new file mode 100644
@@ -0,0 +1,2981 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/qemu-print.h"
+#include "tcg/tcg.h"
+#include "cpu.h"
+#include "exec/exec-all.h"
+#include "disas/disas.h"
+#include "tcg-op.h"
+#include "exec/cpu_ldst.h"
+#include "exec/helper-proto.h"
+#include "exec/helper-gen.h"
+#include "exec/log.h"
+#include "exec/gdbstub.h"
+#include "exec/translator.h"
+
+static TCGv cpu_pc;
+
+static TCGv cpu_Cf;
+static TCGv cpu_Zf;
+static TCGv cpu_Nf;
+static TCGv cpu_Vf;
+static TCGv cpu_Sf;
+static TCGv cpu_Hf;
+static TCGv cpu_Tf;
+static TCGv cpu_If;
+
+static TCGv cpu_rampD;
+static TCGv cpu_rampX;
+static TCGv cpu_rampY;
+static TCGv cpu_rampZ;
+
+static TCGv cpu_r[32];
+static TCGv cpu_eind;
+static TCGv cpu_sp;
+
+#define REG(x) (cpu_r[x])
+
+enum {
+ BS_NONE = 0, /* Nothing special (none of the below) */
+ BS_STOP = 1, /* We want to stop translation for any reason */
+ BS_BRANCH = 2, /* A branch condition is reached */
+ BS_EXCP = 3, /* An exception condition is reached */
+};
+
+typedef struct DisasContext DisasContext;
+typedef struct InstInfo InstInfo;
+
+struct InstInfo {
+ target_long cpc;
+ target_long npc;
+ uint32_t opcode;
+ unsigned length;
+};
+
+/* This is the state at translation time. */
+struct DisasContext {
+ TranslationBlock *tb;
+
+ CPUAVRState *env;
+ int bs;
+
+ InstInfo inst[2];/* two consecutive instructions */
+
+ /* Routine used to access memory */
+ int memidx;
+ int bstate;
+ int singlestep;
+};
+
+static int to_A(DisasContext *ctx, int indx) { return 16 + (indx % 16); }
+static int to_B(DisasContext *ctx, int indx) { return 16 + (indx % 8); }
+static int to_C(DisasContext *ctx, int indx) { return 24 + (indx % 4) * 2; }
+static int to_D(DisasContext *ctx, int indx) { return (indx % 16) * 2; }
+
+static bool decode_insn16(DisasContext *ctx, uint16_t insn);
+static bool decode_insn32(DisasContext *ctx, uint32_t insn);
+#include "decode_insn16.inc.c"
+#include "decode_insn32.inc.c"
+
+static void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest)
+{
+ TranslationBlock *tb = ctx->tb;
+
+ if (ctx->singlestep == 0) {
+ tcg_gen_goto_tb(n);
+ tcg_gen_movi_i32(cpu_pc, dest);
+ tcg_gen_exit_tb(tb, n);
+ } else {
+ tcg_gen_movi_i32(cpu_pc, dest);
+ gen_helper_debug(cpu_env);
+ tcg_gen_exit_tb(NULL, 0);
+ }
+}
+
+#include "exec/gen-icount.h"
+
+static void gen_add_CHf(TCGv R, TCGv Rd, TCGv Rr)
+{
+ TCGv t1 = tcg_temp_new_i32();
+ TCGv t2 = tcg_temp_new_i32();
+ TCGv t3 = tcg_temp_new_i32();
+
+ tcg_gen_and_tl(t1, Rd, Rr); /* t1 = Rd & Rr */
+ tcg_gen_andc_tl(t2, Rd, R); /* t2 = Rd & ~R */
+ tcg_gen_andc_tl(t3, Rr, R); /* t3 = Rr & ~R */
+ tcg_gen_or_tl(t1, t1, t2); /* t1 = t1 | t2 | t3 */
+ tcg_gen_or_tl(t1, t1, t3);
+
+ tcg_gen_shri_tl(cpu_Cf, t1, 7); /* Cf = t1(7) */
+ tcg_gen_shri_tl(cpu_Hf, t1, 3); /* Hf = t1(3) */
+ tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
+
+ tcg_temp_free_i32(t3);
+ tcg_temp_free_i32(t2);
+ tcg_temp_free_i32(t1);
+}
+
+static void gen_add_Vf(TCGv R, TCGv Rd, TCGv Rr)
+{
+ TCGv t1 = tcg_temp_new_i32();
+ TCGv t2 = tcg_temp_new_i32();
+
+ /* t1 = Rd & Rr & ~R | ~Rd & ~Rr & R = (Rd ^ R) & ~(Rd ^ Rr) */
+ tcg_gen_xor_tl(t1, Rd, R);
+ tcg_gen_xor_tl(t2, Rd, Rr);
+ tcg_gen_andc_tl(t1, t1, t2);
+
+ tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
+
+ tcg_temp_free_i32(t2);
+ tcg_temp_free_i32(t1);
+}
+
+static void gen_sub_CHf(TCGv R, TCGv Rd, TCGv Rr)
+{
+ TCGv t1 = tcg_temp_new_i32();
+ TCGv t2 = tcg_temp_new_i32();
+ TCGv t3 = tcg_temp_new_i32();
+
+ /* Cf & Hf */
+ tcg_gen_not_tl(t1, Rd); /* t1 = ~Rd */
+ tcg_gen_and_tl(t2, t1, Rr); /* t2 = ~Rd & Rr */
+ tcg_gen_or_tl(t3, t1, Rr); /* t3 = (~Rd | Rr) & R */
+ tcg_gen_and_tl(t3, t3, R);
+ tcg_gen_or_tl(t2, t2, t3); /* t2 = ~Rd & Rr | ~Rd & R | R & Rr */
+ tcg_gen_shri_tl(cpu_Cf, t2, 7); /* Cf = t2(7) */
+ tcg_gen_shri_tl(cpu_Hf, t2, 3); /* Hf = t2(3) */
+ tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
+
+ tcg_temp_free_i32(t3);
+ tcg_temp_free_i32(t2);
+ tcg_temp_free_i32(t1);
+}
+
+static void gen_sub_Vf(TCGv R, TCGv Rd, TCGv Rr)
+{
+ TCGv t1 = tcg_temp_new_i32();
+ TCGv t2 = tcg_temp_new_i32();
+
+ /* Vf */
+ /* t1 = Rd & ~Rr & ~R | ~Rd & Rr & R = (Rd ^ R) & (Rd ^ R) */
+ tcg_gen_xor_tl(t1, Rd, R);
+ tcg_gen_xor_tl(t2, Rd, Rr);
+ tcg_gen_and_tl(t1, t1, t2);
+ tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
+
+ tcg_temp_free_i32(t2);
+ tcg_temp_free_i32(t1);
+}
+
+static void gen_rshift_ZNVSf(TCGv R)
+{
+ tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
+ tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
+ tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf);
+ tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+}
+
+static void gen_NSf(TCGv R)
+{
+ tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
+ tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+}
+
+static void gen_ZNSf(TCGv R)
+{
+ tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
+ tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
+ tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+}
+
+static void gen_push_ret(DisasContext *ctx, int ret)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) {
+
+ TCGv t0 = tcg_const_i32((ret & 0x0000ff));
+
+ tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_UB);
+ tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+ tcg_temp_free_i32(t0);
+ } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) {
+
+ TCGv t0 = tcg_const_i32((ret & 0x00ffff));
+
+ tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+ tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_BEUW);
+ tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+ tcg_temp_free_i32(t0);
+
+ } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) {
+
+ TCGv lo = tcg_const_i32((ret & 0x0000ff));
+ TCGv hi = tcg_const_i32((ret & 0xffff00) >> 8);
+
+ tcg_gen_qemu_st_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB);
+ tcg_gen_subi_tl(cpu_sp, cpu_sp, 2);
+ tcg_gen_qemu_st_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW);
+ tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+ tcg_temp_free_i32(lo);
+ tcg_temp_free_i32(hi);
+ }
+}
+
+static void gen_pop_ret(DisasContext *ctx, TCGv ret)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) {
+
+ tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+ tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_UB);
+
+ } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) {
+
+ tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+ tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_BEUW);
+ tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+
+ } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) {
+
+ TCGv lo = tcg_temp_new_i32();
+ TCGv hi = tcg_temp_new_i32();
+
+ tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+ tcg_gen_qemu_ld_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW);
+
+ tcg_gen_addi_tl(cpu_sp, cpu_sp, 2);
+ tcg_gen_qemu_ld_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB);
+
+ tcg_gen_deposit_tl(ret, lo, hi, 8, 16);
+
+ tcg_temp_free_i32(lo);
+ tcg_temp_free_i32(hi);
+ }
+}
+
+static void gen_jmp_ez(void)
+{
+ tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8);
+ tcg_gen_or_tl(cpu_pc, cpu_pc, cpu_eind);
+ tcg_gen_exit_tb(NULL, 0);
+}
+
+static void gen_jmp_z(void)
+{
+ tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8);
+ tcg_gen_exit_tb(NULL, 0);
+}
+
+/*
+ * in the gen_set_addr & gen_get_addr functions
+ * H assumed to be in 0x00ff0000 format
+ * M assumed to be in 0x000000ff format
+ * L assumed to be in 0x000000ff format
+ */
+static void gen_set_addr(TCGv addr, TCGv H, TCGv M, TCGv L)
+{
+
+ tcg_gen_andi_tl(L, addr, 0x000000ff);
+
+ tcg_gen_andi_tl(M, addr, 0x0000ff00);
+ tcg_gen_shri_tl(M, M, 8);
+
+ tcg_gen_andi_tl(H, addr, 0x00ff0000);
+}
+
+static void gen_set_xaddr(TCGv addr)
+{
+ gen_set_addr(addr, cpu_rampX, cpu_r[27], cpu_r[26]);
+}
+
+static void gen_set_yaddr(TCGv addr)
+{
+ gen_set_addr(addr, cpu_rampY, cpu_r[29], cpu_r[28]);
+}
+
+static void gen_set_zaddr(TCGv addr)
+{
+ gen_set_addr(addr, cpu_rampZ, cpu_r[31], cpu_r[30]);
+}
+
+static TCGv gen_get_addr(TCGv H, TCGv M, TCGv L)
+{
+ TCGv addr = tcg_temp_new_i32();
+
+ tcg_gen_deposit_tl(addr, M, H, 8, 8);
+ tcg_gen_deposit_tl(addr, L, addr, 8, 16);
+
+ return addr;
+}
+
+static TCGv gen_get_xaddr(void)
+{
+ return gen_get_addr(cpu_rampX, cpu_r[27], cpu_r[26]);
+}
+
+static TCGv gen_get_yaddr(void)
+{
+ return gen_get_addr(cpu_rampY, cpu_r[29], cpu_r[28]);
+}
+
+static TCGv gen_get_zaddr(void)
+{
+ return gen_get_addr(cpu_rampZ, cpu_r[31], cpu_r[30]);
+}
+
+/*
+ * Adds two registers and the contents of the C Flag and places the result in
+ * the destination register Rd.
