@@ -25,6 +25,7 @@
#include "exec/address-spaces.h"
#include "hw/qdev-core.h"
#include "hw/pci/pci.h"
+#include "hw/boards.h"
/*
* SEPARATOR is used to separate "operations" in the fuzz input
@@ -38,12 +39,16 @@ enum cmds {
OP_WRITE,
OP_PCI_READ,
OP_PCI_WRITE,
+ OP_ADD_DMA_PATTERN,
+ OP_CLEAR_DMA_PATTERNS,
OP_CLOCK_STEP,
};
#define DEFAULT_TIMEOUT_US 100000
#define USEC_IN_SEC 100000000
+#define MAX_DMA_FILL_SIZE 0x10000
+
#define PCI_HOST_BRIDGE_CFG 0xcf8
#define PCI_HOST_BRIDGE_DATA 0xcfc
@@ -56,6 +61,24 @@ static useconds_t timeout = 100000;
static bool qtest_log_enabled;
+/*
+ * A pattern used to populate a DMA region or perform a memwrite. This is
+ * useful for e.g. populating tables of unique addresses.
+ * Example {.index = 1; .stride = 2; .len = 3; .data = "\x00\x01\x02"}
+ * Renders as: 00 01 02 00 03 02 00 05 02 00 07 02 ...
+ */
+typedef struct {
+ uint8_t index; /* Index of a byte to increment by stride */
+ uint8_t stride; /* Increment each index'th byte by this amount */
+ size_t len;
+ const uint8_t *data;
+} pattern;
+
+/* Avoid filling the same DMA region between MMIO/PIO commands ? */
+static bool avoid_double_fetches;
+
+static QTestState *qts_global; /* Need a global for the DMA callback */
+
/*
* List of memory regions that are children of QOM objects specified by the
* user for fuzzing.
@@ -84,6 +107,117 @@ static int get_io_address_cb(ram_addr_t start, ram_addr_t size,
return 0;
}
+/*
+ * List of dma regions populated since the last fuzzing command. Used to ensure
+ * that we only write to each DMA address once, to avoid race conditions when
+ * building reproducers.
+ */
+static GArray *dma_regions;
+
+static GArray *dma_patterns;
+static int dma_pattern_index;
+
+void fuzz_dma_read_cb(size_t addr, size_t len, MemoryRegion *mr, bool is_write);
+
+/*
+ * Allocate a block of memory and populate it with a pattern.
+ */
+static void *pattern_alloc(pattern p, size_t len)
+{
+ int i;
+ uint8_t *buf = g_malloc(len);
+ uint8_t sum = 0;
+
+ for (i = 0; i < len; ++i) {
+ buf[i] = p.data[i % p.len];
+ if ((i % p.len) == p.index) {
+ buf[i] += sum;
+ sum += p.stride;
+ }
+ }
+ return buf;
+}
+
+/*
+ * Call-back for functions that perform DMA reads from guest memory. Confirm
+ * that the region has not already been populated since the last loop in
+ * general_fuzz(), avoiding potential race-conditions, which we don't have
+ * a good way for reproducing right now.
+ */
+void fuzz_dma_read_cb(size_t addr, size_t len, MemoryRegion *mr, bool is_write)
+{
+ /* Are we in the general-fuzzer or are we using another fuzz-target? */
+ if (!qts_global) {
+ return;
+ }
+
+ /*
+ * Return immediately if:
+ * - We have no DMA patterns defined
+ * - The length of the DMA read request is zero
+ * - The DMA read is hitting an MR other than the machine's main RAM
+ * - The DMA request is not a read (what happens for a address_space_map
+ * with is_write=True? Can the device use the same pointer to do reads?)
+ * - The DMA request hits past the bounds of our RAM
+ */
+ if (dma_patterns->len == 0
+ || len == 0
+ || mr != MACHINE(qdev_get_machine())->ram
+ || is_write
+ || addr > current_machine->ram_size) {
+ return;
+ }
+
+ /*
+ * If we overlap with any existing dma_regions, split the range and only
+ * populate the non-overlapping parts.
+ */
+ address_range region;
+ for (int i = 0; i < dma_regions->len && avoid_double_fetches; ++i) {
+ region = g_array_index(dma_regions, address_range, i);
+ if (addr < region.addr + region.size && addr + len > region.addr) {
+ if (addr < region.addr) {
+ fuzz_dma_read_cb(addr, region.addr - addr, mr, is_write);
+ }
+ if (addr + len > region.addr + region.size) {
+ fuzz_dma_read_cb(region.addr + region.size,
+ addr + len - (region.addr + region.size), mr, is_write);
+ }
+ return;
+ }
+ }
+
+ /* Cap the length of the DMA access to something reasonable */
+ len = MIN(len, MAX_DMA_FILL_SIZE);
+
+ address_range ar = {addr, len};
+ g_array_append_val(dma_regions, ar);
+ pattern p = g_array_index(dma_patterns, pattern, dma_pattern_index);
+ void *buf = pattern_alloc(p, ar.size);
+ if (qtest_log_enabled) {
+ /*
+ * With QTEST_LOG, use a normal, slow QTest memwrite. Prefix the log
+ * that will be written by qtest.c with a DMA tag, so we can reorder
+ * the resulting QTest trace so the DMA fills precede the last PIO/MMIO
+ * command.
