Vf(TCGv R, TCGv Rd, TCGv Rr)
+{
+ TCGv t1 = tcg_temp_new_i32();
+ TCGv t2 = tcg_temp_new_i32();
+
+ /* t1 = Rd & Rr & ~R | ~Rd & ~Rr & R */
+ /* = (Rd ^ R) & ~(Rd ^ Rr) */
+ tcg_gen_xor_tl(t1, Rd, R);
+ tcg_gen_xor_tl(t2, Rd, Rr);
+ tcg_gen_andc_tl(t1, t1, t2);
+
+ tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
+
+ tcg_temp_free_i32(t2);
+ tcg_temp_free_i32(t1);
+}
+
+
+static void gen_sub_CHf(TCGv R, TCGv Rd, TCGv Rr)
+{
+ TCGv t1 = tcg_temp_new_i32();
+ TCGv t2 = tcg_temp_new_i32();
+ TCGv t3 = tcg_temp_new_i32();
+
+ tcg_gen_not_tl(t1, Rd); /* t1 = ~Rd */
+ tcg_gen_and_tl(t2, t1, Rr); /* t2 = ~Rd & Rr */
+ tcg_gen_or_tl(t3, t1, Rr); /* t3 = (~Rd | Rr) & R */
+ tcg_gen_and_tl(t3, t3, R);
+ tcg_gen_or_tl(t2, t2, t3); /* t2 = ~Rd & Rr | ~Rd & R | R & Rr */
+
+ tcg_gen_shri_tl(cpu_Cf, t2, 7); /* Cf = t2(7) */
+ tcg_gen_shri_tl(cpu_Hf, t2, 3); /* Hf = t2(3) */
+ tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
+
+ tcg_temp_free_i32(t3);
+ tcg_temp_free_i32(t2);
+ tcg_temp_free_i32(t1);
+}
+
+
+static void gen_sub_Vf(TCGv R, TCGv Rd, TCGv Rr)
+{
+ TCGv t1 = tcg_temp_new_i32();
+ TCGv t2 = tcg_temp_new_i32();
+
+ /* t1 = Rd & ~Rr & ~R | ~Rd & Rr & R */
+ /* = (Rd ^ R) & (Rd ^ R) */
+ tcg_gen_xor_tl(t1, Rd, R);
+ tcg_gen_xor_tl(t2, Rd, Rr);
+ tcg_gen_and_tl(t1, t1, t2);
+
+ tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
+
+ tcg_temp_free_i32(t2);
+ tcg_temp_free_i32(t1);
+}
+
+
+static void gen_NSf(TCGv R)
+{
+ tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
+ tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+}
+
+
+static void gen_ZNSf(TCGv R)
+{
+ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
+
+ /* update status register */
+ tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
+ tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+}
+
+/*
+ * Adds two registers without the C Flag and places the result in the
+ * destination register Rd.
+ */
+static bool trans_ADD(DisasContext *ctx, arg_ADD *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ tcg_gen_add_tl(R, Rd, Rr); /* Rd = Rd + Rr */
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ /* update status register */
+ gen_add_CHf(R, Rd, Rr);
+ gen_add_Vf(R, Rd, Rr);
+ gen_ZNSf(R);
+
+ /* update output registers */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Adds two registers and the contents of the C Flag and places the result in
+ * the destination register Rd.
+ */
+static bool trans_ADC(DisasContext *ctx, arg_ADC *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ tcg_gen_add_tl(R, Rd, Rr); /* R = Rd + Rr + Cf */
+ tcg_gen_add_tl(R, R, cpu_Cf);
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ /* update status register */
+ gen_add_CHf(R, Rd, Rr);
+ gen_add_Vf(R, Rd, Rr);
+ gen_ZNSf(R);
+
+ /* update output registers */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Adds an immediate value (0 - 63) to a register pair and places the result
+ * in the register pair. This instruction operates on the upper four register
+ * pairs, and is well suited for operations on the pointer registers. This
+ * instruction is not available in all devices. Refer to the device specific
+ * instruction set summary.