+ */
+static bool trans_ADC(DisasContext *ctx, arg_ADC *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_add_tl(R, Rd, Rr); /* R = Rd + Rr + Cf */
+ tcg_gen_add_tl(R, R, cpu_Cf);
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ gen_add_CHf(R, Rd, Rr);
+ gen_add_Vf(R, Rd, Rr);
+ gen_ZNSf(R);
+
+ /* R */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Adds two registers without the C Flag and places the result in the
+ * destination register Rd.
+ */
+static bool trans_ADD(DisasContext *ctx, arg_ADD *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_add_tl(R, Rd, Rr); /* Rd = Rd + Rr */
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ gen_add_CHf(R, Rd, Rr);
+ gen_add_Vf(R, Rd, Rr);
+ gen_ZNSf(R);
+
+ /* R */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Adds an immediate value (0 - 63) to a register pair and places the result
+ * in the register pair. This instruction operates on the upper four register
+ * pairs, and is well suited for operations on the pointer registers. This
+ * instruction is not available in all devices. Refer to the device specific
+ * instruction set summary.
+ */
+static bool trans_ADIW(DisasContext *ctx, arg_ADIW *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_ADIW_SBIW) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv RdL = cpu_r[a->rd];
+ TCGv RdH = cpu_r[a->rd + 1];
+ int Imm = (a->imm);
+ TCGv R = tcg_temp_new_i32();
+ TCGv Rd = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */
+ tcg_gen_addi_tl(R, Rd, Imm); /* R = Rd + Imm */
+ tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
+
+ /* Cf */
+ tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */
+ tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15);
+
+ /* Vf */
+ tcg_gen_andc_tl(cpu_Vf, R, Rd); /* Vf = R & ~Rd */
+ tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15);
+
+ /* Zf */
+ tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
+
+ /* Nf */
+ tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */
+
+ /* Sf */
+ tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf);/* Sf = Nf ^ Vf */
+
+ /* R */
+ tcg_gen_andi_tl(RdL, R, 0xff);
+ tcg_gen_shri_tl(RdH, R, 8);
+
+ tcg_temp_free_i32(Rd);
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Performs the logical AND between the contents of register Rd and register
+ * Rr and places the result in the destination register Rd.
+ */
+static bool trans_AND(DisasContext *ctx, arg_AND *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_and_tl(R, Rd, Rr); /* Rd = Rd and Rr */
+
+ /* Vf */
+ tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
+
+ /* Zf */
+ tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
+
+ gen_ZNSf(R);
+
+ /* R */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Performs the logical AND between the contents of register Rd and a constant
+ * and places the result in the destination register Rd.
+ */
+static bool trans_ANDI(DisasContext *ctx, arg_ANDI *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ int Imm = (a->imm);
+
+ /* op */
+ tcg_gen_andi_tl(Rd, Rd, Imm); /* Rd = Rd & Imm */
+
+ tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
+ gen_ZNSf(Rd);
+
+ return true;
+}
+
+/*
+ * Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0
+ * is loaded into the C Flag of the SREG. This operation effectively divides a
+ * signed value by two without changing its sign. The Carry Flag can be used to
+ * round the result.
+ */
+static bool trans_ASR(DisasContext *ctx, arg_ASR *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv t0 = tcg_temp_new_i32();
+
+ /* Cf */
+ tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */
+
+ /* op */
+ tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */
+ tcg_gen_shri_tl(Rd, Rd, 1);
+ tcg_gen_or_tl(Rd, Rd, t0);
+
+ gen_rshift_ZNVSf(Rd);
+
+ tcg_temp_free_i32(t0);
+
+ return true;
+}
+
+/*
+ * Clears a single Flag in SREG.
+ */
+static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a)
+{
+ switch (a->bit) {
+ case 0x00:
+ tcg_gen_movi_tl(cpu_Cf, 0x00);
+ break;
+ case 0x01:
+ tcg_gen_movi_tl(cpu_Zf, 0x01);
+ break;
+ case 0x02:
+ tcg_gen_movi_tl(cpu_Nf, 0x00);
+ break;
+ case 0x03:
+ tcg_gen_movi_tl(cpu_Vf, 0x00);
+ break;
+ case 0x04:
+ tcg_gen_movi_tl(cpu_Sf, 0x00);
+ break;
+ case 0x05:
+ tcg_gen_movi_tl(cpu_Hf, 0x00);
+ break;
+ case 0x06:
+ tcg_gen_movi_tl(cpu_Tf, 0x00);
+ break;
+ case 0x07:
+ tcg_gen_movi_tl(cpu_If, 0x00);
+ break;
+ }
+
+ return true;
+}
+
+/*
+ * Copies the T Flag in the SREG (Status Register) to bit b in register Rd.
+ */
+static bool trans_BLD(DisasContext *ctx, arg_BLD *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv t1 = tcg_temp_new_i32();
+
+ tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */
+ tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */
+ tcg_gen_or_tl(Rd, Rd, t1);
+
+ tcg_temp_free_i32(t1);
+
+ return true;
+}
+
+/*
+ * Conditional relative branch. Tests a single bit in SREG and branches
+ * relatively to PC if the bit is cleared. This instruction branches relatively
+ * to PC in either direction (PC - 63 < = destination <= PC + 64). The
+ * parameter k is the offset from PC and is represented in two's complement
+ * form.
+ */
+static bool trans_BRBC(DisasContext *ctx, arg_BRBC *a)
+{
+ TCGLabel *taken = gen_new_label();
+
+ switch (a->bit) {
+ case 0x00:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Cf, 0, taken);
+ break;
+ case 0x01:
+ tcg_gen_brcondi_i32(TCG_COND_NE, cpu_Zf, 0, taken);
+ break;
+ case 0x02:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Nf, 0, taken);
+ break;
+ case 0x03:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Vf, 0, taken);
+ break;
+ case 0x04:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Sf, 0, taken);
+ break;
+ case 0x05:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Hf, 0, taken);
+ break;
+ case 0x06:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Tf, 0, taken);
+ break;
+ case 0x07:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_If, 0, taken);
+ break;
+ }
+
+ gen_goto_tb(ctx, 1, ctx->inst[0].npc);
+ gen_set_label(taken);
+ gen_goto_tb(ctx, 0, ctx->inst[0].npc + a->imm);
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Conditional relative branch. Tests a single bit in SREG and branches
+ * relatively to PC if the bit is set. This instruction branches relatively to
+ * PC in either direction (PC - 63 < = destination <= PC + 64). The parameter k
+ * is the offset from PC and is represented in two's complement form.
+ */
+static bool trans_BRBS(DisasContext *ctx, arg_BRBS *a)
+{
+ TCGLabel *taken = gen_new_label();
+
+ switch (a->bit) {
+ case 0x00:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Cf, 1, taken);
+ break;
+ case 0x01:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Zf, 0, taken);
+ break;
+ case 0x02:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Nf, 1, taken);
+ break;
+ case 0x03:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Vf, 1, taken);
+ break;
+ case 0x04:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Sf, 1, taken);
+ break;
+ case 0x05:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Hf, 1, taken);
+ break;
+ case 0x06:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Tf, 1, taken);
+ break;
+ case 0x07:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_If, 1, taken);
+ break;
+ }
+
+ gen_goto_tb(ctx, 1, ctx->inst[0].npc);
+ gen_set_label(taken);
+ gen_goto_tb(ctx, 0, ctx->inst[0].npc + a->imm);
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Sets a single Flag or bit in SREG.
+ */
+static bool trans_BSET(DisasContext *ctx, arg_BSET *a)
+{
+ switch (a->bit) {
+ case 0x00:
+ tcg_gen_movi_tl(cpu_Cf, 0x01);
+ break;
+ case 0x01:
+ tcg_gen_movi_tl(cpu_Zf, 0x00);
+ break;
+ case 0x02:
+ tcg_gen_movi_tl(cpu_Nf, 0x01);
+ break;
+ case 0x03:
+ tcg_gen_movi_tl(cpu_Vf, 0x01);
+ break;
+ case 0x04:
+ tcg_gen_movi_tl(cpu_Sf, 0x01);
+ break;
+ case 0x05:
+ tcg_gen_movi_tl(cpu_Hf, 0x01);
+ break;
+ case 0x06:
+ tcg_gen_movi_tl(cpu_Tf, 0x01);
+ break;
+ case 0x07:
+ tcg_gen_movi_tl(cpu_If, 0x01);
+ break;
+ }
+
+ return true;
+}
+
+/*
+ * The BREAK instruction is used by the On-chip Debug system, and is
+ * normally not used in the application software. When the BREAK instruction is
+ * executed, the AVR CPU is set in the Stopped Mode. This gives the On-chip
+ * Debugger access to internal resources. If any Lock bits are set, or either
+ * the JTAGEN or OCDEN Fuses are unprogrammed, the CPU will treat the BREAK
+ * instruction as a NOP and will not enter the Stopped mode. This instruction
+ * is not available in all devices. Refer to the device specific instruction
+ * set summary.
