diff mbox series

[v4,5/9] target/arm/kvm64: Add kvm_arch_get/put_sve

Message ID 20190924113105.19076-6-drjones@redhat.com (mailing list archive)
State New, archived
Headers show
Series target/arm/kvm: enable SVE in guests | expand

Commit Message

Andrew Jones Sept. 24, 2019, 11:31 a.m. UTC
These are the SVE equivalents to kvm_arch_get/put_fpsimd. Note, the
swabbing is different than it is for fpsmid because the vector format
is a little-endian stream of words.

Signed-off-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
---
 target/arm/kvm64.c | 137 +++++++++++++++++++++++++++++++++++++++++++--
 1 file changed, 133 insertions(+), 4 deletions(-)

Comments

Eric Auger Sept. 25, 2019, 1:58 p.m. UTC | #1
Hi Drew,

On 9/24/19 1:31 PM, Andrew Jones wrote:
> These are the SVE equivalents to kvm_arch_get/put_fpsimd. Note, the
> swabbing is different than it is for fpsmid because the vector format
> is a little-endian stream of words.
> 
> Signed-off-by: Andrew Jones <drjones@redhat.com>
> Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>

Eric
> ---
>  target/arm/kvm64.c | 137 +++++++++++++++++++++++++++++++++++++++++++--
>  1 file changed, 133 insertions(+), 4 deletions(-)
> 
> diff --git a/target/arm/kvm64.c b/target/arm/kvm64.c
> index 28f6db57d5ee..ea454c613919 100644
> --- a/target/arm/kvm64.c
> +++ b/target/arm/kvm64.c
> @@ -671,11 +671,12 @@ int kvm_arch_destroy_vcpu(CPUState *cs)
>  bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
>  {
>      /* Return true if the regidx is a register we should synchronize
> -     * via the cpreg_tuples array (ie is not a core reg we sync by
> -     * hand in kvm_arch_get/put_registers())
> +     * via the cpreg_tuples array (ie is not a core or sve reg that
> +     * we sync by hand in kvm_arch_get/put_registers())
>       */
>      switch (regidx & KVM_REG_ARM_COPROC_MASK) {
>      case KVM_REG_ARM_CORE:
> +    case KVM_REG_ARM64_SVE:
>          return false;
>      default:
>          return true;
> @@ -761,6 +762,78 @@ static int kvm_arch_put_fpsimd(CPUState *cs)
>      return 0;
>  }
>  
> +/*
> + * SVE registers are encoded in KVM's memory in an endianness-invariant format.
> + * The byte at offset i from the start of the in-memory representation contains
> + * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
> + * lowest offsets are stored in the lowest memory addresses, then that nearly
> + * matches QEMU's representation, which is to use an array of host-endian
> + * uint64_t's, where the lower offsets are at the lower indices. To complete
> + * the translation we just need to byte swap the uint64_t's on big-endian hosts.
> + */
> +static uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
> +{
> +#ifdef HOST_WORDS_BIGENDIAN
> +    int i;
> +
> +    for (i = 0; i < nr; ++i) {
> +        dst[i] = bswap64(src[i]);
> +    }
> +
> +    return dst;
> +#else
> +    return src;
> +#endif
> +}
> +
> +/*
> + * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
> + * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
> + * code the slice index to zero for now as it's unlikely we'll need more than
> + * one slice for quite some time.
> + */
> +static int kvm_arch_put_sve(CPUState *cs)
> +{
> +    ARMCPU *cpu = ARM_CPU(cs);
> +    CPUARMState *env = &cpu->env;
> +    uint64_t tmp[ARM_MAX_VQ * 2];
> +    uint64_t *r;
> +    struct kvm_one_reg reg;
> +    int n, ret;
> +
> +    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
> +        r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
> +        reg.addr = (uintptr_t)r;
> +        reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
> +        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
> +        if (ret) {
> +            return ret;
> +        }
> +    }
> +
> +    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
> +        r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