+ */
+static bool trans_ADIW(DisasContext *ctx, arg_ADIW *a)
+{
+ if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) {
+ return true;
+ }
+
+ TCGv RdL = cpu_r[a->rd];
+ TCGv RdH = cpu_r[a->rd + 1];
+ int Imm = (a->imm);
+ TCGv R = tcg_temp_new_i32();
+ TCGv Rd = tcg_temp_new_i32();
+
+ tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */
+ tcg_gen_addi_tl(R, Rd, Imm); /* R = Rd + Imm */
+ tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
+
+ /* update status register */
+ tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */
+ tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15);
+ tcg_gen_andc_tl(cpu_Vf, R, Rd); /* Vf = R & ~Rd */
+ tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15);
+ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
+ tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */
+ tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf);/* Sf = Nf ^ Vf */
+
+ /* update output registers */
+ tcg_gen_andi_tl(RdL, R, 0xff);
+ tcg_gen_shri_tl(RdH, R, 8);
+
+ tcg_temp_free_i32(Rd);
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Subtracts two registers and places the result in the destination
+ * register Rd.
+ */
+static bool trans_SUB(DisasContext *ctx, arg_SUB *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ /* update status register */
+ tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */
+ gen_sub_CHf(R, Rd, Rr);
+ gen_sub_Vf(R, Rd, Rr);
+ gen_ZNSf(R);
+
+ /* update output registers */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Subtracts a register and a constant and places the result in the
+ * destination register Rd. This instruction is working on Register R16 to R31
+ * and is very well suited for operations on the X, Y, and Z-pointers.
+ */
+static bool trans_SUBI(DisasContext *ctx, arg_SUBI *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = tcg_const_i32(a->imm);
+ TCGv R = tcg_temp_new_i32();
+
+ tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Imm */
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ /* update status register */
+ gen_sub_CHf(R, Rd, Rr);
+ gen_sub_Vf(R, Rd, Rr);
+ gen_ZNSf(R);
+
+ /* update output registers */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(R);
+ tcg_temp_free_i32(Rr);
+
+ return true;
+}
+
+/*
+ * Subtracts two registers and subtracts with the C Flag and places the
+ * result in the destination register Rd.
+ */
+static bool trans_SBC(DisasContext *ctx, arg_SBC *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+ TCGv zero = tcg_const_i32(0);
+
+ tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
+ tcg_gen_sub_tl(R, R, cpu_Cf);
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ /* update status register */
+ gen_sub_CHf(R, Rd, Rr);
+ gen_sub_Vf(R, Rd, Rr);
+ gen_NSf(R);
+
+ /*
+ * Previous value remains unchanged when the result is zero;
+ * cleared otherwise.
+ */
+ tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero);
+
+ /* update output registers */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(zero);
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * SBCI -- Subtract Immediate with Carry
+ */
+static bool trans_SBCI(DisasContext *ctx, arg_SBCI *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = tcg_const_i32(a->imm);
+ TCGv R = tcg_temp_new_i32();
+ TCGv zero = tcg_const_i32(0);
+
+ tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
+ tcg_gen_sub_tl(R, R, cpu_Cf);
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ /* update status register */
+ gen_sub_CHf(R, Rd, Rr);
+ gen_sub_Vf(R, Rd, Rr);
+ gen_NSf(R);
+
+ /*
+ * Previous value remains unchanged when the result is zero;
+ * cleared otherwise.
+ */
+ tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero);
+
+ /* update output registers */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(zero);
+ tcg_temp_free_i32(R);
+ tcg_temp_free_i32(Rr);
+
+ return true;
+}
+
+/*
+ * Subtracts an immediate value (0-63) from a register pair and places the
+ * result in the register pair. This instruction operates on the upper four
+ * register pairs, and is well suited for operations on the Pointer Registers.
+ * This instruction is not available in all devices. Refer to the device
+ * specific instruction set summary.
