diff mbox series

[RFC,v2,32/67] Hexagon macros referenced in instruction semantics

Message ID 1582908244-304-33-git-send-email-tsimpson@quicinc.com (mailing list archive)
State New, archived
Headers show
Series Hexagon patch series | expand

Commit Message

Taylor Simpson Feb. 28, 2020, 4:43 p.m. UTC
Signed-off-by: Taylor Simpson <tsimpson@quicinc.com>
---
 target/hexagon/macros.h | 1111 +++++++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 1111 insertions(+)
diff mbox series

Patch

diff --git a/target/hexagon/macros.h b/target/hexagon/macros.h
index b8f8d9f..2101a01 100644
--- a/target/hexagon/macros.h
+++ b/target/hexagon/macros.h
@@ -361,3 +361,1114 @@ 
 #define WRITE_RREG_yy(NUM, VAL)          WRITE_REG_PAIR(NUM, VAL)
 #endif
 
+#define PCALIGN 4
+#define PCALIGN_MASK (PCALIGN - 1)
+
+#define GET_FIELD(FIELD, REGIN) \
+    fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \
+                   reg_field_info[FIELD].offset)
+
+#ifdef QEMU_GENERATE
+#define GET_USR_FIELD(FIELD, DST) \
+    tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \
+                       reg_field_info[FIELD].offset, \
+                       reg_field_info[FIELD].width)
+
+#define SET_USR_FIELD_FUNC(X) \
+    _Generic((X), int : gen_set_usr_fieldi, TCGv : gen_set_usr_field)
+#define SET_USR_FIELD(FIELD, VAL) \
+    SET_USR_FIELD_FUNC(VAL)(FIELD, VAL)
+#else
+#define GET_USR_FIELD(FIELD) \
+    fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
+                   reg_field_info[FIELD].offset)
+
+#define SET_USR_FIELD(FIELD, VAL) \
+    fINSERT_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
+                 reg_field_info[FIELD].offset, (VAL))
+#endif
+
+#ifdef QEMU_GENERATE
+#define MEM_LOAD1s(DST, VA)       tcg_gen_qemu_ld8s(DST, VA, ctx->mem_idx)
+#define MEM_LOAD1u(DST, VA)       tcg_gen_qemu_ld8u(DST, VA, ctx->mem_idx)
+#define MEM_LOAD2s(DST, VA)       tcg_gen_qemu_ld16s(DST, VA, ctx->mem_idx)
+#define MEM_LOAD2u(DST, VA)       tcg_gen_qemu_ld16u(DST, VA, ctx->mem_idx)
+#define MEM_LOAD4s(DST, VA)       tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx)
+#define MEM_LOAD4u(DST, VA)       tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx)
+#define MEM_LOAD8s(DST, VA)       tcg_gen_qemu_ld64(DST, VA, ctx->mem_idx)
+#define MEM_LOAD8u(DST, VA)       tcg_gen_qemu_ld64(DST, VA, ctx->mem_idx)
+
+#define MEM_STORE1_FUNC(X) \
+    _Generic((X), int : gen_store1i, TCGv_i32 : gen_store1)
+#define MEM_STORE1(VA, DATA, SLOT) \
+    MEM_STORE1_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
+
+#define MEM_STORE2_FUNC(X) \
+    _Generic((X), int : gen_store2i, TCGv_i32 : gen_store2)
+#define MEM_STORE2(VA, DATA, SLOT) \
+    MEM_STORE2_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
+
+#define MEM_STORE4_FUNC(X) \
+    _Generic((X), int : gen_store4i, TCGv_i32 : gen_store4)
+#define MEM_STORE4(VA, DATA, SLOT) \
+    MEM_STORE4_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
+
+#define MEM_STORE8_FUNC(X) \
+    _Generic((X), int64_t : gen_store8i, TCGv_i64 : gen_store8)
+#define MEM_STORE8(VA, DATA, SLOT) \
+    MEM_STORE8_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
+
+#else
+/*
+ * These should never be executed, but they are needed so the helpers will
+ * compile.  All the instructions with loads must be implemented under
+ * QEMU_GENERATE.
+ */
+static inline uint8_t mem_load1(CPUHexagonState *env, target_ulong vaddr)
+{
+    printf("ERROR: mem_load1\n");
+    g_assert_not_reached();
+}
+
+static inline uint16_t mem_load2(CPUHexagonState *env, target_ulong vadd)
+{
+    printf("ERROR: mem_load2\n");
+    g_assert_not_reached();
+}
+
+static inline uint32_t mem_load4(CPUHexagonState *env, target_ulong vaddr)
+{
+    printf("ERROR: mem_load4\n");
+    g_assert_not_reached();
+}
+
+static inline uint64_t mem_load8(CPUHexagonState *env, target_ulong vaddr)
+{
+    printf("ERROR: mem_load8\n");
+    g_assert_not_reached();
+}
+
+static inline
+uint32_t mem_load_locked4(CPUHexagonState *env, target_ulong vaddr)
+{
+    printf("ERROR: load_locked4\n");
+    g_assert_not_reached();
+    return 0;
+}
+
+static inline
+uint64_t mem_load_locked8(CPUHexagonState *env, target_ulong vaddr)
+{
+    printf("ERROR: load_locked8\n");
+    g_assert_not_reached();
+    return 0;
+}
+
+static inline
+uint8_t mem_store_conditional(CPUHexagonState *env,
+                              target_ulong vaddr, uint32_t src, int size)
+{
+    printf("ERROR: store conditional\n");
+    g_assert_not_reached();
+    return 0;
+}
+
+#define MEM_LOAD1s(VA) ((size1s_t)mem_load1(env, VA))
+#define MEM_LOAD1u(VA) ((size1u_t)mem_load1(env, VA))
+#define MEM_LOAD2s(VA) ((size2s_t)mem_load2(env, VA))
+#define MEM_LOAD2u(VA) ((size2u_t)mem_load2(env, VA))
+#define MEM_LOAD4s(VA) ((size4s_t)mem_load4(env, VA))
+#define MEM_LOAD4u(VA) ((size4u_t)mem_load4(env, VA))
+#define MEM_LOAD8s(VA) ((size8s_t)mem_load8(env, VA))
+#define MEM_LOAD8u(VA) ((size8u_t)mem_load8(env, VA))
+
+#define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT)
+#define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT)