+ */
+static bool trans_BREAK(DisasContext *ctx, arg_BREAK *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_BREAK) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ if (gdb_is_active()) {
+ /* Program counter is set to *current* instruction to mimic AVaRICE. */
+ tcg_gen_movi_tl(cpu_pc, ctx->inst[0].cpc);
+ gen_helper_debug(cpu_env);
+ }
+
+ return true;
+}
+
+/*
+ * Stores bit b from Rd to the T Flag in SREG (Status Register).
+ */
+static bool trans_BST(DisasContext *ctx, arg_BST *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+
+ tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit);
+ tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit);
+
+ return true;
+}
+
+/*
+ * Calls to a subroutine within the entire Program memory. The return
+ * address (to the instruction after the CALL) will be stored onto the Stack.
+ * (See also RCALL). The Stack Pointer uses a post-decrement scheme during
+ * CALL. This instruction is not available in all devices. Refer to the device
+ * specific instruction set summary.
+ */
+static bool trans_CALL(DisasContext *ctx, arg_CALL *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_JMP_CALL) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ int Imm = a->imm;
+ int ret = ctx->inst[0].npc;
+
+ gen_push_ret(ctx, ret);
+ gen_goto_tb(ctx, 0, Imm);
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Clears a specified bit in an I/O Register. This instruction operates on
+ * the lower 32 I/O Registers -- addresses 0-31.
+ */
+static bool trans_CBI(DisasContext *ctx, arg_CBI *a)
+{
+ TCGv data = tcg_temp_new_i32();
+ TCGv port = tcg_const_i32(a->reg);
+
+ gen_helper_inb(data, cpu_env, port);
+ tcg_gen_andi_tl(data, data, ~(1 << a->bit));
+ gen_helper_outb(cpu_env, port, data);
+
+ tcg_temp_free_i32(data);
+ tcg_temp_free_i32(port);
+
+ return true;
+}
+
+/*
+ * Clears the specified bits in register Rd. Performs the logical AND
+ * between the contents of register Rd and the complement of the constant mask
+ * K. The result will be placed in register Rd.
+ */
+static bool trans_COM(DisasContext *ctx, arg_COM *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv R = tcg_temp_new_i32();
+
+ tcg_gen_xori_tl(Rd, Rd, 0xff);
+
+ tcg_gen_movi_tl(cpu_Cf, 1); /* Cf = 1 */
+ tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */
+ gen_ZNSf(Rd);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * This instruction performs a compare between two registers Rd and Rr.
+ * None of the registers are changed. All conditional branches can be used
+ * after this instruction.
+ */
+static bool trans_CP(DisasContext *ctx, arg_CP *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ gen_sub_CHf(R, Rd, Rr);
+ gen_sub_Vf(R, Rd, Rr);
+ gen_ZNSf(R);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * This instruction performs a compare between two registers Rd and Rr and
+ * also takes into account the previous carry. None of the registers are
+ * changed. All conditional branches can be used after this instruction.
+ */
+static bool trans_CPC(DisasContext *ctx, arg_CPC *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
+ tcg_gen_sub_tl(R, R, cpu_Cf);
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ gen_sub_CHf(R, Rd, Rr);
+ gen_sub_Vf(R, Rd, Rr);
+ gen_NSf(R);
+
+ /*
+ * Previous value remains unchanged when the result is zero;
+ * cleared otherwise.
+ */
+ tcg_gen_or_tl(cpu_Zf, cpu_Zf, R);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * This instruction performs a compare between register Rd and a constant.
+ * The register is not changed. All conditional branches can be used after this
+ * instruction.
+ */
+static bool trans_CPI(DisasContext *ctx, arg_CPI *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ int Imm = a->imm;
+ TCGv Rr = tcg_const_i32(Imm);
+ TCGv R = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ gen_sub_CHf(R, Rd, Rr);
+ gen_sub_Vf(R, Rd, Rr);
+ gen_ZNSf(R);
+
+ tcg_temp_free_i32(R);
+ tcg_temp_free_i32(Rr);
+
+ return true;
+}
+
+/*
+ * This instruction performs a compare between two registers Rd and Rr, and
+ * skips the next instruction if Rd = Rr.
+ */
+static bool trans_CPSE(DisasContext *ctx, arg_CPSE *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGLabel *skip = gen_new_label();
+
+ /* PC if next inst is skipped */
+ tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+ tcg_gen_brcond_i32(TCG_COND_EQ, Rd, Rr, skip);
+ /* PC if next inst is not skipped */
+ tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+ gen_set_label(skip);
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Subtracts one -1- from the contents of register Rd and places the result
+ * in the destination register Rd. The C Flag in SREG is not affected by the
+ * operation, thus allowing the DEC instruction to be used on a loop counter in
+ * multiple-precision computations. When operating on unsigned values, only
+ * BREQ and BRNE branches can be expected to perform consistently. When
+ * operating on two's complement values, all signed branches are available.
+ */
+static bool trans_DEC(DisasContext *ctx, arg_DEC *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+
+ tcg_gen_subi_tl(Rd, Rd, 1); /* Rd = Rd - 1 */
+ tcg_gen_andi_tl(Rd, Rd, 0xff); /* make it 8 bits */
+
+ /* cpu_Vf = Rd == 0x7f */
+ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x7f);
+ gen_ZNSf(Rd);
+
+ return true;
+}
+
+/*
+ * The module is an instruction set extension to the AVR CPU, performing
+ * DES iterations. The 64-bit data block (plaintext or ciphertext) is placed in
+ * the CPU register file, registers R0-R7, where LSB of data is placed in LSB
+ * of R0 and MSB of data is placed in MSB of R7. The full 64-bit key (including
+ * parity bits) is placed in registers R8- R15, organized in the register file
+ * with LSB of key in LSB of R8 and MSB of key in MSB of R15. Executing one DES
+ * instruction performs one round in the DES algorithm. Sixteen rounds must be
+ * executed in increasing order to form the correct DES ciphertext or
+ * plaintext. Intermediate results are stored in the register file (R0-R15)
+ * after each DES instruction. The instruction's operand (K) determines which
+ * round is executed, and the half carry flag (H) determines whether encryption
+ * or decryption is performed. The DES algorithm is described in
+ * "Specifications for the Data Encryption Standard" (Federal Information
+ * Processing Standards Publication 46). Intermediate results in this
+ * implementation differ from the standard because the initial permutation and
+ * the inverse initial permutation are performed each iteration. This does not
+ * affect the result in the final ciphertext or plaintext, but reduces
+ * execution time.
+ */
+static bool trans_DES(DisasContext *ctx, arg_DES *a)
+{
+ /* TODO */
+ if (avr_feature(ctx->env, AVR_FEATURE_DES) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ return true;
+}
+
+/*
+ * Indirect call of a subroutine pointed to by the Z (16 bits) Pointer
+ * Register in the Register File and the EIND Register in the I/O space. This
+ * instruction allows for indirect calls to the entire 4M (words) Program
+ * memory space. See also ICALL. The Stack Pointer uses a post-decrement scheme
+ * during EICALL. This instruction is not available in all devices. Refer to
+ * the device specific instruction set summary.
+ */
+static bool trans_EICALL(DisasContext *ctx, arg_EICALL *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_EIJMP_EICALL) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ int ret = ctx->inst[0].npc;
+
+ gen_push_ret(ctx, ret);
+
+ gen_jmp_ez();
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Indirect jump to the address pointed to by the Z (16 bits) Pointer
+ * Register in the Register File and the EIND Register in the I/O space. This
+ * instruction allows for indirect jumps to the entire 4M (words) Program
+ * memory space. See also IJMP. This instruction is not available in all
+ * devices. Refer to the device specific instruction set summary.
+ */
+static bool trans_EIJMP(DisasContext *ctx, arg_EIJMP *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_EIJMP_EICALL) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ gen_jmp_ez();
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Loads one byte pointed to by the Z-register and the RAMPZ Register in
+ * the I/O space, and places this byte in the destination register Rd. This
+ * instruction features a 100% space effective constant initialization or
+ * constant data fetch. The Program memory is organized in 16-bit words while
+ * the Z-pointer is a byte address. Thus, the least significant bit of the
+ * Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). This
+ * instruction can address the entire Program memory space. The Z-pointer
+ * Register can either be left unchanged by the operation, or it can be
+ * incremented. The incrementation applies to the entire 24-bit concatenation
+ * of the RAMPZ and Z-pointer Registers. Devices with Self-Programming
+ * capability can use the ELPM instruction to read the Fuse and Lock bit value.
+ * Refer to the device documentation for a detailed description. This
+ * instruction is not available in all devices. Refer to the device specific
+ * instruction set summary.
+ */
+static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_ELPM) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv Rd = cpu_r[0];
+ TCGv addr = gen_get_zaddr();
+
+ tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_ELPM) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+
+ tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_ELPMX) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+
+ tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+ gen_set_zaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+/*
+ * Performs the logical EOR between the contents of register Rd and
+ * register Rr and places the result in the destination register Rd.