> +                        DIV_ROUND_UP(cpu->sve_max_vq, 8));
> +        reg.addr = (uintptr_t)r;
> +        reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
> +        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
> +        if (ret) {
> +            return ret;
> +        }
> +    }
> +
> +    r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
> +                    DIV_ROUND_UP(cpu->sve_max_vq, 8));
> +    reg.addr = (uintptr_t)r;
> +    reg.id = KVM_REG_ARM64_SVE_FFR(0);
> +    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
> +    if (ret) {
> +        return ret;
> +    }
> +
> +    return 0;
> +}
> +
>  int kvm_arch_put_registers(CPUState *cs, int level)
>  {
>      struct kvm_one_reg reg;
> @@ -855,7 +928,11 @@ int kvm_arch_put_registers(CPUState *cs, int level)
>          }
>      }
>  
> -    ret = kvm_arch_put_fpsimd(cs);
> +    if (cpu_isar_feature(aa64_sve, cpu)) {
> +        ret = kvm_arch_put_sve(cs);
> +    } else {
> +        ret = kvm_arch_put_fpsimd(cs);
> +    }
>      if (ret) {
>          return ret;
>      }
> @@ -918,6 +995,54 @@ static int kvm_arch_get_fpsimd(CPUState *cs)
>      return 0;
>  }
>  
> +/*
> + * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
> + * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
> + * code the slice index to zero for now as it's unlikely we'll need more than
> + * one slice for quite some time.
> + */
> +static int kvm_arch_get_sve(CPUState *cs)
> +{
> +    ARMCPU *cpu = ARM_CPU(cs);
> +    CPUARMState *env = &cpu->env;
> +    struct kvm_one_reg reg;
> +    uint64_t *r;
> +    int n, ret;
> +
> +    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
> +        r = &env->vfp.zregs[n].d[0];
> +        reg.addr = (uintptr_t)r;
> +        reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
> +        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
> +        if (ret) {
> +            return ret;
> +        }
> +        sve_bswap64(r, r, cpu->sve_max_vq * 2);
> +    }
> +
> +    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
> +        r = &env->vfp.pregs[n].p[0];
> +        reg.addr = (uintptr_t)r;
> +        reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
> +        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
> +        if (ret) {
> +            return ret;
> +        }
> +        sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq, 8));
> +    }
> +
> +    r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
> +    reg.addr = (uintptr_t)r;
> +    reg.id = KVM_REG_ARM64_SVE_FFR(0);
> +    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
> +    if (ret) {
> +        return ret;
> +    }
> +    sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq, 8));
> +
> +    return 0;
> +}
> +
>  int kvm_arch_get_registers(CPUState *cs)
>  {
>      struct kvm_one_reg reg;
> @@ -1012,7 +1137,11 @@ int kvm_arch_get_registers(CPUState *cs)
>          env->spsr = env->banked_spsr[i];
>      }
>  
> -    ret = kvm_arch_get_fpsimd(cs);
> +    if (cpu_isar_feature(aa64_sve, cpu)) {
> +        ret = kvm_arch_get_sve(cs);
> +    } else {
> +        ret = kvm_arch_get_fpsimd(cs);
> +    }
>      if (ret) {
>          return ret;
>      }
>
Andrew Jones Sept. 27, 2019, 1 p.m. UTC | #2
On Tue, Sep 24, 2019 at 01:31:01PM +0200, Andrew Jones wrote:
> These are the SVE equivalents to kvm_arch_get/put_fpsimd. Note, the
> swabbing is different than it is for fpsmid because the vector format
> is a little-endian stream of words.
> 
> Signed-off-by: Andrew Jones <drjones@redhat.com>
> Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
> ---
>  target/arm/kvm64.c | 137 +++++++++++++++++++++++++++++++++++++++++++--
>  1 file changed, 133 insertions(+), 4 deletions(-)
>

It looks like I need to add the below changes to this patch as well,
since FPSR and FPCR are still in use with SVE.