+#define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT)
+#define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT)
+#endif
+
+
+#ifdef QEMU_GENERATE
+static inline void gen_slot_cancelled_check(TCGv check, int slot_num)
+{
+    TCGv mask = tcg_const_tl(1 << slot_num);
+    TCGv one = tcg_const_tl(1);
+    TCGv zero = tcg_const_tl(0);
+
+    tcg_gen_and_tl(mask, hex_slot_cancelled, mask);
+    tcg_gen_movcond_tl(TCG_COND_NE, check, mask, zero, one, zero);
+
+    tcg_temp_free(one);
+    tcg_temp_free(zero);
+    tcg_temp_free(mask);
+}
+
+static inline void gen_cancel(TCGv slot)
+{
+    TCGv one = tcg_const_tl(1);
+    TCGv mask = tcg_temp_new();
+    tcg_gen_shl_tl(mask, one, slot);
+    tcg_gen_or_tl(hex_slot_cancelled, hex_slot_cancelled, mask);
+    tcg_temp_free(one);
+    tcg_temp_free(mask);
+}
+
+#define CANCEL gen_cancel(slot);
+#else
+#define CANCEL cancel_slot(env, slot)
+#endif
+
+#define STORE_ZERO
+#define LOAD_CANCEL(EA) do { CANCEL; } while (0)
+
+#ifdef QEMU_GENERATE
+static inline void gen_pred_cancel(TCGv pred, int slot_num)
+ {
+    TCGv slot_mask = tcg_const_tl(1 << slot_num);
+    TCGv tmp = tcg_temp_new();
+    TCGv zero = tcg_const_tl(0);
+    TCGv one = tcg_const_tl(1);
+    tcg_gen_or_tl(slot_mask, hex_slot_cancelled, slot_mask);
+    tcg_gen_andi_tl(tmp, pred, 1);
+    tcg_gen_movcond_tl(TCG_COND_EQ, hex_slot_cancelled, tmp, zero,
+                       slot_mask, hex_slot_cancelled);
+    tcg_temp_free(slot_mask);
+    tcg_temp_free(tmp);
+    tcg_temp_free(zero);
+    tcg_temp_free(one);
+}
+#define PRED_LOAD_CANCEL(PRED, EA) \
+    gen_pred_cancel(PRED, insn->is_endloop ? 4 : insn->slot)
+
+#define PRED_STORE_CANCEL(PRED, EA) \
+    gen_pred_cancel(PRED, insn->is_endloop ? 4 : insn->slot)
+#else
+#define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); }
+#endif
+
+#define IS_CANCELLED(SLOT)
+#define fMAX(A, B) (((A) > (B)) ? (A) : (B))
+
+#ifdef QEMU_GENERATE
+#define fMIN(DST, A, B) tcg_gen_movcond_i32(TCG_COND_GT, DST, A, B, A, B)
+#else
+#define fMIN(A, B) (((A) < (B)) ? (A) : (B))
+#endif
+
+#define fABS(A) (((A) < 0) ? (-(A)) : (A))
+#define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \
+    do { \
+        REG = ((REG) & ~(((fCONSTLL(1) << (WIDTH)) - 1) << (OFFSET))) | \
+           (((INVAL) & ((fCONSTLL(1) << (WIDTH)) - 1)) << (OFFSET)); \
+    } while (0)
+#define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \
+    (fZXTN(WIDTH, 32, (INREG >> OFFSET)))
+#define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \
+    (fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8)))
+#define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \
+    (fZXTN((HIBIT - LOWBIT + 1), 32, (INREG >> LOWBIT)))
+#define fINSERT_RANGE(INREG, HIBIT, LOWBIT, INVAL) \
+    do { \
+        int offset = LOWBIT; \
+        int width = HIBIT - LOWBIT + 1; \
+        INREG &= ~(((fCONSTLL(1) << width) - 1) << offset); \
+        INREG |= ((INVAL & ((fCONSTLL(1) << width) - 1)) << offset); \
+    } while (0)
+
+#ifdef QEMU_GENERATE
+#define f8BITSOF(RES, VAL) gen_8bitsof(RES, VAL)
+#define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1)
+#else
+#define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00)
+#define fLSBOLD(VAL)  ((VAL) & 1)
+#endif
+
+#ifdef QEMU_GENERATE
+#define fLSBNEW(PVAL)   tcg_gen_mov_tl(LSB, (PVAL))
+#define fLSBNEW0        fLSBNEW(0)
+#define fLSBNEW1        fLSBNEW(1)
+#else
+#define fLSBNEW(PVAL)   (PVAL)
+#define fLSBNEW0        new_pred_value(env, 0)
+#define fLSBNEW1        new_pred_value(env, 1)
+#endif
+
+#ifdef QEMU_GENERATE
+static inline void gen_logical_not(TCGv dest, TCGv src)
+{
+    TCGv one = tcg_const_tl(1);
+    TCGv zero = tcg_const_tl(0);
+
+    tcg_gen_movcond_tl(TCG_COND_NE, dest, src, zero, zero, one);
+
+    tcg_temp_free(one);
+    tcg_temp_free(zero);
+}
+#define fLSBOLDNOT(VAL) \
+    do { \
+        tcg_gen_andi_tl(LSB, (VAL), 1); \
+        tcg_gen_xori_tl(LSB, LSB, 1); \
+    } while (0)
+#define fLSBNEWNOT(PNUM) \
+    gen_logical_not(LSB, (PNUM))
+#define fLSBNEW0NOT \
+    do { \
+        tcg_gen_mov_tl(LSB, hex_new_pred_value[0]); \
+        gen_logical_not(LSB, LSB); \
+    } while (0)
+#define fLSBNEW1NOT \
+    do { \
+        tcg_gen_mov_tl(LSB, hex_new_pred_value[1]); \
+        gen_logical_not(LSB, LSB); \
+    } while (0)
+#else
+#define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM))
+#define fLSBOLDNOT(VAL) (!fLSBOLD(VAL))
+#define fLSBNEW0NOT (!fLSBNEW0)
+#define fLSBNEW1NOT (!fLSBNEW1)
+#endif
+
+#define fNEWREG(RNUM) HELPER(new_value)(env, RNUM)
+
+#ifdef QEMU_GENERATE
+#define fNEWREG_ST(RNUM) gen_newreg_st(NEWREG_ST, cpu_env, RNUM)
+#else
+#define fNEWREG_ST(RNUM) HELPER(new_value)(env, RNUM)
+#endif
+
+#define fMEMZNEW(RNUM) (RNUM == 0)
+#define fMEMNZNEW(RNUM) (RNUM != 0)
+#define fVSATUVALN(N, VAL) \
+    ({ \
+        (((int)(VAL)) < 0) ? 0 : ((1LL << (N)) - 1); \
+    })
+#define fSATUVALN(N, VAL) \
+    ({ \
+        fSET_OVERFLOW(); \
+        ((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \
+    })