+ */
+static bool trans_EOR(DisasContext *ctx, arg_EOR *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+
+ tcg_gen_xor_tl(Rd, Rd, Rr);
+
+ tcg_gen_movi_tl(cpu_Vf, 0);
+ gen_ZNSf(Rd);
+
+ return true;
+}
+
+/*
+ * This instruction performs 8-bit x 8-bit -> 16-bit unsigned
+ * multiplication and shifts the result one bit left.
+ */
+static bool trans_FMUL(DisasContext *ctx, arg_FMUL *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv R0 = cpu_r[0];
+ TCGv R1 = cpu_r[1];
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd *Rr */
+ tcg_gen_shli_tl(R, R, 1);
+
+ tcg_gen_andi_tl(R0, R, 0xff);
+ tcg_gen_shri_tl(R1, R, 8);
+ tcg_gen_andi_tl(R1, R1, 0xff);
+
+ tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
+ tcg_gen_andi_tl(cpu_Zf, R, 0x0000ffff);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
+ * and shifts the result one bit left.
+ */
+static bool trans_FMULS(DisasContext *ctx, arg_FMULS *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv R0 = cpu_r[0];
+ TCGv R1 = cpu_r[1];
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+ TCGv t0 = tcg_temp_new_i32();
+ TCGv t1 = tcg_temp_new_i32();
+
+ tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+ tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
+ tcg_gen_mul_tl(R, t0, t1); /* R = Rd *Rr */
+ tcg_gen_shli_tl(R, R, 1);
+
+ tcg_gen_andi_tl(R0, R, 0xff);
+ tcg_gen_shri_tl(R1, R, 8);
+ tcg_gen_andi_tl(R1, R1, 0xff);
+
+ tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
+ tcg_gen_andi_tl(cpu_Zf, R, 0x0000ffff);
+
+ tcg_temp_free_i32(t1);
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
+ * and shifts the result one bit left.
+ */
+static bool trans_FMULSU(DisasContext *ctx, arg_FMULSU *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv R0 = cpu_r[0];
+ TCGv R1 = cpu_r[1];
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+ TCGv t0 = tcg_temp_new_i32();
+
+ tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+ tcg_gen_mul_tl(R, t0, Rr); /* R = Rd *Rr */
+ tcg_gen_shli_tl(R, R, 1);
+
+ tcg_gen_andi_tl(R0, R, 0xff);
+ tcg_gen_shri_tl(R1, R, 8);
+ tcg_gen_andi_tl(R1, R1, 0xff);
+
+ tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
+ tcg_gen_andi_tl(cpu_Zf, R, 0x0000ffff);
+
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Calls to a subroutine within the entire 4M (words) Program memory. The
+ * return address (to the instruction after the CALL) will be stored onto the
+ * Stack. See also RCALL. The Stack Pointer uses a post-decrement scheme during
+ * CALL. This instruction is not available in all devices. Refer to the device
+ * specific instruction set summary.
+ */
+static bool trans_ICALL(DisasContext *ctx, arg_ICALL *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_IJMP_ICALL) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ int ret = ctx->inst[0].npc;
+
+ gen_push_ret(ctx, ret);
+ gen_jmp_z();
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Indirect jump to the address pointed to by the Z (16 bits) Pointer
+ * Register in the Register File. The Z-pointer Register is 16 bits wide and
+ * allows jump within the lowest 64K words (128KB) section of Program memory.
+ * This instruction is not available in all devices. Refer to the device
+ * specific instruction set summary.
+ */
+static bool trans_IJMP(DisasContext *ctx, arg_IJMP *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_IJMP_ICALL) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ gen_jmp_z();
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Loads data from the I/O Space (Ports, Timers, Configuration Registers,
+ * etc.) into register Rd in the Register File.
+ */
+static bool trans_IN(DisasContext *ctx, arg_IN *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv port = tcg_const_i32(a->imm);
+
+ gen_helper_inb(Rd, cpu_env, port);
+
+ tcg_temp_free_i32(port);
+
+ return true;
+}
+
+/*
+ * Adds one -1- to the contents of register Rd and places the result in the
+ * destination register Rd. The C Flag in SREG is not affected by the
+ * operation, thus allowing the INC instruction to be used on a loop counter in
+ * multiple-precision computations. When operating on unsigned numbers, only
+ * BREQ and BRNE branches can be expected to perform consistently. When
+ * operating on two's complement values, all signed branches are available.
+ */
+static bool trans_INC(DisasContext *ctx, arg_INC *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+
+ tcg_gen_addi_tl(Rd, Rd, 1);
+ tcg_gen_andi_tl(Rd, Rd, 0xff);
+
+ /* cpu_Vf = Rd == 0x80 */
+ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x80);
+ gen_ZNSf(Rd);
+ return true;
+}
+
+/*
+ * Jump to an address within the entire 4M (words) Program memory. See also
+ * RJMP. This instruction is not available in all devices. Refer to the device
+ * specific instruction set summary.0
+ */
+static bool trans_JMP(DisasContext *ctx, arg_JMP *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_JMP_CALL) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ gen_goto_tb(ctx, 0, a->imm);
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Load one byte indirect from data space to register and stores an clear
+ * the bits in data space specified by the register. The instruction can only
+ * be used towards internal SRAM. The data location is pointed to by the Z (16
+ * bits) Pointer Register in the Register File. Memory access is limited to the
+ * current data segment of 64KB. To access another data segment in devices with
+ * more than 64KB data space, the RAMPZ in register in the I/O area has to be
+ * changed. The Z-pointer Register is left unchanged by the operation. This
+ * instruction is especially suited for clearing status bits stored in SRAM.
+ */
+static void gen_data_store(DisasContext *ctx, TCGv data, TCGv addr)
+{
+ if (ctx->tb->flags & TB_FLAGS_FULL_ACCESS) {
+ gen_helper_fullwr(cpu_env, data, addr);
+ } else {
+ tcg_gen_qemu_st8(data, addr, MMU_DATA_IDX); /* mem[addr] = data */
+ }
+}
+
+static void gen_data_load(DisasContext *ctx, TCGv data, TCGv addr)
+{
+ if (ctx->tb->flags & TB_FLAGS_FULL_ACCESS) {
+ gen_helper_fullrd(data, cpu_env, addr);
+ } else {
+ tcg_gen_qemu_ld8u(data, addr, MMU_DATA_IDX); /* data = mem[addr] */
+ }
+}
+
+static bool trans_LAC(DisasContext *ctx, arg_LAC *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_RMW) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv Rr = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+ TCGv t0 = tcg_temp_new_i32();
+ TCGv t1 = tcg_temp_new_i32();
+
+ gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
+ /* t1 = t0 & (0xff - Rr) = t0 and ~Rr */
+ tcg_gen_andc_tl(t1, t0, Rr);
+
+ tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
+ gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
+
+ tcg_temp_free_i32(t1);
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+/*
+ * Load one byte indirect from data space to register and set bits in data
+ * space specified by the register. The instruction can only be used towards
+ * internal SRAM. The data location is pointed to by the Z (16 bits) Pointer
+ * Register in the Register File. Memory access is limited to the current data
+ * segment of 64KB. To access another data segment in devices with more than
+ * 64KB data space, the RAMPZ in register in the I/O area has to be changed.
+ * The Z-pointer Register is left unchanged by the operation. This instruction
+ * is especially suited for setting status bits stored in SRAM.
+ */
+static bool trans_LAS(DisasContext *ctx, arg_LAS *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_RMW) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv Rr = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+ TCGv t0 = tcg_temp_new_i32();
+ TCGv t1 = tcg_temp_new_i32();
+
+ gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
+ tcg_gen_or_tl(t1, t0, Rr);
+
+ tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
+ gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
+
+ tcg_temp_free_i32(t1);
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+/*
+ * Load one byte indirect from data space to register and toggles bits in
+ * the data space specified by the register. The instruction can only be used
+ * towards SRAM. The data location is pointed to by the Z (16 bits) Pointer
+ * Register in the Register File. Memory access is limited to the current data
+ * segment of 64KB. To access another data segment in devices with more than
+ * 64KB data space, the RAMPZ in register in the I/O area has to be changed.
+ * The Z-pointer Register is left unchanged by the operation. This instruction
+ * is especially suited for changing status bits stored in SRAM.
+ */
+static bool trans_LAT(DisasContext *ctx, arg_LAT *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_RMW) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+ TCGv t0 = tcg_temp_new_i32();
+ TCGv t1 = tcg_temp_new_i32();
+
+ gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
+ tcg_gen_xor_tl(t1, t0, Rd);
+
+ tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */
+ gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
+
+ tcg_temp_free_i32(t1);
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+/*
+ * Loads one byte indirect from the data space to a register. For parts
+ * with SRAM, the data space consists of the Register File, I/O memory and
+ * internal SRAM (and external SRAM if applicable). For parts without SRAM, the
+ * data space consists of the Register File only. In some parts the Flash
+ * Memory has been mapped to the data space and can be read using this command.
+ * The EEPROM has a separate address space. The data location is pointed to by
+ * the X (16 bits) Pointer Register in the Register File. Memory access is
+ * limited to the current data segment of 64KB. To access another data segment
+ * in devices with more than 64KB data space, the RAMPX in register in the I/O
+ * area has to be changed. The X-pointer Register can either be left unchanged
+ * by the operation, or it can be post-incremented or predecremented. These
+ * features are especially suited for accessing arrays, tables, and Stack
+ * Pointer usage of the X-pointer Register. Note that only the low byte of the
+ * X-pointer is updated in devices with no more than 256 bytes data space. For
+ * such devices, the high byte of the pointer is not used by this instruction
+ * and can be used for other purposes. The RAMPX Register in the I/O area is
+ * updated in parts with more than 64KB data space or more than 64KB Program
+ * memory, and the increment/decrement is added to the entire 24-bit address on
+ * such devices. Not all variants of this instruction is available in all
+ * devices. Refer to the device specific instruction set summary. In the
+ * Reduced Core tinyAVR the LD instruction can be used to achieve the same
+ * operation as LPM since the program memory is mapped to the data memory
+ * space.