+ */
+static bool trans_SBIW(DisasContext *ctx, arg_SBIW *a)
+{
+ if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) {
+ return true;
+ }
+
+ TCGv RdL = cpu_r[a->rd];
+ TCGv RdH = cpu_r[a->rd + 1];
+ int Imm = (a->imm);
+ TCGv R = tcg_temp_new_i32();
+ TCGv Rd = tcg_temp_new_i32();
+
+ tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */
+ tcg_gen_subi_tl(R, Rd, Imm); /* R = Rd - Imm */
+ tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
+
+ /* update status register */
+ tcg_gen_andc_tl(cpu_Cf, R, Rd);
+ tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15); /* Cf = R & ~Rd */
+ tcg_gen_andc_tl(cpu_Vf, Rd, R);
+ tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15); /* Vf = Rd & ~R */
+ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
+ tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */
+ tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+
+ /* update output registers */
+ tcg_gen_andi_tl(RdL, R, 0xff);
+ tcg_gen_shri_tl(RdH, R, 8);
+
+ tcg_temp_free_i32(Rd);
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Performs the logical AND between the contents of register Rd and register
+ * Rr and places the result in the destination register Rd.
+ */
+static bool trans_AND(DisasContext *ctx, arg_AND *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ tcg_gen_and_tl(R, Rd, Rr); /* Rd = Rd and Rr */
+
+ /* update status register */
+ tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */
+ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
+ gen_ZNSf(R);
+
+ /* update output registers */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Performs the logical AND between the contents of register Rd and a constant
+ * and places the result in the destination register Rd.
+ */
+static bool trans_ANDI(DisasContext *ctx, arg_ANDI *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ int Imm = (a->imm);
+
+ tcg_gen_andi_tl(Rd, Rd, Imm); /* Rd = Rd & Imm */
+
+ /* update status register */
+ tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
+ gen_ZNSf(Rd);
+
+ return true;
+}
+
+/*
+ * Performs the logical OR between the contents of register Rd and register
+ * Rr and places the result in the destination register Rd.
+ */
+static bool trans_OR(DisasContext *ctx, arg_OR *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ tcg_gen_or_tl(R, Rd, Rr);
+
+ /* update status register */
+ tcg_gen_movi_tl(cpu_Vf, 0);
+ gen_ZNSf(R);
+
+ /* update output registers */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Performs the logical OR between the contents of register Rd and a
+ * constant and places the result in the destination register Rd.
+ */
+static bool trans_ORI(DisasContext *ctx, arg_ORI *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ int Imm = (a->imm);
+
+ tcg_gen_ori_tl(Rd, Rd, Imm); /* Rd = Rd | Imm */
+
+ /* update status register */
+ tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
+ gen_ZNSf(Rd);
+
+ return true;
+}
+
+/*
+ * Performs the logical EOR between the contents of register Rd and
+ * register Rr and places the result in the destination register Rd.
+ */
+static bool trans_EOR(DisasContext *ctx, arg_EOR *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+
+ tcg_gen_xor_tl(Rd, Rd, Rr);
+
+ /* update status register */
+ tcg_gen_movi_tl(cpu_Vf, 0);
+ gen_ZNSf(Rd);
+
+ return true;
+}
+
+/*
+ * Clears the specified bits in register Rd. Performs the logical AND
+ * between the contents of register Rd and the complement of the constant mask
+ * K. The result will be placed in register Rd.
+ */
+static bool trans_COM(DisasContext *ctx, arg_COM *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv R = tcg_temp_new_i32();
+
+ tcg_gen_xori_tl(Rd, Rd, 0xff);
+
+ /* update status register */
+ tcg_gen_movi_tl(cpu_Cf, 1); /* Cf = 1 */
+ tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */
+ gen_ZNSf(Rd);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Replaces the contents of register Rd with its two's complement; the
+ * value $80 is left unchanged.