+#define fSATVALN(N, VAL) \
+    ({ \
+        fSET_OVERFLOW(); \
+        ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
+    })
+#define fVSATVALN(N, VAL) \
+    ({ \
+        ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
+    })
+#define fZXTN(N, M, VAL) ((VAL) & ((1LL << (N)) - 1))
+#define fSXTN(N, M, VAL) \
+    ((fZXTN(N, M, VAL) ^ (1LL << ((N) - 1))) - (1LL << ((N) - 1)))
+#define fSATN(N, VAL) \
+    ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL))
+#define fVSATN(N, VAL) \
+    ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATVALN(N, VAL))
+#define fADDSAT64(DST, A, B) \
+    do { \
+        size8u_t __a = fCAST8u(A); \
+        size8u_t __b = fCAST8u(B); \
+        size8u_t __sum = __a + __b; \
+        size8u_t __xor = __a ^ __b; \
+        const size8u_t __mask = 0x8000000000000000ULL; \
+        if (__xor & __mask) { \
+            DST = __sum; \
+        } \
+        else if ((__a ^ __sum) & __mask) { \
+            if (__sum & __mask) { \
+                DST = 0x7FFFFFFFFFFFFFFFLL; \
+                fSET_OVERFLOW(); \
+            } else { \
+                DST = 0x8000000000000000LL; \
+                fSET_OVERFLOW(); \
+            } \
+        } else { \
+            DST = __sum; \
+        } \
+    } while (0)
+#define fVSATUN(N, VAL) \
+    ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATUVALN(N, VAL))
+#define fSATUN(N, VAL) \
+    ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL))
+#define fSATH(VAL) (fSATN(16, VAL))
+#define fSATUH(VAL) (fSATUN(16, VAL))
+#define fVSATH(VAL) (fVSATN(16, VAL))
+#define fVSATUH(VAL) (fVSATUN(16, VAL))
+#define fSATUB(VAL) (fSATUN(8, VAL))
+#define fSATB(VAL) (fSATN(8, VAL))
+#define fVSATUB(VAL) (fVSATUN(8, VAL))
+#define fVSATB(VAL) (fVSATN(8, VAL))
+#define fIMMEXT(IMM) (IMM = IMM)
+#define fMUST_IMMEXT(IMM) fIMMEXT(IMM)
+
+#define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK)
+
+#define fGET_EXTENSION (insn->extension)
+
+#ifdef QEMU_GENERATE
+static inline TCGv gen_read_ireg(TCGv tmp, TCGv val, int shift)
+{
+    /*
+     *  #define fREAD_IREG(VAL) \
+     *      (fSXTN(11, 64, (((VAL) & 0xf0000000)>>21) | ((VAL >> 17) & 0x7f)))
+     */
+    tcg_gen_sari_tl(tmp, val, 17);
+    tcg_gen_andi_tl(tmp, tmp, 0x7f);
+    tcg_gen_shli_tl(tmp, tmp, shift);
+    return tmp;
+}
+#define fREAD_IREG(VAL, SHIFT) gen_read_ireg(ireg, (VAL), (SHIFT))
+#define fREAD_R0() (READ_REG(tmp, 0))
+#define fREAD_LR() (READ_REG(tmp, HEX_REG_LR))
+#define fREAD_SSR() (READ_REG(tmp, HEX_REG_SSR))
+#else
+#define fREAD_IREG(VAL) \
+    (fSXTN(11, 64, (((VAL) & 0xf0000000) >> 21) | ((VAL >> 17) & 0x7f)))
+#define fREAD_R0() (READ_REG(0))
+#define fREAD_LR() (READ_REG(HEX_REG_LR))
+#define fREAD_SSR() (READ_REG(HEX_REG_SSR))
+#endif
+
+#define fWRITE_R0(A) WRITE_RREG(0, A)
+#define fWRITE_LR(A) WRITE_RREG(HEX_REG_LR, A)
+#define fWRITE_FP(A) WRITE_RREG(HEX_REG_FP, A)
+#define fWRITE_SP(A) WRITE_RREG(HEX_REG_SP, A)
+#define fWRITE_GOSP(A) WRITE_RREG(HEX_REG_GOSP, A)
+#define fWRITE_GP(A) WRITE_RREG(HEX_REG_GP, A)
+
+#ifdef QEMU_GENERATE
+#define fREAD_SP() (READ_REG(tmp, HEX_REG_SP))
+#define fREAD_GOSP() (READ_REG(tmp, HEX_REG_GOSP))
+#define fREAD_GELR() (READ_REG(tmp, HEX_REG_GELR))
+#define fREAD_GEVB() (READ_REG(tmp, HEX_REG_GEVB))
+#define fREAD_CSREG(N) (READ_REG(tmp, HEX_REG_CS0 + N))
+#define fREAD_LC0 (READ_REG(tmp, HEX_REG_LC0))
+#define fREAD_LC1 (READ_REG(tmp, HEX_REG_LC1))
+#define fREAD_SA0 (READ_REG(tmp, HEX_REG_SA0))
+#define fREAD_SA1 (READ_REG(tmp, HEX_REG_SA1))
+#define fREAD_FP() (READ_REG(tmp, HEX_REG_FP))
+#define fREAD_GP() (READ_REG(tmp, HEX_REG_GP))
+#define fREAD_PC() (READ_REG(tmp, HEX_REG_PC))
+#else
+#define fREAD_SP() (READ_REG(HEX_REG_SP))
+#define fREAD_GOSP() (READ_REG(HEX_REG_GOSP))
+#define fREAD_GELR() (READ_REG(HEX_REG_GELR))
+#define fREAD_GEVB() (READ_REG(HEX_REG_GEVB))
+#define fREAD_CSREG(N) (READ_REG(HEX_REG_CS0 + N))
+#define fREAD_LC0 (READ_REG(HEX_REG_LC0))
+#define fREAD_LC1 (READ_REG(HEX_REG_LC1))
+#define fREAD_SA0 (READ_REG(HEX_REG_SA0))
+#define fREAD_SA1 (READ_REG(HEX_REG_SA1))
+#define fREAD_FP() (READ_REG(HEX_REG_FP))
+#define fREAD_GP() (READ_REG(HEX_REG_GP))
+#define fREAD_PC() (READ_REG(HEX_REG_PC))
+#endif
+
+#define fREAD_NPC() (env->next_PC & (0xfffffffe))
+
+#ifdef QEMU_GENERATE
+#define fREAD_P0() (READ_PREG(tmp, 0))
+#define fREAD_P3() (READ_PREG(tmp, 3))
+#define fNOATTRIB_READ_P3() (READ_PREG(tmp, 3))
+#else
+#define fREAD_P0() (READ_PREG(0))
+#define fREAD_P3() (READ_PREG(3))
+#define fNOATTRIB_READ_P3() (READ_PREG(3))
+#endif
+
+#define fCHECK_PCALIGN(A)
+#define fCUREXT() GET_SSR_FIELD(SSR_XA)
+#define fCUREXT_WRAP(EXT_NO)
+
+#ifdef QEMU_GENERATE
+#define fWRITE_NPC(A) gen_write_new_pc(A)
+#else
+#define fWRITE_NPC(A) write_new_pc(env, A)
+#endif
+
+#define fLOOPSTATS(A)
+#define fCOF_CALLBACK(LOC, TYPE)
+#define fBRANCH(LOC, TYPE) \
+    do { \
+        fWRITE_NPC(LOC); \
+        fCOF_CALLBACK(LOC, TYPE); \
+    } while (0)
+#define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR)
+#define fHINTJR(TARGET) { }