+ */
+static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_xaddr();
+
+ gen_data_load(ctx, Rd, addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_xaddr();
+
+ gen_data_load(ctx, Rd, addr);
+ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+ gen_set_xaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_xaddr();
+
+ tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+ gen_data_load(ctx, Rd, addr);
+ gen_set_xaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+/*
+ * Loads one byte indirect with or without displacement from the data space
+ * to a register. For parts with SRAM, the data space consists of the Register
+ * File, I/O memory and internal SRAM (and external SRAM if applicable). For
+ * parts without SRAM, the data space consists of the Register File only. In
+ * some parts the Flash Memory has been mapped to the data space and can be
+ * read using this command. The EEPROM has a separate address space. The data
+ * location is pointed to by the Y (16 bits) Pointer Register in the Register
+ * File. Memory access is limited to the current data segment of 64KB. To
+ * access another data segment in devices with more than 64KB data space, the
+ * RAMPY in register in the I/O area has to be changed. The Y-pointer Register
+ * can either be left unchanged by the operation, or it can be post-incremented
+ * or predecremented. These features are especially suited for accessing
+ * arrays, tables, and Stack Pointer usage of the Y-pointer Register. Note that
+ * only the low byte of the Y-pointer is updated in devices with no more than
+ * 256 bytes data space. For such devices, the high byte of the pointer is not
+ * used by this instruction and can be used for other purposes. The RAMPY
+ * Register in the I/O area is updated in parts with more than 64KB data space
+ * or more than 64KB Program memory, and the increment/decrement/displacement
+ * is added to the entire 24-bit address on such devices. Not all variants of
+ * this instruction is available in all devices. Refer to the device specific
+ * instruction set summary. In the Reduced Core tinyAVR the LD instruction can
+ * be used to achieve the same operation as LPM since the program memory is
+ * mapped to the data memory space.
+ */
+static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_yaddr();
+
+ gen_data_load(ctx, Rd, addr);
+ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+ gen_set_yaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_yaddr();
+
+ tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+ gen_data_load(ctx, Rd, addr);
+ gen_set_yaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_yaddr();
+
+ tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
+ gen_data_load(ctx, Rd, addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+/*
+ * Loads one byte indirect with or without displacement from the data space
+ * to a register. For parts with SRAM, the data space consists of the Register
+ * File, I/O memory and internal SRAM (and external SRAM if applicable). For
+ * parts without SRAM, the data space consists of the Register File only. In
+ * some parts the Flash Memory has been mapped to the data space and can be
+ * read using this command. The EEPROM has a separate address space. The data
+ * location is pointed to by the Z (16 bits) Pointer Register in the Register
+ * File. Memory access is limited to the current data segment of 64KB. To
+ * access another data segment in devices with more than 64KB data space, the
+ * RAMPZ in register in the I/O area has to be changed. The Z-pointer Register
+ * can either be left unchanged by the operation, or it can be post-incremented
+ * or predecremented. These features are especially suited for Stack Pointer
+ * usage of the Z-pointer Register, however because the Z-pointer Register can
+ * be used for indirect subroutine calls, indirect jumps and table lookup, it
+ * is often more convenient to use the X or Y-pointer as a dedicated Stack
+ * Pointer. Note that only the low byte of the Z-pointer is updated in devices
+ * with no more than 256 bytes data space. For such devices, the high byte of
+ * the pointer is not used by this instruction and can be used for other
+ * purposes. The RAMPZ Register in the I/O area is updated in parts with more
+ * than 64KB data space or more than 64KB Program memory, and the
+ * increment/decrement/displacement is added to the entire 24-bit address on
+ * such devices. Not all variants of this instruction is available in all
+ * devices. Refer to the device specific instruction set summary. In the
+ * Reduced Core tinyAVR the LD instruction can be used to achieve the same
+ * operation as LPM since the program memory is mapped to the data memory
+ * space. For using the Z-pointer for table lookup in Program memory see the
+ * LPM and ELPM instructions.
+ */
+static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+
+ gen_data_load(ctx, Rd, addr);
+ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+ gen_set_zaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+
+ tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+ gen_data_load(ctx, Rd, addr);
+
+ gen_set_zaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+
+ tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
+ gen_data_load(ctx, Rd, addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+/*
+ * Loads an 8 bit constant directly to register 16 to 31.
+ */
+static bool trans_LDI(DisasContext *ctx, arg_LDI *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ int imm = a->imm;
+
+ tcg_gen_movi_tl(Rd, imm);
+
+ return true;
+}
+
+/*
+ * Loads one byte from the data space to a register. For parts with SRAM,
+ * the data space consists of the Register File, I/O memory and internal SRAM
+ * (and external SRAM if applicable). For parts without SRAM, the data space
+ * consists of the register file only. The EEPROM has a separate address space.
+ * A 16-bit address must be supplied. Memory access is limited to the current
+ * data segment of 64KB. The LDS instruction uses the RAMPD Register to access
+ * memory above 64KB. To access another data segment in devices with more than
+ * 64KB data space, the RAMPD in register in the I/O area has to be changed.
+ * This instruction is not available in all devices. Refer to the device
+ * specific instruction set summary.
+ */
+static bool trans_LDS(DisasContext *ctx, arg_LDS *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = tcg_temp_new_i32();
+ TCGv H = cpu_rampD;
+
+ tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
+ tcg_gen_shli_tl(addr, addr, 16);
+ tcg_gen_ori_tl(addr, addr, a->imm);
+
+ gen_data_load(ctx, Rd, addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+/*
+ * Loads one byte pointed to by the Z-register into the destination
+ * register Rd. This instruction features a 100% space effective constant
+ * initialization or constant data fetch. The Program memory is organized in
+ * 16-bit words while the Z-pointer is a byte address. Thus, the least
+ * significant bit of the Z-pointer selects either low byte (ZLSB = 0) or high
+ * byte (ZLSB = 1). This instruction can address the first 64KB (32K words) of
+ * Program memory. The Zpointer Register can either be left unchanged by the
+ * operation, or it can be incremented. The incrementation does not apply to
+ * the RAMPZ Register. Devices with Self-Programming capability can use the
+ * LPM instruction to read the Fuse and Lock bit values. Refer to the device
+ * documentation for a detailed description. The LPM instruction is not
+ * available in all devices. Refer to the device specific instruction set
+ * summary
+ */
+static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_LPM) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv Rd = cpu_r[0];
+ TCGv addr = tcg_temp_new_i32();
+ TCGv H = cpu_r[31];
+ TCGv L = cpu_r[30];
+
+ tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
+ tcg_gen_or_tl(addr, addr, L);
+
+ tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_LPM) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = tcg_temp_new_i32();
+ TCGv H = cpu_r[31];
+ TCGv L = cpu_r[30];
+
+ tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
+ tcg_gen_or_tl(addr, addr, L);
+
+ tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_LPMX) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = tcg_temp_new_i32();
+ TCGv H = cpu_r[31];
+ TCGv L = cpu_r[30];
+
+ tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
+ tcg_gen_or_tl(addr, addr, L);
+
+ tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+ tcg_gen_andi_tl(L, addr, 0xff);
+
+ tcg_gen_shri_tl(addr, addr, 8);
+ tcg_gen_andi_tl(H, addr, 0xff);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+/*
+ * Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is
+ * loaded into the C Flag of the SREG. This operation effectively divides an
+ * unsigned value by two. The C Flag can be used to round the result.
+ */
+static bool trans_LSR(DisasContext *ctx, arg_LSR *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+
+ tcg_gen_andi_tl(cpu_Cf, Rd, 1);
+
+ tcg_gen_shri_tl(Rd, Rd, 1);
+
+ tcg_gen_mov_tl(cpu_Zf, Rd);
+ tcg_gen_movi_tl(cpu_Nf, 0);
+ tcg_gen_mov_tl(cpu_Vf, cpu_Cf);
+ tcg_gen_mov_tl(cpu_Sf, cpu_Vf);
+
+ return true;
+}
+
+/*
+ * This instruction makes a copy of one register into another. The source
+ * register Rr is left unchanged, while the destination register Rd is loaded
+ * with a copy of Rr.
+ */
+static bool trans_MOV(DisasContext *ctx, arg_MOV *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+
+ tcg_gen_mov_tl(Rd, Rr);
+
+ return true;
+}
+
+/*
+ * This instruction makes a copy of one register pair into another register
+ * pair. The source register pair Rr+1:Rr is left unchanged, while the
+ * destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr. This
+ * instruction is not available in all devices. Refer to the device specific
+ * instruction set summary.
+ */
+static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_MOVW) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv RdL = cpu_r[a->rd];
+ TCGv RdH = cpu_r[a->rd + 1];
+ TCGv RrL = cpu_r[a->rr];
+ TCGv RrH = cpu_r[a->rr + 1];
+
+ tcg_gen_mov_tl(RdH, RrH);
+ tcg_gen_mov_tl(RdL, RrL);
+
+ return true;
+}
+
+/*
+ * This instruction performs 8-bit x 8-bit -> 16-bit unsigned multiplication.
+ */
+static bool trans_MUL(DisasContext *ctx, arg_MUL *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv R0 = cpu_r[0];
+ TCGv R1 = cpu_r[1];
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd *Rr */
+
+ tcg_gen_andi_tl(R0, R, 0xff);
+ tcg_gen_shri_tl(R1, R, 8);
+
+ tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(16) */
+ tcg_gen_mov_tl(cpu_Zf, R);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication.