+ */
+static bool trans_NEG(DisasContext *ctx, arg_NEG *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv t0 = tcg_const_i32(0);
+ TCGv R = tcg_temp_new_i32();
+
+ tcg_gen_sub_tl(R, t0, Rd); /* R = 0 - Rd */
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ /* update status register */
+ gen_sub_CHf(R, t0, Rd);
+ gen_sub_Vf(R, t0, Rd);
+ gen_ZNSf(R);
+
+ /* update output registers */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Adds one -1- to the contents of register Rd and places the result in the
+ * destination register Rd. The C Flag in SREG is not affected by the
+ * operation, thus allowing the INC instruction to be used on a loop counter in
+ * multiple-precision computations. When operating on unsigned numbers, only
+ * BREQ and BRNE branches can be expected to perform consistently. When
+ * operating on two's complement values, all signed branches are available.
+ */
+static bool trans_INC(DisasContext *ctx, arg_INC *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+
+ tcg_gen_addi_tl(Rd, Rd, 1);
+ tcg_gen_andi_tl(Rd, Rd, 0xff);
+
+ /* update status register */
+ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x80); /* Vf = Rd == 0x80 */
+ gen_ZNSf(Rd);
+
+ return true;
+}
+
+/*
+ * Subtracts one -1- from the contents of register Rd and places the result
+ * in the destination register Rd. The C Flag in SREG is not affected by the
+ * operation, thus allowing the DEC instruction to be used on a loop counter in
+ * multiple-precision computations. When operating on unsigned values, only
+ * BREQ and BRNE branches can be expected to perform consistently. When
+ * operating on two's complement values, all signed branches are available.
+ */
+static bool trans_DEC(DisasContext *ctx, arg_DEC *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+
+ tcg_gen_subi_tl(Rd, Rd, 1); /* Rd = Rd - 1 */
+ tcg_gen_andi_tl(Rd, Rd, 0xff); /* make it 8 bits */
+
+ /* update status register */
+ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x7f); /* Vf = Rd == 0x7f */
+ gen_ZNSf(Rd);
+
+ return true;
+}
+
+/*
+ * This instruction performs 8-bit x 8-bit -> 16-bit unsigned multiplication.
+ */
+static bool trans_MUL(DisasContext *ctx, arg_MUL *a)
+{
+ if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
+ return true;
+ }
+
+ TCGv R0 = cpu_r[0];
+ TCGv R1 = cpu_r[1];
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd * Rr */
+ tcg_gen_andi_tl(R0, R, 0xff);
+ tcg_gen_shri_tl(R1, R, 8);
+
+ /* update status register */
+ tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
+ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication.
+ */
+static bool trans_MULS(DisasContext *ctx, arg_MULS *a)
+{
+ if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
+ return true;
+ }
+
+ TCGv R0 = cpu_r[0];
+ TCGv R1 = cpu_r[1];
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+ TCGv t0 = tcg_temp_new_i32();
+ TCGv t1 = tcg_temp_new_i32();
+
+ tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+ tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
+ tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */
+ tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
+ tcg_gen_andi_tl(R0, R, 0xff);
+ tcg_gen_shri_tl(R1, R, 8);
+
+ /* update status register */
+ tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
+ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
+
+ tcg_temp_free_i32(t1);
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * This instruction performs 8-bit x 8-bit -> 16-bit multiplication of a
+ * signed and an unsigned number.
+ */
+static bool trans_MULSU(DisasContext *ctx, arg_MULSU *a)
+{
+ if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
+ return true;
+ }
+
+ TCGv R0 = cpu_r[0];
+ TCGv R1 = cpu_r[1];
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+ TCGv t0 = tcg_temp_new_i32();
+
+ tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+ tcg_gen_mul_tl(R, t0, Rr); /* R = Rd * Rr */
+ tcg_gen_andi_tl(R, R, 0xffff); /* make R 16 bits */
+ tcg_gen_andi_tl(R0, R, 0xff);
+ tcg_gen_shri_tl(R1, R, 8);
+
+ /* update status register */
+ tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
+ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
+
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * This instruction performs 8-bit x 8-bit -> 16-bit unsigned
+ * multiplication and shifts the result one bit left.