+#define fBP_RAS_CALL(A)
+#define fCALL(A) \
+    do { \
+        fWRITE_LR(fREAD_NPC()); \
+        fBRANCH(A, COF_TYPE_CALL); \
+    } while (0)
+#define fCALLR(A) \
+    do { \
+        fWRITE_LR(fREAD_NPC()); \
+        fBRANCH(A, COF_TYPE_CALLR); \
+    } while (0)
+#define fWRITE_LOOP_REGS0(START, COUNT) \
+    do { \
+        WRITE_RREG(HEX_REG_LC0, COUNT);  \
+        WRITE_RREG(HEX_REG_SA0, START); \
+    } while (0)
+#define fWRITE_LOOP_REGS1(START, COUNT) \
+    do { \
+        WRITE_RREG(HEX_REG_LC1, COUNT);  \
+        WRITE_RREG(HEX_REG_SA1, START);\
+    } while (0)
+#define fWRITE_LC0(VAL) WRITE_RREG(HEX_REG_LC0, VAL)
+#define fWRITE_LC1(VAL) WRITE_RREG(HEX_REG_LC1, VAL)
+
+#ifdef QEMU_GENERATE
+#define fCARRY_FROM_ADD(A, B, C) gen_carry_from_add64(tmp_i64, A, B, C)
+#else
+#define fCARRY_FROM_ADD(A, B, C) carry_from_add64(A, B, C)
+#endif
+
+#define fSETCV_ADD(A, B, CARRY) \
+    do { \
+        SET_USR_FIELD(USR_C, gen_carry_add((A), (B), ((A) + (B)))); \
+        SET_USR_FIELD(USR_V, gen_overflow_add((A), (B), ((A) + (B)))); \
+    } while (0)
+#define fSETCV_SUB(A, B, CARRY) \
+    do { \
+        SET_USR_FIELD(USR_C, gen_carry_add((A), (B), ((A) - (B)))); \
+        SET_USR_FIELD(USR_V, gen_overflow_add((A), (B), ((A) - (B)))); \
+    } while (0)
+#define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1)
+#define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL))
+#define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG))
+#define fWRITE_P0(VAL) WRITE_PREG(0, VAL)
+#define fWRITE_P1(VAL) WRITE_PREG(1, VAL)
+#define fWRITE_P2(VAL) WRITE_PREG(2, VAL)
+#define fWRITE_P3(VAL) WRITE_PREG(3, VAL)
+#define fWRITE_P3_LATE(VAL) WRITE_PREG(3, VAL)
+#define fPART1(WORK) if (part1) { WORK; return; }
+#define fCAST4u(A) ((size4u_t)(A))
+#define fCAST4s(A) ((size4s_t)(A))
+#define fCAST8u(A) ((size8u_t)(A))
+#define fCAST8s(A) ((size8s_t)(A))
+#define fCAST2_2s(A) ((size2s_t)(A))
+#define fCAST2_2u(A) ((size2u_t)(A))
+#define fCAST4_4s(A) ((size4s_t)(A))
+#define fCAST4_4u(A) ((size4u_t)(A))
+#define fCAST4_8s(A) ((size8s_t)((size4s_t)(A)))
+#define fCAST4_8u(A) ((size8u_t)((size4u_t)(A)))
+#define fCAST8_8s(A) ((size8s_t)(A))
+#define fCAST8_8u(A) ((size8u_t)(A))
+#define fCAST2_8s(A) ((size8s_t)((size2s_t)(A)))
+#define fCAST2_8u(A) ((size8u_t)((size2u_t)(A)))
+#define fZE8_16(A) ((size2s_t)((size1u_t)(A)))
+#define fSE8_16(A) ((size2s_t)((size1s_t)(A)))
+#define fSE16_32(A) ((size4s_t)((size2s_t)(A)))
+#define fZE16_32(A) ((size4u_t)((size2u_t)(A)))
+#define fSE32_64(A) ((size8s_t)((size4s_t)(A)))
+#define fZE32_64(A) ((size8u_t)((size4u_t)(A)))
+#define fSE8_32(A) ((size4s_t)((size1s_t)(A)))
+#define fZE8_32(A) ((size4s_t)((size1u_t)(A)))
+#define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B))
+#define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B))
+#define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B))
+#define fMPY8SS(A, B) (int)((short)(A) * (short)(B))
+#define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B))
+#define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B))
+#define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B))
+#define fMPY16US(A, B) fMPY16SU(B, A)
+#define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B))
+#define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B))
+#define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B))
+#define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B))
+#define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B))
+#define fROUND(A) (A + 0x8000)
+#define fCLIP(DST, SRC, U) \
+    do { \
+        size4s_t maxv = (1 << U) - 1; \
+        size4s_t minv = -(1 << U); \
+        DST = fMIN(maxv, fMAX(SRC, minv)); \
+    } while (0)
+#define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A)))
+#define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1))))))
+#define fCRNDN(A, N) (conv_round(A, N))
+#define fCRNDN64(A, N) (conv_round64(A, N))
+#define fADD128(A, B) (add128(A, B))
+#define fSUB128(A, B) (sub128(A, B))
+#define fSHIFTR128(A, B) (shiftr128(A, B))
+#define fSHIFTL128(A, B) (shiftl128(A, B))
+#define fAND128(A, B) (and128(A, B))
+#define fCAST8S_16S(A) (cast8s_to_16s(A))
+#define fCAST16S_8S(A) (cast16s_to_8s(A))
+#define fCAST16S_4S(A) (cast16s_to_4s(A))
+
+#ifdef QEMU_GENERATE
+#define fEA_RI(REG, IMM) tcg_gen_addi_tl(EA, REG, IMM)
+#define fEA_RRs(REG, REG2, SCALE) \
+    do { \
+        TCGv tmp = tcg_temp_new(); \
+        tcg_gen_shli_tl(tmp, REG2, SCALE); \
+        tcg_gen_add_tl(EA, REG, tmp); \
+        tcg_temp_free(tmp); \
+    } while (0)
+#define fEA_IRs(IMM, REG, SCALE) \
+    do { \
+        tcg_gen_shli_tl(EA, REG, SCALE); \
+        tcg_gen_addi_tl(EA, EA, IMM); \
+    } while (0)
+#else
+#define fEA_RI(REG, IMM) \
+    do { \
+        EA = REG + IMM; \
+        fDOCHKPAGECROSS(REG, EA); \
+    } while (0)
+#define fEA_RRs(REG, REG2, SCALE) \
+    do { \
+        EA = REG + (REG2 << SCALE); \
+        fDOCHKPAGECROSS(REG, EA); \
+    } while (0)
+#define fEA_IRs(IMM, REG, SCALE) \
+    do { \