+ */
+static bool trans_MULS(DisasContext *ctx, arg_MULS *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv R0 = cpu_r[0];
+ TCGv R1 = cpu_r[1];
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+ TCGv t0 = tcg_temp_new_i32();
+ TCGv t1 = tcg_temp_new_i32();
+
+ tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+ tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
+ tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */
+
+ tcg_gen_andi_tl(R0, R, 0xff);
+ tcg_gen_shri_tl(R1, R, 8);
+
+ tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(16) */
+ tcg_gen_mov_tl(cpu_Zf, R);
+
+ tcg_temp_free_i32(t1);
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * This instruction performs 8-bit x 8-bit -> 16-bit multiplication of a
+ * signed and an unsigned number.
+ */
+static bool trans_MULSU(DisasContext *ctx, arg_MULSU *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv R0 = cpu_r[0];
+ TCGv R1 = cpu_r[1];
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+ TCGv t0 = tcg_temp_new_i32();
+
+ tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+ tcg_gen_mul_tl(R, t0, Rr); /* R = Rd *Rr */
+
+ tcg_gen_andi_tl(R0, R, 0xff);
+ tcg_gen_shri_tl(R1, R, 8);
+
+ tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
+ tcg_gen_mov_tl(cpu_Zf, R);
+
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Replaces the contents of register Rd with its two's complement; the
+ * value $80 is left unchanged.
+ */
+static bool trans_NEG(DisasContext *ctx, arg_NEG *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv t0 = tcg_const_i32(0);
+ TCGv R = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_sub_tl(R, t0, Rd); /* R = 0 - Rd */
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ gen_sub_CHf(R, t0, Rd);
+ gen_sub_Vf(R, t0, Rd);
+ gen_ZNSf(R);
+
+ /* R */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * This instruction performs a single cycle No Operation.
+ */
+static bool trans_NOP(DisasContext *ctx, arg_NOP *a)
+{
+
+ /* NOP */
+
+ return true;
+}
+
+/*
+ * Performs the logical OR between the contents of register Rd and register
+ * Rr and places the result in the destination register Rd.
+ */
+static bool trans_OR(DisasContext *ctx, arg_OR *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ tcg_gen_or_tl(R, Rd, Rr);
+
+ tcg_gen_movi_tl(cpu_Vf, 0);
+ gen_ZNSf(R);
+
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Performs the logical OR between the contents of register Rd and a
+ * constant and places the result in the destination register Rd.
+ */
+static bool trans_ORI(DisasContext *ctx, arg_ORI *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ int Imm = (a->imm);
+
+ tcg_gen_ori_tl(Rd, Rd, Imm); /* Rd = Rd | Imm */
+
+ tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
+ gen_ZNSf(Rd);
+
+ return true;
+}
+
+/*
+ * Stores data from register Rr in the Register File to I/O Space (Ports,
+ * Timers, Configuration Registers, etc.).
+ */
+static bool trans_OUT(DisasContext *ctx, arg_OUT *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv port = tcg_const_i32(a->imm);
+
+ gen_helper_outb(cpu_env, port, Rd);
+
+ tcg_temp_free_i32(port);
+
+ return true;
+}
+
+/*
+ * This instruction loads register Rd with a byte from the STACK. The Stack
+ * Pointer is pre-incremented by 1 before the POP. This instruction is not
+ * available in all devices. Refer to the device specific instruction set
+ * summary.
+ */
+static bool trans_POP(DisasContext *ctx, arg_POP *a)
+{
+ /*
+ * Using a temp to work around some strange behaviour:
+ * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+ * gen_data_load(ctx, Rd, cpu_sp);
+ * seems to cause the add to happen twice.
+ * This doesn't happen if either the add or the load is removed.
+ */
+ TCGv t1 = tcg_temp_new_i32();
+ TCGv Rd = cpu_r[a->rd];
+
+ tcg_gen_addi_tl(t1, cpu_sp, 1);
+ gen_data_load(ctx, Rd, t1);
+ tcg_gen_mov_tl(cpu_sp, t1);
+
+ return true;
+}
+
+/*
+ * This instruction stores the contents of register Rr on the STACK. The
+ * Stack Pointer is post-decremented by 1 after the PUSH. This instruction is
+ * not available in all devices. Refer to the device specific instruction set
+ * summary.
+ */
+static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+
+ gen_data_store(ctx, Rd, cpu_sp);
+ tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+ return true;
+}
+
+/*
+ * Relative call to an address within PC - 2K + 1 and PC + 2K (words). The
+ * return address (the instruction after the RCALL) is stored onto the Stack.
+ * See also CALL. For AVR microcontrollers with Program memory not exceeding 4K
+ * words (8KB) this instruction can address the entire memory from every
+ * address location. The Stack Pointer uses a post-decrement scheme during
+ * RCALL.
+ */
+static bool trans_RCALL(DisasContext *ctx, arg_RCALL *a)
+{
+ int ret = ctx->inst[0].npc;
+ int dst = ctx->inst[0].npc + a->imm;
+
+ gen_push_ret(ctx, ret);
+ gen_goto_tb(ctx, 0, dst);
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Returns from subroutine. The return address is loaded from the STACK.
+ * The Stack Pointer uses a preincrement scheme during RET.
+ */
+static bool trans_RET(DisasContext *ctx, arg_RET *a)
+{
+ gen_pop_ret(ctx, cpu_pc);
+
+ tcg_gen_exit_tb(NULL, 0);
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Returns from interrupt. The return address is loaded from the STACK and
+ * the Global Interrupt Flag is set. Note that the Status Register is not
+ * automatically stored when entering an interrupt routine, and it is not
+ * restored when returning from an interrupt routine. This must be handled by
+ * the application program. The Stack Pointer uses a pre-increment scheme
+ * during RETI.
+ */
+static bool trans_RETI(DisasContext *ctx, arg_RETI *a)
+{
+ gen_pop_ret(ctx, cpu_pc);
+
+ tcg_gen_movi_tl(cpu_If, 1);
+
+ tcg_gen_exit_tb(NULL, 0);
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Relative jump to an address within PC - 2K +1 and PC + 2K (words). For
+ * AVR microcontrollers with Program memory not exceeding 4K words (8KB) this
+ * instruction can address the entire memory from every address location. See
+ * also JMP.
+ */
+static bool trans_RJMP(DisasContext *ctx, arg_RJMP *a)
+{
+ int dst = ctx->inst[0].npc + a->imm;
+
+ gen_goto_tb(ctx, 0, dst);
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Shifts all bits in Rd one place to the right. The C Flag is shifted into
+ * bit 7 of Rd. Bit 0 is shifted into the C Flag. This operation, combined
+ * with ASR, effectively divides multi-byte signed values by two. Combined with
+ * LSR it effectively divides multi-byte unsigned values by two. The Carry Flag
+ * can be used to round the result.
+ */
+static bool trans_ROR(DisasContext *ctx, arg_ROR *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv t0 = tcg_temp_new_i32();
+
+ tcg_gen_shli_tl(t0, cpu_Cf, 7);
+ tcg_gen_andi_tl(cpu_Cf, Rd, 1);
+ tcg_gen_shri_tl(Rd, Rd, 1);
+ tcg_gen_or_tl(Rd, Rd, t0);
+
+ gen_rshift_ZNVSf(Rd);
+
+ tcg_temp_free_i32(t0);
+
+ return true;
+}
+
+/*
+ * Subtracts two registers and subtracts with the C Flag and places the
+ * result in the destination register Rd.
+ */
+static bool trans_SBC(DisasContext *ctx, arg_SBC *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
+ tcg_gen_sub_tl(R, R, cpu_Cf);
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ gen_sub_CHf(R, Rd, Rr);
+ gen_sub_Vf(R, Rd, Rr);
+ gen_NSf(R);
+
+ /*
+ * Previous value remains unchanged when the result is zero;
+ * cleared otherwise.
+ */
+ tcg_gen_or_tl(cpu_Zf, cpu_Zf, R);
+
+ /* R */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * SBCI -- Subtract Immediate with Carry
+ */
+static bool trans_SBCI(DisasContext *ctx, arg_SBCI *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = tcg_const_i32(a->imm);
+ TCGv R = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
+ tcg_gen_sub_tl(R, R, cpu_Cf);
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ gen_sub_CHf(R, Rd, Rr);
+ gen_sub_Vf(R, Rd, Rr);
+ gen_NSf(R);
+
+ /*
+ * Previous value remains unchanged when the result is zero;
+ * cleared otherwise.
+ */
+ tcg_gen_or_tl(cpu_Zf, cpu_Zf, R);
+
+ /* R */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(R);
+ tcg_temp_free_i32(Rr);
+
+ return true;
+}
+
+/*
+ * Sets a specified bit in an I/O Register. This instruction operates on
+ * the lower 32 I/O Registers -- addresses 0-31.
+ */
+static bool trans_SBI(DisasContext *ctx, arg_SBI *a)
+{
+ TCGv data = tcg_temp_new_i32();
+ TCGv port = tcg_const_i32(a->reg);
+
+ gen_helper_inb(data, cpu_env, port);
+ tcg_gen_ori_tl(data, data, 1 << a->bit);
+ gen_helper_outb(cpu_env, port, data);
+
+ tcg_temp_free_i32(port);
+ tcg_temp_free_i32(data);
+
+ return true;
+}
+
+/*
+ * This instruction tests a single bit in an I/O Register and skips the
+ * next instruction if the bit is cleared. This instruction operates on the
+ * lower 32 I/O Registers -- addresses 0-31.