+ */
+ fprintf(stderr, "[DMA] ");
+ fflush(stderr);
+ qtest_memwrite(qts_global, ar.addr, buf, ar.size);
+ } else {
+ /*
+ * Populate the region using address_space_write_rom to avoid writing to
+ * any IO MemoryRegions
+ */
+ address_space_write_rom(first_cpu->as, ar.addr, MEMTXATTRS_UNSPECIFIED,
+ buf, ar.size);
+ }
+ g_free(buf);
+
+ /* Increment the index of the pattern for the next DMA access */
+ dma_pattern_index = (dma_pattern_index + 1) % dma_patterns->len;
+}
+
/*
* Here we want to convert a fuzzer-provided [io-region-index, offset] to
* a physical address. To do this, we iterate over all of the matched
@@ -346,6 +480,35 @@ static void op_pci_write(QTestState *s, const unsigned char * data, size_t len)
}
}
+static void op_add_dma_pattern(QTestState *s,
+ const unsigned char *data, size_t len)
+{
+ struct {
+ /*
+ * index and stride can be used to increment the index-th byte of the
+ * pattern by the value stride, for each loop of the pattern.
+ */
+ uint8_t index;
+ uint8_t stride;
+ } a;
+
+ if (len < sizeof(a) + 1) {
+ return;
+ }
+ memcpy(&a, data, sizeof(a));
+ pattern p = {a.index, a.stride, len - sizeof(a), data + sizeof(a)};
+ p.index = a.index % p.len;
+ g_array_append_val(dma_patterns, p);
+ return;
+}
+
+static void op_clear_dma_patterns(QTestState *s,
+ const unsigned char *data, size_t len)
+{
+ g_array_set_size(dma_patterns, 0);
+ dma_pattern_index = 0;
+}
+
static void op_clock_step(QTestState *s, const unsigned char *data, size_t len)
{
qtest_clock_step_next(s);
@@ -392,6 +555,8 @@ static void general_fuzz(QTestState *s, const unsigned char *Data, size_t Size)
[OP_WRITE] = op_write,
[OP_PCI_READ] = op_pci_read,
[OP_PCI_WRITE] = op_pci_write,
+ [OP_ADD_DMA_PATTERN] = op_add_dma_pattern,
+ [OP_CLEAR_DMA_PATTERNS] = op_clear_dma_patterns,
[OP_CLOCK_STEP] = op_clock_step,
};
const unsigned char *cmd = Data;
@@ -421,6 +586,8 @@ static void general_fuzz(QTestState *s, const unsigned char *Data, size_t Size)
setitimer(ITIMER_VIRTUAL, &timer, NULL);
}
+ op_clear_dma_patterns(s, NULL, 0);
+
while (cmd && Size) {
/* Get the length until the next command or end of input */
nextcmd = memmem(cmd, Size, SEPARATOR, strlen(SEPARATOR));
@@ -437,6 +604,7 @@ static void general_fuzz(QTestState *s, const unsigned char *Data, size_t Size)
/* Advance to the next command */
cmd = nextcmd ? nextcmd + sizeof(SEPARATOR) - 1 : nextcmd;
Size = Size - (cmd_len + sizeof(SEPARATOR) - 1);
+ g_array_set_size(dma_regions, 0);
}
_Exit(0);
} else {
@@ -451,6 +619,9 @@ static void usage(void)
printf("QEMU_FUZZ_ARGS= the command line arguments passed to qemu\n");
printf("QEMU_FUZZ_OBJECTS= "
"a space separated list of QOM type names for objects to fuzz\n");
+ printf("Optionally: QEMU_AVOID_DOUBLE_FETCH= "
+ "Try to avoid racy DMA double fetch bugs? %d by default\n",
+ avoid_double_fetches);
printf("Optionally: QEMU_FUZZ_TIMEOUT= Specify a custom timeout (us). "
"0 to disable. %d by default\n", timeout);
exit(0);
@@ -523,9 +694,16 @@ static void general_pre_fuzz(QTestState *s)
if (getenv("QTEST_LOG")) {
qtest_log_enabled = 1;
}
+ if (getenv("QEMU_AVOID_DOUBLE_FETCH")) {
+ avoid_double_fetches = 1;
+ }
if (getenv("QEMU_FUZZ_TIMEOUT")) {
timeout = g_ascii_strtoll(getenv("QEMU_FUZZ_TIMEOUT"), NULL, 0);
}
+ qts_global = s;
+
+ dma_regions = g_array_new(false, false, sizeof(address_range));
+ dma_patterns = g_array_new(false, false, sizeof(pattern));
fuzzable_memoryregions = g_hash_table_new(NULL, NULL);
fuzzable_pci_devices = g_ptr_array_new();