+        EA = IMM + (REG << SCALE); \
+        fDOCHKPAGECROSS(IMM, EA); \
+    } while (0)
+#endif
+
+#ifdef QEMU_GENERATE
+#define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM)
+#define fEA_REG(REG) tcg_gen_mov_tl(EA, REG)
+static inline void gen_fbrev(TCGv result, TCGv src)
+{
+    TCGv result_hi = tcg_temp_new();
+    TCGv result_lo = tcg_temp_new();
+    TCGv tmp1 = tcg_temp_new();
+    TCGv tmp2 = tcg_temp_new();
+    int i;
+
+    /*
+     *  Bit reverse the low 16 bits of the address
+     */
+    tcg_gen_andi_tl(result_hi, src, 0xffff0000);
+    tcg_gen_movi_tl(result_lo, 0);
+    tcg_gen_mov_tl(tmp1, src);
+    for (i = 0; i < 16; i++) {
+        /*
+         * result_lo = (result_lo << 1) | (tmp1 & 1);
+         * tmp1 >>= 1;
+         */
+        tcg_gen_shli_tl(result_lo, result_lo, 1);
+        tcg_gen_andi_tl(tmp2, tmp1, 1);
+        tcg_gen_or_tl(result_lo, result_lo, tmp2);
+        tcg_gen_sari_tl(tmp1, tmp1, 1);
+    }
+    tcg_gen_or_tl(result, result_hi, result_lo);
+
+    tcg_temp_free(result_hi);
+    tcg_temp_free(result_lo);
+    tcg_temp_free(tmp1);
+    tcg_temp_free(tmp2);
+}
+static inline void gen_fcircadd(TCGv reg, TCGv incr, TCGv M, TCGv start_addr)
+{
+    TCGv length = tcg_temp_new();
+    TCGv new_ptr = tcg_temp_new();
+    TCGv end_addr = tcg_temp_new();
+    TCGv tmp = tcg_temp_new();
+
+    tcg_gen_andi_tl(length, M, 0x1ffff);
+    tcg_gen_add_tl(new_ptr, reg, incr);
+    tcg_gen_add_tl(end_addr, start_addr, length);
+
+    tcg_gen_sub_tl(tmp, new_ptr, length);
+    tcg_gen_movcond_tl(TCG_COND_GE, new_ptr, new_ptr, end_addr, tmp, new_ptr);
+    tcg_gen_add_tl(tmp, new_ptr, length);
+    tcg_gen_movcond_tl(TCG_COND_LT, new_ptr, new_ptr, start_addr, tmp, new_ptr);
+
+    tcg_gen_mov_tl(reg, new_ptr);
+
+    tcg_temp_free(length);
+    tcg_temp_free(new_ptr);
+    tcg_temp_free(end_addr);
+    tcg_temp_free(tmp);
+}
+
+#define fEA_BREVR(REG)      gen_fbrev(EA, REG)
+#define fEA_GPI(IMM)        tcg_gen_addi_tl(EA, fREAD_GP(), IMM)
+#define fPM_I(REG, IMM)     tcg_gen_addi_tl(REG, REG, IMM)
+#define fPM_M(REG, MVAL)    tcg_gen_add_tl(REG, REG, MVAL)
+#else
+#define fEA_IMM(IMM) EA = IMM
+#define fEA_REG(REG) EA = REG
+#define fEA_GPI(IMM) \
+    do { \
+        EA = fREAD_GP() + IMM; \
+        fGP_DOCHKPAGECROSS(fREAD_GP(), EA); \
+    } while (0)
+#define fPM_I(REG, IMM) \
+    do { \
+        REG = REG + IMM; \
+    } while (0)
+#define fPM_M(REG, MVAL) \
+    do { \
+        REG = REG + MVAL; \
+    } while (0)
+#define fEA_BREVR(REG) \
+    do { \
+        EA = fbrev(REG); \
+    } while (0)
+#endif
+#define fPM_CIRI(REG, IMM, MVAL) \
+    do { \
+        TCGv tcgv_siV = tcg_const_tl(siV); \
+        fcirc_add(REG, tcgv_siV, MuV); \
+        tcg_temp_free(tcgv_siV); \
+    } while (0)
+#define fPM_CIRR(REG, VAL, MVAL) \
+    do { \
+        fcirc_add(REG, VAL, MuV); \
+    } while (0)
+#define fMODCIRCU(N, P) ((N) & ((1 << (P)) - 1))
+#define fSCALE(N, A) (((size8s_t)(A)) << N)
+#define fVSATW(A) fVSATN(32, ((long long)A))
+#define fSATW(A) fSATN(32, ((long long)A))
+#define fVSAT(A) fVSATN(32, (A))
+#define fSAT(A) fSATN(32, (A))
+#define fSAT_ORIG_SHL(A, ORIG_REG) \
+    ((((size4s_t)((fSAT(A)) ^ ((size4s_t)(ORIG_REG)))) < 0) \
+        ? fSATVALN(32, ((size4s_t)(ORIG_REG))) \
+        : ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \
+                                            : fSAT(A)))
+#define fPASS(A) A
+#define fRND(A) (((A) + 1) >> 1)
+#define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \
+    (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
+                   : (fCAST##REGSTYPE(SRC) << (SHAMT)))
+#define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \
+    fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s)
+#define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \
+    fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u)
+#define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \
+    (((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
+                   : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC)))
+#define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \
+    (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \
+                   : (fCAST##REGSTYPE(SRC) >> (SHAMT)))
+#define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \
+    fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s)
+#define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \
+    fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u)
+#define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \
+    (((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \
+                        << ((-(SHAMT)) - 1)) << 1, (SRC)) \
+                   : (fCAST##REGSTYPE##s(SRC) >> (SHAMT)))
+#ifdef QEMU_GENERATE
+#define fASHIFTR(DST, SRC, SHAMT, REGSTYPE) \
+    gen_ashiftr_##REGSTYPE##s(DST, SRC, SHAMT)
+#define fLSHIFTR(DST, SRC, SHAMT, REGSTYPE) \
+    gen_lshiftr_##REGSTYPE##u(DST, SRC, SHAMT)
+#else
+#define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT))