Thanks,
drew


diff --git a/target/arm/kvm64.c b/target/arm/kvm64.c
index 2da366ba113e..be31e56a1ab0 100644
--- a/target/arm/kvm64.c
+++ b/target/arm/kvm64.c
@@ -854,10 +854,8 @@ int kvm_arm_cpreg_level(uint64_t regidx)
 
 static int kvm_arch_put_fpsimd(CPUState *cs)
 {
-    ARMCPU *cpu = ARM_CPU(cs);
-    CPUARMState *env = &cpu->env;
+    CPUARMState *env = &ARM_CPU(cs)->env;
     struct kvm_one_reg reg;
-    uint32_t fpr;
     int i, ret;
 
     for (i = 0; i < 32; i++) {
@@ -875,22 +873,6 @@ static int kvm_arch_put_fpsimd(CPUState *cs)
         }
     }
 
-    reg.addr = (uintptr_t)(&fpr);
-    fpr = vfp_get_fpsr(env);
-    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
-    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
-    if (ret) {
-        return ret;
-    }
-
-    reg.addr = (uintptr_t)(&fpr);
-    fpr = vfp_get_fpcr(env);
-    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
-    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
-    if (ret) {
-        return ret;
-    }
-
     return 0;
 }
 
@@ -970,6 +952,7 @@ int kvm_arch_put_registers(CPUState *cs, int level)
 {
     struct kvm_one_reg reg;
     uint64_t val;
+    uint32_t fpr;
     int i, ret;
     unsigned int el;
 
@@ -1069,6 +1052,22 @@ int kvm_arch_put_registers(CPUState *cs, int level)
         return ret;
     }
 
+    reg.addr = (uintptr_t)(&fpr);
+    fpr = vfp_get_fpsr(env);
+    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
+    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+    if (ret) {
+        return ret;
+    }
+
+    reg.addr = (uintptr_t)(&fpr);
+    fpr = vfp_get_fpcr(env);
+    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
+    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+    if (ret) {
+        return ret;
+    }
+
     ret = kvm_put_vcpu_events(cpu);
     if (ret) {
         return ret;
@@ -1087,10 +1086,8 @@ int kvm_arch_put_registers(CPUState *cs, int level)
 
 static int kvm_arch_get_fpsimd(CPUState *cs)
 {
-    ARMCPU *cpu = ARM_CPU(cs);
-    CPUARMState *env = &cpu->env;
+    CPUARMState *env = &ARM_CPU(cs)->env;
     struct kvm_one_reg reg;
-    uint32_t fpr;
     int i, ret;
 
     for (i = 0; i < 32; i++) {
@@ -1108,22 +1105,6 @@ static int kvm_arch_get_fpsimd(CPUState *cs)
         }
     }
 
-    reg.addr = (uintptr_t)(&fpr);
-    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
-    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
-    if (ret) {
-        return ret;
-    }
-    vfp_set_fpsr(env, fpr);
-
-    reg.addr = (uintptr_t)(&fpr);
-    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
-    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
-    if (ret) {
-        return ret;
-    }
-    vfp_set_fpcr(env, fpr);
-
     return 0;
 }
 
@@ -1180,6 +1161,7 @@ int kvm_arch_get_registers(CPUState *cs)
     struct kvm_one_reg reg;
     uint64_t val;
     unsigned int el;
+    uint32_t fpr;
     int i, ret;
 
     ARMCPU *cpu = ARM_CPU(cs);
@@ -1278,6 +1260,22 @@ int kvm_arch_get_registers(CPUState *cs)
         return ret;
     }
 