+ */
+static bool trans_FMUL(DisasContext *ctx, arg_FMUL *a)
+{
+ if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
+ return true;
+ }
+
+ TCGv R0 = cpu_r[0];
+ TCGv R1 = cpu_r[1];
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd * Rr */
+
+ /* update status register */
+ tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
+ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
+
+ /* update output registers */
+ tcg_gen_shli_tl(R, R, 1);
+ tcg_gen_andi_tl(R0, R, 0xff);
+ tcg_gen_shri_tl(R1, R, 8);
+ tcg_gen_andi_tl(R1, R1, 0xff);
+
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
+ * and shifts the result one bit left.
+ */
+static bool trans_FMULS(DisasContext *ctx, arg_FMULS *a)
+{
+ if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
+ return true;
+ }
+
+ TCGv R0 = cpu_r[0];
+ TCGv R1 = cpu_r[1];
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+ TCGv t0 = tcg_temp_new_i32();
+ TCGv t1 = tcg_temp_new_i32();
+
+ tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+ tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
+ tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */
+ tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
+
+ /* update status register */
+ tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
+ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
+
+ /* update output registers */
+ tcg_gen_shli_tl(R, R, 1);
+ tcg_gen_andi_tl(R0, R, 0xff);
+ tcg_gen_shri_tl(R1, R, 8);
+ tcg_gen_andi_tl(R1, R1, 0xff);
+
+ tcg_temp_free_i32(t1);
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
+ * and shifts the result one bit left.
+ */
+static bool trans_FMULSU(DisasContext *ctx, arg_FMULSU *a)
+{
+ if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
+ return true;
+ }
+
+ TCGv R0 = cpu_r[0];
+ TCGv R1 = cpu_r[1];
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+ TCGv t0 = tcg_temp_new_i32();
+
+ tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+ tcg_gen_mul_tl(R, t0, Rr); /* R = Rd * Rr */
+ tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
+
+ /* update status register */
+ tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
+ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
+
+ /* update output registers */
+ tcg_gen_shli_tl(R, R, 1);
+ tcg_gen_andi_tl(R0, R, 0xff);
+ tcg_gen_shri_tl(R1, R, 8);
+ tcg_gen_andi_tl(R1, R1, 0xff);
+
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * The module is an instruction set extension to the AVR CPU, performing
+ * DES iterations. The 64-bit data block (plaintext or ciphertext) is placed in
+ * the CPU register file, registers R0-R7, where LSB of data is placed in LSB
+ * of R0 and MSB of data is placed in MSB of R7. The full 64-bit key (including
+ * parity bits) is placed in registers R8- R15, organized in the register file
+ * with LSB of key in LSB of R8 and MSB of key in MSB of R15. Executing one DES
+ * instruction performs one round in the DES algorithm. Sixteen rounds must be
+ * executed in increasing order to form the correct DES ciphertext or
+ * plaintext. Intermediate results are stored in the register file (R0-R15)
+ * after each DES instruction. The instruction's operand (K) determines which
+ * round is executed, and the half carry flag (H) determines whether encryption
+ * or decryption is performed. The DES algorithm is described in
+ * "Specifications for the Data Encryption Standard" (Federal Information
+ * Processing Standards Publication 46). Intermediate results in this
+ * implementation differ from the standard because the initial permutation and
+ * the inverse initial permutation are performed each iteration. This does not
+ * affect the result in the final ciphertext or plaintext, but reduces
+ * execution time.
+ */
+static bool trans_DES(DisasContext *ctx, arg_DES *a)
+{
+ /* TODO */
+ if (!avr_have_feature(ctx, AVR_FEATURE_DES)) {
+ return true;
+ }
+
+ return true;
+}
@@ -177,6 +177,7 @@ F: target/avr/helper.c
F: target/avr/gdbstub.c
F: target/avr/machine.c
F: target/avr/translate.c
+F: target/avr/insn.decode
CRIS TCG CPUs
M: Edgar E. Iglesias <edgar.iglesias@gmail.com>