+#define fLSHIFTR(SRC, SHAMT, REGSTYPE) \
+    (((SHAMT) >= 64) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT)))
+#endif
+#define fROTL(SRC, SHAMT, REGSTYPE) \
+    (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \
+                              ((fCAST##REGSTYPE##u(SRC) >> \
+                                 ((sizeof(SRC) * 8) - (SHAMT))))))
+#define fROTR(SRC, SHAMT, REGSTYPE) \
+    (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \
+                              ((fCAST##REGSTYPE##u(SRC) << \
+                                 ((sizeof(SRC) * 8) - (SHAMT))))))
+#ifdef QEMU_GENERATE
+#define fASHIFTL(DST, SRC, SHAMT, REGSTYPE) \
+    gen_ashiftl_##REGSTYPE##s(DST, SRC, SHAMT)
+#else
+#define fASHIFTL(SRC, SHAMT, REGSTYPE) \
+    (((SHAMT) >= 64) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT)))
+#endif
+#define fFLOAT(A) \
+    ({ union { float f; size4u_t i; } _fipun; _fipun.i = (A); _fipun.f; })
+#define fUNFLOAT(A) \
+    ({ union { float f; size4u_t i; } _fipun; \
+     _fipun.f = (A); isnan(_fipun.f) ? 0xFFFFFFFFU : _fipun.i; })
+#define fSFNANVAL() 0xffffffff
+#define fSFINFVAL(A) (((A) & 0x80000000) | 0x7f800000)
+#define fSFONEVAL(A) (((A) & 0x80000000) | fUNFLOAT(1.0))
+#define fCHECKSFNAN(DST, A) \
+    do { \
+        if (isnan(fFLOAT(A))) { \
+            if ((fGETBIT(22, A)) == 0) { \
+                fRAISEFLAGS(FE_INVALID); \
+            } \
+            DST = fSFNANVAL(); \
+        } \
+    } while (0)
+#define fCHECKSFNAN3(DST, A, B, C) \
+    do { \
+        fCHECKSFNAN(DST, A); \
+        fCHECKSFNAN(DST, B); \
+        fCHECKSFNAN(DST, C); \
+    } while (0)
+#define fSF_BIAS() 127
+#define fSF_MANTBITS() 23
+#define fSF_RECIP_LOOKUP(IDX) arch_recip_lookup(IDX)
+#define fSF_INVSQRT_LOOKUP(IDX) arch_invsqrt_lookup(IDX)
+#define fSF_MUL_POW2(A, B) \
+    (fUNFLOAT(fFLOAT(A) * fFLOAT((fSF_BIAS() + (B)) << fSF_MANTBITS())))
+#define fSF_GETEXP(A) (((A) >> fSF_MANTBITS()) & 0xff)
+#define fSF_MAXEXP() (254)
+#define fSF_RECIP_COMMON(N, D, O, A) arch_sf_recip_common(&N, &D, &O, &A)
+#define fSF_INVSQRT_COMMON(N, O, A) arch_sf_invsqrt_common(&N, &O, &A)
+#define fFMAFX(A, B, C, ADJ) internal_fmafx(A, B, C, fSXTN(8, 64, ADJ))
+#define fFMAF(A, B, C) internal_fmafx(A, B, C, 0)
+#define fSFMPY(A, B) internal_mpyf(A, B)
+#define fMAKESF(SIGN, EXP, MANT) \
+    ((((SIGN) & 1) << 31) | \
+     (((EXP) & 0xff) << fSF_MANTBITS()) | \
+     ((MANT) & ((1 << fSF_MANTBITS()) - 1)))
+#define fDOUBLE(A) \
+    ({ union { double f; size8u_t i; } _fipun; _fipun.i = (A); _fipun.f; })
+#define fUNDOUBLE(A) \
+    ({ union { double f; size8u_t i; } _fipun; \
+     _fipun.f = (A); \
+     isnan(_fipun.f) ? 0xFFFFFFFFFFFFFFFFULL : _fipun.i; })
+#define fDFNANVAL() 0xffffffffffffffffULL
+#define fDFINFVAL(A) (((A) & 0x8000000000000000ULL) | 0x7ff0000000000000ULL)
+#define fDFONEVAL(A) (((A) & 0x8000000000000000ULL) | fUNDOUBLE(1.0))
+#define fCHECKDFNAN(DST, A) \
+    do { \
+        if (isnan(fDOUBLE(A))) { \
+            if ((fGETBIT(51, A)) == 0) { \
+                fRAISEFLAGS(FE_INVALID); \
+            } \
+            DST = fDFNANVAL(); \
+        } \
+    } while (0)
+#define fCHECKDFNAN3(DST, A, B, C) \
+    do { \
+        fCHECKDFNAN(DST, A); \
+        fCHECKDFNAN(DST, B); \
+        fCHECKDFNAN(DST, C); \
+    } while (0)
+#define fDF_BIAS() 1023
+#define fDF_ISNORMAL(X) (fpclassify(fDOUBLE(X)) == FP_NORMAL)
+#define fDF_ISDENORM(X) (fpclassify(fDOUBLE(X)) == FP_SUBNORMAL)
+#define fDF_ISBIG(X) (fDF_GETEXP(X) >= 512)
+#define fDF_MANTBITS() 52
+#define fDF_RECIP_LOOKUP(IDX) (size8u_t)(arch_recip_lookup(IDX))
+#define fDF_INVSQRT_LOOKUP(IDX) (size8u_t)(arch_invsqrt_lookup(IDX))
+#define fDF_MUL_POW2(A, B) \
+    (fUNDOUBLE(fDOUBLE(A) * fDOUBLE((0ULL + fDF_BIAS() + (B)) << \
+     fDF_MANTBITS())))
+#define fDF_GETEXP(A) (((A) >> fDF_MANTBITS()) & 0x7ff)
+#define fDF_MAXEXP() (2046)
+#define fDF_RECIP_COMMON(N, D, O, A) arch_df_recip_common(&N, &D, &O, &A)
+#define fDF_INVSQRT_COMMON(N, O, A) arch_df_invsqrt_common(&N, &O, &A)
+#define fFMA(A, B, C) internal_fma(A, B, C)
+#define fDFMPY(A, B) internal_mpy(A, B)
+#define fDF_MPY_HH(A, B, ACC) internal_mpyhh(A, B, ACC)
+#define fFMAX(A, B, C, ADJ) internal_fmax(A, B, C, fSXTN(8, 64, ADJ) * 2)
+#define fMAKEDF(SIGN, EXP, MANT) \
+    ((((SIGN) & 1ULL) << 63) | \
+     (((EXP) & 0x7ffULL) << fDF_MANTBITS()) | \
+     ((MANT) & ((1ULL << fDF_MANTBITS()) - 1)))
+
+#ifdef QEMU_GENERATE
+/* These will be needed if we write any FP instructions with TCG */
+#define fFPOP_START()      /* nothing */
+#define fFPOP_END()        /* nothing */
+#else
+#define fFPOP_START() arch_fpop_start(env)
+#define fFPOP_END() arch_fpop_end(env)
+#endif
+
+#define fFPSETROUND_NEAREST() fesetround(FE_TONEAREST)
+#define fFPSETROUND_CHOP() fesetround(FE_TOWARDZERO)
+#define fFPCANCELFLAGS() feclearexcept(FE_ALL_EXCEPT)
+#define fISINFPROD(A, B) \
+    ((isinf(A) && isinf(B)) || \
+     (isinf(A) && isfinite(B) && ((B) != 0.0)) || \
+     (isinf(B) && isfinite(A) && ((A) != 0.0)))
+#define fISZEROPROD(A, B) \