+ */
+static bool trans_SBIC(DisasContext *ctx, arg_SBIC *a)
+{
+ TCGv data = tcg_temp_new_i32();
+ TCGv port = tcg_const_i32(a->reg);
+ TCGLabel *skip = gen_new_label();
+
+ gen_helper_inb(data, cpu_env, port);
+
+ /* PC if next inst is skipped */
+ tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+ tcg_gen_andi_tl(data, data, 1 << a->bit);
+ tcg_gen_brcondi_i32(TCG_COND_EQ, data, 0, skip);
+ /* PC if next inst is not skipped */
+ tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+ gen_set_label(skip);
+
+ tcg_temp_free_i32(port);
+ tcg_temp_free_i32(data);
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * This instruction tests a single bit in an I/O Register and skips the
+ * next instruction if the bit is set. This instruction operates on the lower
+ * 32 I/O Registers -- addresses 0-31.
+ */
+static bool trans_SBIS(DisasContext *ctx, arg_SBIS *a)
+{
+ TCGv data = tcg_temp_new_i32();
+ TCGv port = tcg_const_i32(a->reg);
+ TCGLabel *skip = gen_new_label();
+
+ gen_helper_inb(data, cpu_env, port);
+
+ /* PC if next inst is skipped */
+ tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+ tcg_gen_andi_tl(data, data, 1 << a->bit);
+ tcg_gen_brcondi_i32(TCG_COND_NE, data, 0, skip);
+ /* PC if next inst is not skipped */
+ tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+ gen_set_label(skip);
+
+ tcg_temp_free_i32(port);
+ tcg_temp_free_i32(data);
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Subtracts an immediate value (0-63) from a register pair and places the
+ * result in the register pair. This instruction operates on the upper four
+ * register pairs, and is well suited for operations on the Pointer Registers.
+ * This instruction is not available in all devices. Refer to the device
+ * specific instruction set summary.
+ */
+static bool trans_SBIW(DisasContext *ctx, arg_SBIW *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_ADIW_SBIW) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv RdL = cpu_r[a->rd];
+ TCGv RdH = cpu_r[a->rd + 1];
+ int Imm = (a->imm);
+ TCGv R = tcg_temp_new_i32();
+ TCGv Rd = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */
+ tcg_gen_subi_tl(R, Rd, Imm); /* R = Rd - Imm */
+ tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
+
+ /* Cf */
+ tcg_gen_andc_tl(cpu_Cf, R, Rd);
+ tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15); /* Cf = R & ~Rd */
+
+ /* Vf */
+ tcg_gen_andc_tl(cpu_Vf, Rd, R);
+ tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15); /* Vf = Rd & ~R */
+
+ /* Zf */
+ tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
+
+ /* Nf */
+ tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */
+
+ /* Sf */
+ tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+
+ /* R */
+ tcg_gen_andi_tl(RdL, R, 0xff);
+ tcg_gen_shri_tl(RdH, R, 8);
+
+ tcg_temp_free_i32(Rd);
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * This instruction tests a single bit in a register and skips the next
+ * instruction if the bit is cleared.
+ */
+static bool trans_SBRC(DisasContext *ctx, arg_SBRC *a)
+{
+ TCGv Rr = cpu_r[a->rr];
+ TCGv t0 = tcg_temp_new_i32();
+ TCGLabel *skip = gen_new_label();
+
+ /* PC if next inst is skipped */
+ tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+ tcg_gen_andi_tl(t0, Rr, 1 << a->bit);
+ tcg_gen_brcondi_i32(TCG_COND_EQ, t0, 0, skip);
+ /* PC if next inst is not skipped */
+ tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+ gen_set_label(skip);
+
+ tcg_temp_free_i32(t0);
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * This instruction tests a single bit in a register and skips the next
+ * instruction if the bit is set.
+ */
+static bool trans_SBRS(DisasContext *ctx, arg_SBRS *a)
+{
+ TCGv Rr = cpu_r[a->rr];
+ TCGv t0 = tcg_temp_new_i32();
+ TCGLabel *skip = gen_new_label();
+
+ /* PC if next inst is skipped */
+ tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+ tcg_gen_andi_tl(t0, Rr, 1 << a->bit);
+ tcg_gen_brcondi_i32(TCG_COND_NE, t0, 0, skip);
+ /* PC if next inst is not skipped */
+ tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+ gen_set_label(skip);
+
+ tcg_temp_free_i32(t0);
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * This instruction sets the circuit in sleep mode defined by the MCU
+ * Control Register.
+ */
+static bool trans_SLEEP(DisasContext *ctx, arg_SLEEP *a)
+{
+ gen_helper_sleep(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+}
+
+/*
+ * SPM can be used to erase a page in the Program memory, to write a page
+ * in the Program memory (that is already erased), and to set Boot Loader Lock
+ * bits. In some devices, the Program memory can be written one word at a time,
+ * in other devices an entire page can be programmed simultaneously after first
+ * filling a temporary page buffer. In all cases, the Program memory must be
+ * erased one page at a time. When erasing the Program memory, the RAMPZ and
+ * Z-register are used as page address. When writing the Program memory, the
+ * RAMPZ and Z-register are used as page or word address, and the R1:R0
+ * register pair is used as data(1). When setting the Boot Loader Lock bits,
+ * the R1:R0 register pair is used as data. Refer to the device documentation
+ * for detailed description of SPM usage. This instruction can address the
+ * entire Program memory. The SPM instruction is not available in all devices.
+ * Refer to the device specific instruction set summary. Note: 1. R1
+ * determines the instruction high byte, and R0 determines the instruction low
+ * byte.
+ */
+static bool trans_SPM(DisasContext *ctx, arg_SPM *a)
+{
+ /* TODO */
+ if (avr_feature(ctx->env, AVR_FEATURE_SPM) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ return true;
+}
+
+static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a)
+{
+ /* TODO */
+ if (avr_feature(ctx->env, AVR_FEATURE_SPMX) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ return true;
+}
+
+static bool trans_STX1(DisasContext *ctx, arg_STX1 *a)
+{
+ TCGv Rd = cpu_r[a->rr];
+ TCGv addr = gen_get_xaddr();
+
+ gen_data_store(ctx, Rd, addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_STX2(DisasContext *ctx, arg_STX2 *a)
+{
+ TCGv Rd = cpu_r[a->rr];
+ TCGv addr = gen_get_xaddr();
+
+ gen_data_store(ctx, Rd, addr);
+ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+ gen_set_xaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_STX3(DisasContext *ctx, arg_STX3 *a)
+{
+ TCGv Rd = cpu_r[a->rr];
+ TCGv addr = gen_get_xaddr();
+
+ tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+ gen_data_store(ctx, Rd, addr);
+ gen_set_xaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_STY2(DisasContext *ctx, arg_STY2 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_yaddr();
+
+ gen_data_store(ctx, Rd, addr);
+ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+ gen_set_yaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_STY3(DisasContext *ctx, arg_STY3 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_yaddr();
+
+ tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+ gen_data_store(ctx, Rd, addr);
+ gen_set_yaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_STDY(DisasContext *ctx, arg_STDY *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_yaddr();
+
+ tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
+ gen_data_store(ctx, Rd, addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+
+ gen_data_store(ctx, Rd, addr);
+ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+ gen_set_zaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+
+ tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+ gen_data_store(ctx, Rd, addr);
+
+ gen_set_zaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+
+ tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
+ gen_data_store(ctx, Rd, addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+/*
+ * Stores one byte from a Register to the data space. For parts with SRAM,
+ * the data space consists of the Register File, I/O memory and internal SRAM
+ * (and external SRAM if applicable). For parts without SRAM, the data space
+ * consists of the Register File only. The EEPROM has a separate address space.
+ * A 16-bit address must be supplied. Memory access is limited to the current
+ * data segment of 64KB. The STS instruction uses the RAMPD Register to access
+ * memory above 64KB. To access another data segment in devices with more than
+ * 64KB data space, the RAMPD in register in the I/O area has to be changed.
+ * This instruction is not available in all devices. Refer to the device
+ * specific instruction set summary.
+ */
+static bool trans_STS(DisasContext *ctx, arg_STS *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = tcg_temp_new_i32();
+ TCGv H = cpu_rampD;
+
+ tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
+ tcg_gen_shli_tl(addr, addr, 16);
+ tcg_gen_ori_tl(addr, addr, a->imm);
+
+ gen_data_store(ctx, Rd, addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+/*
+ * Subtracts two registers and places the result in the destination
+ * register Rd.
+ */
+static bool trans_SUB(DisasContext *ctx, arg_SUB *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ gen_sub_CHf(R, Rd, Rr);
+ gen_sub_Vf(R, Rd, Rr);
+ gen_ZNSf(R);
+
+ /* R */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Subtracts a register and a constant and places the result in the
+ * destination register Rd. This instruction is working on Register R16 to R31
+ * and is very well suited for operations on the X, Y, and Z-pointers.
+ */
+static bool trans_SUBI(DisasContext *ctx, arg_SUBI *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = tcg_const_i32(a->imm);
+ TCGv R = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Imm */
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ gen_sub_CHf(R, Rd, Rr);
+ gen_sub_Vf(R, Rd, Rr);
+ gen_ZNSf(R);
+
+ /* R */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(R);
+ tcg_temp_free_i32(Rr);
+
+ return true;
+}
+
+/*
+ * Swaps high and low nibbles in a register.
+ */
+static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv t0 = tcg_temp_new_i32();
+ TCGv t1 = tcg_temp_new_i32();
+
+ tcg_gen_andi_tl(t0, Rd, 0x0f);
+ tcg_gen_shli_tl(t0, t0, 4);
+ tcg_gen_andi_tl(t1, Rd, 0xf0);
+ tcg_gen_shri_tl(t1, t1, 4);
+ tcg_gen_or_tl(Rd, t0, t1);
+
+ tcg_temp_free_i32(t1);
+ tcg_temp_free_i32(t0);
+
+ return true;
+}
+
+/*
+ * This instruction resets the Watchdog Timer. This instruction must be
+ * executed within a limited time given by the WD prescaler. See the Watchdog
+ * Timer hardware specification.