+    reg.addr = (uintptr_t)(&fpr);
+    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
+    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+    if (ret) {
+        return ret;
+    }
+    vfp_set_fpsr(env, fpr);
+
+    reg.addr = (uintptr_t)(&fpr);
+    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
+    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+    if (ret) {
+        return ret;
+    }
+    vfp_set_fpcr(env, fpr);
+
     ret = kvm_get_vcpu_events(cpu);
     if (ret) {
         return ret;
Andrew Jones Oct. 1, 2019, 6:53 a.m. UTC | #3
On Tue, Sep 24, 2019 at 01:31:01PM +0200, Andrew Jones wrote:
> These are the SVE equivalents to kvm_arch_get/put_fpsimd. Note, the
> swabbing is different than it is for fpsmid because the vector format
> is a little-endian stream of words.
> 
> Signed-off-by: Andrew Jones <drjones@redhat.com>
> Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
> ---
>  target/arm/kvm64.c | 137 +++++++++++++++++++++++++++++++++++++++++++--
>  1 file changed, 133 insertions(+), 4 deletions(-)
> 
> diff --git a/target/arm/kvm64.c b/target/arm/kvm64.c
> index 28f6db57d5ee..ea454c613919 100644
> --- a/target/arm/kvm64.c
> +++ b/target/arm/kvm64.c
> @@ -671,11 +671,12 @@ int kvm_arch_destroy_vcpu(CPUState *cs)
>  bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
>  {
>      /* Return true if the regidx is a register we should synchronize
> -     * via the cpreg_tuples array (ie is not a core reg we sync by
> -     * hand in kvm_arch_get/put_registers())
> +     * via the cpreg_tuples array (ie is not a core or sve reg that
> +     * we sync by hand in kvm_arch_get/put_registers())
>       */
>      switch (regidx & KVM_REG_ARM_COPROC_MASK) {
>      case KVM_REG_ARM_CORE:
> +    case KVM_REG_ARM64_SVE:
>          return false;
>      default:
>          return true;
> @@ -761,6 +762,78 @@ static int kvm_arch_put_fpsimd(CPUState *cs)
>      return 0;
>  }
>  
> +/*
> + * SVE registers are encoded in KVM's memory in an endianness-invariant format.
> + * The byte at offset i from the start of the in-memory representation contains
> + * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
> + * lowest offsets are stored in the lowest memory addresses, then that nearly
> + * matches QEMU's representation, which is to use an array of host-endian
> + * uint64_t's, where the lower offsets are at the lower indices. To complete
> + * the translation we just need to byte swap the uint64_t's on big-endian hosts.
> + */
> +static uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
> +{
> +#ifdef HOST_WORDS_BIGENDIAN
> +    int i;
> +
> +    for (i = 0; i < nr; ++i) {
> +        dst[i] = bswap64(src[i]);
> +    }
> +
> +    return dst;
> +#else
> +    return src;
> +#endif
> +}
> +
> +/*
> + * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
> + * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
> + * code the slice index to zero for now as it's unlikely we'll need more than
> + * one slice for quite some time.
> + */
> +static int kvm_arch_put_sve(CPUState *cs)
> +{
> +    ARMCPU *cpu = ARM_CPU(cs);
> +    CPUARMState *env = &cpu->env;
> +    uint64_t tmp[ARM_MAX_VQ * 2];
> +    uint64_t *r;
> +    struct kvm_one_reg reg;
> +    int n, ret;
> +
> +    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
> +        r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
> +        reg.addr = (uintptr_t)r;
> +        reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
> +        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
> +        if (ret) {
> +            return ret;
> +        }
> +    }
> +
> +    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
> +        r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
> +                        DIV_ROUND_UP(cpu->sve_max_vq, 8));

I see a bug here that I introduced between v2 and v3 when I switched to
DIV_ROUND_UP. I dropped the '* 2's on all of these. They should be
DIV_ROUND_UP(cpu->sve_max_vq * 2, 8). I'll fix for v5, which I'll be
posting later today.

Thanks,
drew
diff mbox series

Patch

diff --git a/target/arm/kvm64.c b/target/arm/kvm64.c
index 28f6db57d5ee..ea454c613919 100644
--- a/target/arm/kvm64.c
+++ b/target/arm/kvm64.c
@@ -671,11 +671,12 @@  int kvm_arch_destroy_vcpu(CPUState *cs)
 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
 {
     /* Return true if the regidx is a register we should synchronize
-     * via the cpreg_tuples array (ie is not a core reg we sync by
-     * hand in kvm_arch_get/put_registers())
+     * via the cpreg_tuples array (ie is not a core or sve reg that
+     * we sync by hand in kvm_arch_get/put_registers())
      */
     switch (regidx & KVM_REG_ARM_COPROC_MASK) {
     case KVM_REG_ARM_CORE:
+    case KVM_REG_ARM64_SVE:
         return false;
     default:
         return true;
@@ -761,6 +762,78 @@  static int kvm_arch_put_fpsimd(CPUState *cs)
     return 0;
 }
 