+    ((((A) == 0.0) && isfinite(B)) || (((B) == 0.0) && isfinite(A)))
+#define fRAISEFLAGS(A) arch_raise_fpflag(A)
+#define fDF_MAX(A, B) \
+    (((A) == (B)) ? fDOUBLE(fUNDOUBLE(A) & fUNDOUBLE(B)) : fmax(A, B))
+#define fDF_MIN(A, B) \
+    (((A) == (B)) ? fDOUBLE(fUNDOUBLE(A) | fUNDOUBLE(B)) : fmin(A, B))
+#define fSF_MAX(A, B) \
+    (((A) == (B)) ? fFLOAT(fUNFLOAT(A) & fUNFLOAT(B)) : fmaxf(A, B))
+#define fSF_MIN(A, B) \
+    (((A) == (B)) ? fFLOAT(fUNFLOAT(A) | fUNFLOAT(B)) : fminf(A, B))
+#define fMMU(ADDR) ADDR
+
+#ifdef QEMU_GENERATE
+#define fcirc_add(REG, INCR, MV) \
+    gen_fcircadd(REG, INCR, MV, fREAD_CSREG(MuN))
+#else
+#define fcirc_add(REG, INCR, IMMED)  /* Not possible in helpers */
+#endif
+
+#define fbrev(REG) (fbrevaddr(REG))
+
+#ifdef QEMU_GENERATE
+#define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA)
+#else
+#define fLOAD(NUM, SIZE, SIGN, EA, DST) \
+    DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA)
+#endif
+
+#define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE)
+
+#ifdef QEMU_GENERATE
+#define fGET_FRAMEKEY() READ_REG(tmp, HEX_REG_FRAMEKEY)
+static inline TCGv_i64 gen_frame_scramble(TCGv_i64 result)
+{
+    /* ((LR << 32) | FP) ^ (FRAMEKEY << 32)) */
+    TCGv_i64 LR_i64 = tcg_temp_new_i64();
+    TCGv_i64 FP_i64 = tcg_temp_new_i64();
+    TCGv_i64 FRAMEKEY_i64 = tcg_temp_new_i64();
+
+    tcg_gen_extu_i32_i64(LR_i64, hex_gpr[HEX_REG_LR]);
+    tcg_gen_extu_i32_i64(FP_i64, hex_gpr[HEX_REG_FP]);
+    tcg_gen_extu_i32_i64(FRAMEKEY_i64, hex_gpr[HEX_REG_FRAMEKEY]);
+
+    tcg_gen_shli_i64(LR_i64, LR_i64, 32);
+    tcg_gen_shli_i64(FRAMEKEY_i64, FRAMEKEY_i64, 32);
+    tcg_gen_or_i64(result, LR_i64, FP_i64);
+    tcg_gen_xor_i64(result, result, FRAMEKEY_i64);
+
+    tcg_temp_free_i64(LR_i64);
+    tcg_temp_free_i64(FP_i64);
+    tcg_temp_free_i64(FRAMEKEY_i64);
+    return result;
+}
+#define fFRAME_SCRAMBLE(VAL) gen_frame_scramble(scramble_tmp)
+static inline TCGv_i64 gen_frame_unscramble(TCGv_i64 frame)
+{
+    TCGv_i64 FRAMEKEY_i64 = tcg_temp_new_i64();
+    tcg_gen_extu_i32_i64(FRAMEKEY_i64, hex_gpr[HEX_REG_FRAMEKEY]);
+    tcg_gen_shli_i64(FRAMEKEY_i64, FRAMEKEY_i64, 32);
+    tcg_gen_xor_i64(frame, frame, FRAMEKEY_i64);
+    tcg_temp_free_i64(FRAMEKEY_i64);
+    return frame;
+}
+
+#define fFRAME_UNSCRAMBLE(VAL) gen_frame_unscramble(VAL)
+#else
+#define fGET_FRAMEKEY() READ_REG(HEX_REG_FRAMEKEY)
+#define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32))
+#define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL)
+#endif
+
+#ifdef CONFIG_USER_ONLY
+#define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */
+#else
+/* System mode not implemented yet */
+#define fFRAMECHECK(ADDR, EA)  g_assert_not_reached();
+#endif
+
+#ifdef QEMU_GENERATE
+#define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \
+    gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx);
+#else
+#define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \
+    DST = (size##SIZE##SIGN##_t)mem_load_locked##SIZE(env, EA);
+#endif
+
+#define fLOAD_PHYS(NUM, SIZE, SIGN, SRC1, SRC2, DST)
+
+#ifdef QEMU_GENERATE
+#define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, insn->slot)
+#else
+#define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot)
+#endif
+
+#ifdef QEMU_GENERATE
+#define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \
+    gen_store_conditional##SIZE(env, ctx, PdN, PRED, EA, SRC);
+#else
+#define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \
+    PRED = (mem_store_conditional(env, EA, SRC, SIZE) ? 0xff : 0);
+#endif
+
+#define fVTCM_MEMCPY(DST, SRC, SIZE)
+#define fPERMUTEH(SRC0, SRC1, CTRL) fpermuteh((SRC0), (SRC1), CTRL)
+#define fPERMUTEB(SRC0, SRC1, CTRL) fpermuteb((SRC0), (SRC1), CTRL)
+
+#ifdef QEMU_GENERATE
+#define GETBYTE_FUNC(X) \
+    _Generic((X), TCGv_i32 : gen_get_byte, TCGv_i64 : gen_get_byte_i64)
+#define fGETBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, true)
+#define fGETUBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, false)
+#else
+#define fGETBYTE(N, SRC) ((size1s_t)((SRC >> ((N) * 8)) & 0xff))
+#define fGETUBYTE(N, SRC) ((size1u_t)((SRC >> ((N) * 8)) & 0xff))
+#endif
+
+#ifdef QEMU_GENERATE
+#define SETBYTE_FUNC(X) \
+    _Generic((X), TCGv_i32 : gen_set_byte, TCGv_i64 : gen_set_byte_i64)
+#define fSETBYTE(N, DST, VAL) SETBYTE_FUNC(DST)(N, DST, VAL)
+
+#define fGETHALF(N, SRC)  gen_get_half(HALF, N, SRC, true)
+#define fGETUHALF(N, SRC) gen_get_half(HALF, N, SRC, false)
+
+#define SETHALF_FUNC(X) \
+    _Generic((X), TCGv_i32 : gen_set_half, TCGv_i64 : gen_set_half_i64)
+#define fSETHALF(N, DST, VAL) SETHALF_FUNC(DST)(N, DST, VAL)
+#define fSETHALFw(N, DST, VAL) gen_set_half(N, DST, VAL)
+#define fSETHALFd(N, DST, VAL) gen_set_half_i64(N, DST, VAL)
+#else
+#define fSETBYTE(N, DST, VAL) \
+    do { \
+        DST = (DST & ~(0x0ffLL << ((N) * 8))) | \
+        (((size8u_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \
+    } while (0)
+#define fGETHALF(N, SRC) ((size2s_t)((SRC >> ((N) * 16)) & 0xffff))
+#define fGETUHALF(N, SRC) ((size2u_t)((SRC >> ((N) * 16)) & 0xffff))