+ */
+static bool trans_WDR(DisasContext *ctx, arg_WDR *a)
+{
+ gen_helper_wdr(cpu_env);
+
+ return true;
+}
+
+/*
+ * Exchanges one byte indirect between register and data space. The data
+ * location is pointed to by the Z (16 bits) Pointer Register in the Register
+ * File. Memory access is limited to the current data segment of 64KB. To
+ * access another data segment in devices with more than 64KB data space, the
+ * RAMPZ in register in the I/O area has to be changed. The Z-pointer Register
+ * is left unchanged by the operation. This instruction is especially suited
+ * for writing/reading status bits stored in SRAM.
+ */
+static bool trans_XCH(DisasContext *ctx, arg_XCH *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_RMW) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv Rd = cpu_r[a->rd];
+ TCGv t0 = tcg_temp_new_i32();
+ TCGv addr = gen_get_zaddr();
+
+ gen_data_load(ctx, t0, addr);
+ gen_data_store(ctx, Rd, addr);
+ tcg_gen_mov_tl(Rd, t0);
+
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+void avr_cpu_tcg_init(void)
+{
+ int i;
+
+#define AVR_REG_OFFS(x) offsetof(CPUAVRState, x)
+ cpu_pc = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(pc_w), "pc");
+ cpu_Cf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregC), "Cf");
+ cpu_Zf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregZ), "Zf");
+ cpu_Nf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregN), "Nf");
+ cpu_Vf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregV), "Vf");
+ cpu_Sf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregS), "Sf");
+ cpu_Hf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregH), "Hf");
+ cpu_Tf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregT), "Tf");
+ cpu_If = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregI), "If");
+ cpu_rampD = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampD), "rampD");
+ cpu_rampX = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampX), "rampX");
+ cpu_rampY = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampY), "rampY");
+ cpu_rampZ = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampZ), "rampZ");
+ cpu_eind = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(eind), "eind");
+ cpu_sp = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sp), "sp");
+
+ for (i = 0; i < 32; i++) {
+ char name[16];
+
+ sprintf(name, "r[%d]", i);
+
+ cpu_r[i] = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(r[i]), name);
+ }
+}
+
+static void decode_opc(DisasContext *ctx, InstInfo *inst)
+{
+ uint32_t temp;
+ uint32_t opcode32;
+ uint16_t opcode16;
+ /* PC points to words. */
+ temp = cpu_ldl_code(ctx->env, inst->cpc * 2);
+ opcode16 = temp & 0x0000ffff;
+ opcode32 = (temp << 16) | (temp >> 16);
+
+ /* 1001 000d dddd 0000 kkkk kkkk kkkk kkkk - LDS */
+ bool lds = ((opcode32 & 0xfe0f0000) == 0x90000000);
+ /* 1001 001d dddd 0000 kkkk kkkk kkkk kkkk - STS */
+ bool sts = ((opcode32 & 0xfe0f0000) == 0x92000000);
+ /* 1001 010k kkkk 110k kkkk kkkk kkkk kkkk - JMP */
+ bool jmp = ((opcode32 & 0xfe0e0000) == 0x940c0000);
+ /* 1001 010k kkkk 111k kkkk kkkk kkkk kkkk - CALL */
+ bool cll = ((opcode32 & 0xfe0e0000) == 0x940e0000);
+
+ if (lds || sts || jmp || cll) {
+ inst->length = 32;
+ inst->opcode = opcode32;
+ inst->npc = inst->cpc + 2;
+ } else {
+ inst->length = 16;
+ inst->opcode = opcode16;
+ inst->npc = inst->cpc + 1;
+ }
+}
+
+static void translate(DisasContext *ctx, const InstInfo *inst)
+{
+ int res;
+
+ if (inst->length == 16) {
+ res = decode_insn16(ctx, inst->opcode);
+ } else {
+ res = decode_insn32(ctx, inst->opcode);
+ }
+
+ if (res == false) {
+ gen_helper_unsupported(cpu_env);
+ ctx->bstate = BS_EXCP;
+ }
+}
+
+void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns)
+{
+ CPUAVRState *env = cs->env_ptr;
+ DisasContext ctx = {
+ .tb = tb,
+ .env = env,
+ .memidx = 0,
+ .bstate = BS_NONE,
+ .singlestep = cs->singlestep_enabled,
+ };
+ target_ulong pc_start = tb->pc / 2;
+ int num_insns = 0;
+ target_ulong cpc;
+ target_ulong npc;
+
+ if (tb->flags & TB_FLAGS_FULL_ACCESS) {
+ /*
+ * This flag is set by ST/LD instruction we will regenerate it ONLY
+ * with mem/cpu memory access instead of mem access
+ */
+ max_insns = 1;
+ }
+
+ gen_tb_start(tb);
+
+ /* decode first instruction */
+ ctx.inst[0].cpc = pc_start;
+ decode_opc(&ctx, &ctx.inst[0]);
+ do {
+ /* set curr/next PCs */
+ cpc = ctx.inst[0].cpc;
+ npc = ctx.inst[0].npc;
+
+ /* decode next instruction */
+ ctx.inst[1].cpc = ctx.inst[0].npc;
+ decode_opc(&ctx, &ctx.inst[1]);
+
+ /* translate current instruction */
+ tcg_gen_insn_start(cpc);
+ num_insns++;
+
+ /*
+ * this is due to some strange GDB behavior
+ * let's assume main has address 0x100
+ * b main - sets breakpoint at address 0x00000100 (code)
+ * b *0x100 - sets breakpoint at address 0x00800100 (data)
+ */
+ if (unlikely(cpu_breakpoint_test(cs, OFFSET_CODE + cpc * 2, BP_ANY))
+ || cpu_breakpoint_test(cs, OFFSET_DATA + cpc * 2, BP_ANY)) {
+ tcg_gen_movi_i32(cpu_pc, cpc);
+ gen_helper_debug(cpu_env);
+ ctx.bstate = BS_EXCP;
+ goto done_generating;
+ }
+
+ translate(&ctx, &ctx.inst[0]);
+
+ if (num_insns >= max_insns) {
+ break; /* max translated instructions limit reached */
+ }
+ if (ctx.singlestep) {
+ break; /* single step */
+ }
+ if ((cpc & (TARGET_PAGE_SIZE - 1)) == 0) {
+ break; /* page boundary */
+ }
+
+ ctx.inst[0] = ctx.inst[1]; /* make next inst curr */
+ } while (ctx.bstate == BS_NONE && !tcg_op_buf_full());
+
+ if (tb->cflags & CF_LAST_IO) {
+ gen_io_end();
+ }
+
+ if (ctx.singlestep) {
+ if (ctx.bstate == BS_STOP || ctx.bstate == BS_NONE) {
+ tcg_gen_movi_tl(cpu_pc, npc);
+ }
+ gen_helper_debug(cpu_env);
+ tcg_gen_exit_tb(NULL, 0);
+ } else {
+ switch (ctx.bstate) {
+ case BS_STOP:
+ case BS_NONE:
+ gen_goto_tb(&ctx, 0, npc);
+ break;
+ case BS_EXCP:
+ case BS_BRANCH:
+ tcg_gen_exit_tb(NULL, 0);
+ break;
+ default:
+ break;
+ }
+ }
+
+done_generating:
+ gen_tb_end(tb, num_insns);
+
+ tb->size = (npc - pc_start) * 2;
+ tb->icount = num_insns;
+}
+
+void restore_state_to_opc(CPUAVRState *env, TranslationBlock *tb,
+ target_ulong *data)
+{
+ env->pc_w = data[0];
+}
+
+void avr_cpu_dump_state(CPUState *cs, FILE *f, int flags)
+{
+ AVRCPU *cpu = AVR_CPU(cs);
+ CPUAVRState *env = &cpu->env;
+ int i;
+
+ qemu_fprintf(f, "\n");
+ qemu_fprintf(f, "PC: %06x\n", env->pc_w);
+ qemu_fprintf(f, "SP: %04x\n", env->sp);
+ qemu_fprintf(f, "rampD: %02x\n", env->rampD >> 16);
+ qemu_fprintf(f, "rampX: %02x\n", env->rampX >> 16);
+ qemu_fprintf(f, "rampY: %02x\n", env->rampY >> 16);
+ qemu_fprintf(f, "rampZ: %02x\n", env->rampZ >> 16);
+ qemu_fprintf(f, "EIND: %02x\n", env->eind);
+ qemu_fprintf(f, "X: %02x%02x\n", env->r[27], env->r[26]);
+ qemu_fprintf(f, "Y: %02x%02x\n", env->r[29], env->r[28]);
+ qemu_fprintf(f, "Z: %02x%02x\n", env->r[31], env->r[30]);
+ qemu_fprintf(f, "SREG: [ %c %c %c %c %c %c %c %c ]\n",
+ env->sregI ? 'I' : '-',
+ env->sregT ? 'T' : '-',
+ env->sregH ? 'H' : '-',
+ env->sregS ? 'S' : '-',
+ env->sregV ? 'V' : '-',
+ env->sregN ? '-' : 'N', /* Zf has negative logic */
+ env->sregZ ? 'Z' : '-',
+ env->sregC ? 'I' : '-');
+
+ qemu_fprintf(f, "\n");
+ for (i = 0; i < ARRAY_SIZE(env->r); i++) {
+ qemu_fprintf(f, "R[%02d]: %02x ", i, env->r[i]);
+
+ if ((i % 8) == 7) {
+ qemu_fprintf(f, "\n");
+ }
+ }
+ qemu_fprintf(f, "\n");
+}