+/*
+ * SVE registers are encoded in KVM's memory in an endianness-invariant format.
+ * The byte at offset i from the start of the in-memory representation contains
+ * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
+ * lowest offsets are stored in the lowest memory addresses, then that nearly
+ * matches QEMU's representation, which is to use an array of host-endian
+ * uint64_t's, where the lower offsets are at the lower indices. To complete
+ * the translation we just need to byte swap the uint64_t's on big-endian hosts.
+ */
+static uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
+{
+#ifdef HOST_WORDS_BIGENDIAN
+    int i;
+
+    for (i = 0; i < nr; ++i) {
+        dst[i] = bswap64(src[i]);
+    }
+
+    return dst;
+#else
+    return src;
+#endif
+}
+
+/*
+ * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
+ * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
+ * code the slice index to zero for now as it's unlikely we'll need more than
+ * one slice for quite some time.
+ */
+static int kvm_arch_put_sve(CPUState *cs)
+{
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    uint64_t tmp[ARM_MAX_VQ * 2];
+    uint64_t *r;
+    struct kvm_one_reg reg;
+    int n, ret;
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
+        r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
+        reg.addr = (uintptr_t)r;
+        reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
+        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
+        r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
+                        DIV_ROUND_UP(cpu->sve_max_vq, 8));
+        reg.addr = (uintptr_t)r;
+        reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
+        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
+                    DIV_ROUND_UP(cpu->sve_max_vq, 8));
+    reg.addr = (uintptr_t)r;
+    reg.id = KVM_REG_ARM64_SVE_FFR(0);
+    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+    if (ret) {
+        return ret;
+    }
+
+    return 0;
+}
+
 int kvm_arch_put_registers(CPUState *cs, int level)
 {
     struct kvm_one_reg reg;
@@ -855,7 +928,11 @@  int kvm_arch_put_registers(CPUState *cs, int level)
         }
     }
 
-    ret = kvm_arch_put_fpsimd(cs);
+    if (cpu_isar_feature(aa64_sve, cpu)) {
+        ret = kvm_arch_put_sve(cs);
+    } else {
+        ret = kvm_arch_put_fpsimd(cs);
+    }
     if (ret) {
         return ret;
     }
@@ -918,6 +995,54 @@  static int kvm_arch_get_fpsimd(CPUState *cs)
     return 0;
 }
 
+/*
+ * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
+ * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
+ * code the slice index to zero for now as it's unlikely we'll need more than
+ * one slice for quite some time.
+ */
+static int kvm_arch_get_sve(CPUState *cs)
+{
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    struct kvm_one_reg reg;
+    uint64_t *r;
+    int n, ret;
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
+        r = &env->vfp.zregs[n].d[0];
+        reg.addr = (uintptr_t)r;
+        reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
+        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+        if (ret) {
+            return ret;
+        }
+        sve_bswap64(r, r, cpu->sve_max_vq * 2);
+    }
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
+        r = &env->vfp.pregs[n].p[0];
+        reg.addr = (uintptr_t)r;
+        reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
+        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+        if (ret) {
+            return ret;
+        }
+        sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq, 8));
+    }
+
+    r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
+    reg.addr = (uintptr_t)r;
+    reg.id = KVM_REG_ARM64_SVE_FFR(0);
+    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+    if (ret) {
+        return ret;
+    }
+    sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq, 8));
+
+    return 0;
+}
+
 int kvm_arch_get_registers(CPUState *cs)
 {
     struct kvm_one_reg reg;
@@ -1012,7 +1137,11 @@  int kvm_arch_get_registers(CPUState *cs)
         env->spsr = env->banked_spsr[i];
     }
 
-    ret = kvm_arch_get_fpsimd(cs);
+    if (cpu_isar_feature(aa64_sve, cpu)) {
+        ret = kvm_arch_get_sve(cs);
+    } else {
+        ret = kvm_arch_get_fpsimd(cs);
+    }
     if (ret) {
         return ret;
     }