+#define fSETHALF(N, DST, VAL) \
+    do { \
+        DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \
+        (((size8u_t)((VAL) & 0x0ffff)) << ((N) * 16)); \
+    } while (0)
+#define fSETHALFw fSETHALF
+#define fSETHALFd fSETHALF
+#endif
+
+#ifdef QEMU_GENERATE
+#define GETWORD_FUNC(X) \
+    _Generic((X), TCGv_i32 : gen_get_word, TCGv_i64 : gen_get_word_i64)
+#define fGETWORD(N, SRC)  GETWORD_FUNC(WORD)(WORD, N, SRC, true)
+#define fGETUWORD(N, SRC) GETWORD_FUNC(WORD)(WORD, N, SRC, false)
+#else
+#define fGETWORD(N, SRC) \
+    ((size8s_t)((size4s_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
+#define fGETUWORD(N, SRC) \
+    ((size8u_t)((size4u_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
+#endif
+
+#define fSETWORD(N, DST, VAL) \
+    do { \
+        DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \
+              (((VAL) & 0x0ffffffffLL) << ((N) * 32)); \
+    } while (0)
+#define fACC()
+#define fEXTENSION_AUDIO(A) A
+
+#ifdef QEMU_GENERATE
+#define fSETBIT(N, DST, VAL) gen_set_bit((N), (DST), (VAL));
+#else
+#define fSETBIT(N, DST, VAL) \
+    do { \
+        DST = (DST & ~(1ULL << (N))) | (((size8u_t)(VAL)) << (N)); \
+    } while (0)
+#endif
+
+#define fGETBIT(N, SRC) (((SRC) >> N) & 1)
+#define fSETBITS(HI, LO, DST, VAL) \
+    do { \
+        int j; \
+        for (j = LO; j <= HI; j++) { \
+            fSETBIT(j, DST, VAL); \
+        } \
+    } while (0)
+#define fCOUNTONES_2(VAL) count_ones_2(VAL)
+#define fCOUNTONES_4(VAL) count_ones_4(VAL)
+#define fCOUNTONES_8(VAL) count_ones_8(VAL)
+#define fBREV_8(VAL) reverse_bits_8(VAL)
+#define fBREV_4(VAL) reverse_bits_4(VAL)
+#define fBREV_2(VAL) reverse_bits_2(VAL)
+#define fBREV_1(VAL) reverse_bits_1(VAL)
+#define fCL1_8(VAL) count_leading_ones_8(VAL)
+#define fCL1_4(VAL) count_leading_ones_4(VAL)
+#define fCL1_2(VAL) count_leading_ones_2(VAL)
+#define fCL1_1(VAL) count_leading_ones_1(VAL)
+#define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN)
+#define fDEINTERLEAVE(MIXED) deinterleave(MIXED)
+#define fNORM16(VAL) \
+    ((VAL == 0) ? (31) : (fMAX(fCL1_2(VAL), fCL1_2(~VAL)) - 1))
+#define fHIDE(A) A
+#define fCONSTLL(A) A##LL
+#define fCONSTULL(A) A##ULL
+#define fECHO(A) (A)
+
+#define fDO_TRACE(SREG)
+#define fBREAK()
+#define fGP_DOCHKPAGECROSS(BASE, SUM)
+#define fDOCHKPAGECROSS(BASE, SUM)
+#define fPAUSE(IMM)
+#define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0)
+
+#define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \
+    ((VAL) << reg_field_info[FIELD].offset)
+#define fGET_REG_FIELD_MASK(FIELD) \
+    (((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset)
+#define fLOG_REG_FIELD(REG, FIELD, VAL)
+#define fWRITE_GLOBAL_REG_FIELD(REG, FIELD, VAL)
+#define fLOG_GLOBAL_REG_FIELD(REG, FIELD, VAL)
+#define fREAD_REG_FIELD(REG, FIELD) \
+    fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \
+                   reg_field_info[FIELD].width, \
+                   reg_field_info[FIELD].offset)
+#define fREAD_GLOBAL_REG_FIELD(REG, FIELD)
+#define fGET_FIELD(VAL, FIELD)
+#define fSET_FIELD(VAL, FIELD, NEWVAL)
+#define fPOW2_HELP_ROUNDUP(VAL) \
+    ((VAL) | \
+     ((VAL) >> 1) | \
+     ((VAL) >> 2) | \
+     ((VAL) >> 4) | \
+     ((VAL) >> 8) | \
+     ((VAL) >> 16))
+#define fPOW2_ROUNDUP(VAL) (fPOW2_HELP_ROUNDUP((VAL) - 1) + 1)
+#define fBARRIER()
+#define fSYNCH()
+#define fISYNC()
+#define fICFETCH(REG)
+#define fDCFETCH(REG) do { REG = REG; } while (0) /* Nothing to do in qemu */
+#define fICINVIDX(REG)
+#define fICINVA(REG) do { REG = REG; } while (0) /* Nothing to do in qemu */
+#define fICKILL()
+#define fDCKILL()
+#define fL2KILL()
+#define fL2UNLOCK()
+#define fL2CLEAN()
+#define fL2CLEANINV()
+#define fL2CLEANPA(REG)
+#define fL2CLEANINVPA(REG)
+#define fL2CLEANINVIDX(REG)
+#define fL2CLEANIDX(REG)
+#define fL2INVIDX(REG)
+#define fL2FETCH(ADDR, HEIGHT, WIDTH, STRIDE, FLAGS)
+#define fL2TAGR(INDEX, DST, DSTREG)
+#define fL2LOCKA(VA, DST, PREGDST)
+#define fL2UNLOCKA(VA)
+#define fL2TAGW(INDEX, PART2)
+#define fDCCLEANIDX(REG)
+#define fDCCLEANA(REG) do { REG = REG; } while (0) /* Nothing to do in qemu */
+#define fDCCLEANINVIDX(REG)
+#define fDCCLEANINVA(REG) \
+    do { REG = REG; } while (0) /* Nothing to do in qemu */
+
+#ifdef QEMU_GENERATE
+#define fDCZEROA(REG) tcg_gen_mov_tl(hex_dczero_addr, (REG))
+#else
+#define fDCZEROA(REG) do { REG = REG; g_assert_not_reached(); } while (0)
+#endif
+
+#define fDCINVIDX(REG)
+#define fDCINVA(REG) do { REG = REG; } while (0) /* Nothing to do in qemu */
+#define fBRANCH_SPECULATED_RIGHT(JC, SD, DOTNEWVAL) \
+    (((JC) ^ (SD) ^ (DOTNEWVAL & 1)) & 0x1)
+#define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \
+                                STRBITNUM) /* Nothing */
+
+#define IV1DEAD()
+#define fVIRTINSN_SPSWAP(IMM, REG)
+#define fVIRTINSN_GETIE(IMM, REG) { REG = 0xdeafbeef; }
+#define fVIRTINSN_SETIE(IMM, REG)
+#define fVIRTINSN_RTE(IMM, REG)
+#define fTRAP1_VIRTINSN(IMM) \
+    (((IMM) == 1) || ((IMM) == 3) || ((IMM) == 4) || ((IMM) == 6))
+#define fNOP_EXECUTED
+#define fPREDUSE_TIMING()
+
+#endif