@@ -439,6 +439,11 @@ F: accel/accel.c
F: accel/Makefile.objs
F: accel/stubs/Makefile.objs
+Apple Silicon HVF CPUs
+M: Alexander Graf <agraf@csgraf.de>
+S: Maintained
+F: target/arm/hvf/
+
X86 HVF CPUs
M: Cameron Esfahani <dirty@apple.com>
M: Roman Bolshakov <r.bolshakov@yadro.com>
@@ -58,6 +58,10 @@
#include "sysemu/runstate.h"
#include "qemu/guest-random.h"
+#ifdef __aarch64__
+#define HV_VM_DEFAULT NULL
+#endif
+
/* Memory slots */
struct mac_slot {
@@ -328,7 +332,11 @@ static int hvf_init_vcpu(CPUState *cpu)
pthread_sigmask(SIG_BLOCK, NULL, &set);
sigdelset(&set, SIG_IPI);
+#ifdef __aarch64__
+ r = hv_vcpu_create(&cpu->hvf->fd, (hv_vcpu_exit_t **)&cpu->hvf->exit, NULL);
+#else
r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf->fd, HV_VCPU_DEFAULT);
+#endif
cpu->vcpu_dirty = 1;
assert_hvf_ok(r);
@@ -399,8 +407,14 @@ static void hvf_start_vcpu_thread(CPUState *cpu)
cpu, QEMU_THREAD_JOINABLE);
}
+__attribute__((weak)) void hvf_kick_vcpu_thread(CPUState *cpu)
+{
+ cpus_kick_thread(cpu);
+}
+
static const CpusAccel hvf_cpus = {
.create_vcpu_thread = hvf_start_vcpu_thread,
+ .kick_vcpu_thread = hvf_kick_vcpu_thread,
.synchronize_post_reset = hvf_cpu_synchronize_post_reset,
.synchronize_post_init = hvf_cpu_synchronize_post_init,
@@ -11,7 +11,12 @@
#ifndef HVF_INT_H
#define HVF_INT_H
+#include "qemu/osdep.h"
+#ifdef __aarch64__
+#include <Hypervisor/Hypervisor.h>
+#else
#include <Hypervisor/hv.h>
+#endif
/* hvf_slot flags */
#define HVF_SLOT_LOG (1 << 0)
@@ -44,7 +49,8 @@ struct HVFState {
extern HVFState *hvf_state;
struct hvf_vcpu_state {
- int fd;
+ uint64_t fd;
+ void *exit;
};
void assert_hvf_ok(hv_return_t ret);
@@ -54,5 +60,6 @@ int hvf_arch_init_vcpu(CPUState *cpu);
void hvf_arch_vcpu_destroy(CPUState *cpu);
int hvf_vcpu_exec(CPUState *cpu);
hvf_slot *hvf_find_overlap_slot(uint64_t, uint64_t);
+void hvf_kick_vcpu_thread(CPUState *cpu);
#endif
new file mode 100644
@@ -0,0 +1,618 @@
+/*
+ * QEMU Hypervisor.framework support for Apple Silicon
+
+ * Copyright 2020 Alexander Graf <agraf@csgraf.de>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ *
+ */
+
+#include "qemu/osdep.h"
+#include "qemu-common.h"
+#include "qemu/error-report.h"
+
+#include "sysemu/runstate.h"
+#include "sysemu/hvf.h"
+#include "sysemu/hvf_int.h"
+#include "sysemu/hw_accel.h"
+
+#include "exec/address-spaces.h"
+#include "hw/irq.h"
+#include "qemu/main-loop.h"
+#include "sysemu/accel.h"
+#include "sysemu/cpus.h"
+#include "target/arm/cpu.h"
+#include "target/arm/internals.h"
+
+#define HVF_DEBUG 0
+#define DPRINTF(...) \
+ if (HVF_DEBUG) { \
+ fprintf(stderr, "HVF %s:%d ", __func__, __LINE__); \
+ fprintf(stderr, __VA_ARGS__); \
+ fprintf(stderr, "\n"); \
+ }
+
+#define HVF_SYSREG(crn, crm, op0, op1, op2) \
+ ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
+#define PL1_WRITE_MASK 0x4
+
+#define SYSREG(op0, op1, op2, crn, crm) \
+ ((op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (crm << 1))
+#define SYSREG_MASK SYSREG(0x3, 0x7, 0x7, 0xf, 0xf)
+#define SYSREG_CNTPCT_EL0 SYSREG(3, 3, 1, 14, 0)
+#define SYSREG_PMCCNTR_EL0 SYSREG(3, 3, 0, 9, 13)
+
+#define WFX_IS_WFE (1 << 0)
+
+struct hvf_reg_match {
+ int reg;
+ uint64_t offset;
+};
+
+static const struct hvf_reg_match hvf_reg_match[] = {
+ { HV_REG_X0, offsetof(CPUARMState, xregs[0]) },
+ { HV_REG_X1, offsetof(CPUARMState, xregs[1]) },
+ { HV_REG_X2, offsetof(CPUARMState, xregs[2]) },
+ { HV_REG_X3, offsetof(CPUARMState, xregs[3]) },
+ { HV_REG_X4, offsetof(CPUARMState, xregs[4]) },
+ { HV_REG_X5, offsetof(CPUARMState, xregs[5]) },
+ { HV_REG_X6, offsetof(CPUARMState, xregs[6]) },
+ { HV_REG_X7, offsetof(CPUARMState, xregs[7]) },
+ { HV_REG_X8, offsetof(CPUARMState, xregs[8]) },
+ { HV_REG_X9, offsetof(CPUARMState, xregs[9]) },
+ { HV_REG_X10, offsetof(CPUARMState, xregs[10]) },
+ { HV_REG_X11, offsetof(CPUARMState, xregs[11]) },
+ { HV_REG_X12, offsetof(CPUARMState, xregs[12]) },
+ { HV_REG_X13, offsetof(CPUARMState, xregs[13]) },
+ { HV_REG_X14, offsetof(CPUARMState, xregs[14]) },
+ { HV_REG_X15, offsetof(CPUARMState, xregs[15]) },
+ { HV_REG_X16, offsetof(CPUARMState, xregs[16]) },
+ { HV_REG_X17, offsetof(CPUARMState, xregs[17]) },
+ { HV_REG_X18, offsetof(CPUARMState, xregs[18]) },
+ { HV_REG_X19, offsetof(CPUARMState, xregs[19]) },
+ { HV_REG_X20, offsetof(CPUARMState, xregs[20]) },
+ { HV_REG_X21, offsetof(CPUARMState, xregs[21]) },
+ { HV_REG_X22, offsetof(CPUARMState, xregs[22]) },
+ { HV_REG_X23, offsetof(CPUARMState, xregs[23]) },
+ { HV_REG_X24, offsetof(CPUARMState, xregs[24]) },
+ { HV_REG_X25, offsetof(CPUARMState, xregs[25]) },
+ { HV_REG_X26, offsetof(CPUARMState, xregs[26]) },
+ { HV_REG_X27, offsetof(CPUARMState, xregs[27]) },
+ { HV_REG_X28, offsetof(CPUARMState, xregs[28]) },
+ { HV_REG_X29, offsetof(CPUARMState, xregs[29]) },
+ { HV_REG_X30, offsetof(CPUARMState, xregs[30]) },
+ { HV_REG_PC, offsetof(CPUARMState, pc) },
+};
+
+struct hvf_sreg_match {
+ int reg;
+ uint32_t key;
+};
+
+static const struct hvf_sreg_match hvf_sreg_match[] = {
+ { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) },
+ { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) },
+ { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) },
+ { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) },
+
+ { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) },
+ { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) },
+ { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) },
+ { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) },
+
+ { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) },
+ { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) },
+ { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) },
+ { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) },
+
+ { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) },
+ { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) },
+ { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) },
+ { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) },
+
+ { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) },
+ { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) },
+ { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) },
+ { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) },
+
+ { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) },
+ { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) },
+ { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) },
+ { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) },
+
+ { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) },
+ { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) },
+ { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) },
+ { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) },
+
+ { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) },
+ { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) },
+ { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) },
+ { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) },
+
+ { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) },
+ { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) },
+ { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) },
+ { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) },
+
+ { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) },
+ { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) },
+ { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) },
+ { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) },
+
+ { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) },
+ { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) },
+ { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) },
+ { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) },
+
+ { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) },
+ { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) },
+ { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) },
+ { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) },
+
+ { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) },
+ { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) },
+ { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) },
+ { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) },
+
+ { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) },
+ { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) },
+ { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) },
+ { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) },
+
+ { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) },
+ { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) },
+ { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) },
+ { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) },
+
+ { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) },
+ { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) },
+ { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) },
+ { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) },
+
+#ifdef SYNC_NO_RAW_REGS
+ /*
+ * The registers below are manually synced on init because they are
+ * marked as NO_RAW. We still list them to make number space sync easier.
+ */
+ { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
+ { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
+ { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
+ { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
+#endif
+ { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) },
+ { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
+ { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
+ { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
+ { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
+#ifdef SYNC_NO_MMFR0
+ /* We keep the hardware MMFR0 around. HW limits are there anyway */
+ { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
+#endif
+ { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
+ { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
+
+ { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
+ { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
+ { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
+ { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
+ { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
+ { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
+
+ { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
+ { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
+ { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
+ { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
+ { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
+ { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
+ { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
+ { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
+ { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
+ { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
+
+ { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 1, 0) },
+ { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
+ { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
+ { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
+ { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
+ { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
+ { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
+ { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
+ { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
+ { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
+ { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
+ { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
+ { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
+ { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
+ { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
+ { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
+ { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
+ { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
+ { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
+ { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
+};
+
+int hvf_get_registers(CPUState *cpu)
+{
+ ARMCPU *arm_cpu = ARM_CPU(cpu);
+ CPUARMState *env = &arm_cpu->env;
+ hv_return_t ret;
+ uint64_t val;
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
+ ret = hv_vcpu_get_reg(cpu->hvf->fd, hvf_reg_match[i].reg, &val);
+ *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
+ assert_hvf_ok(ret);
+ }
+
+ val = 0;
+ ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPCR, &val);
+ assert_hvf_ok(ret);
+ vfp_set_fpcr(env, val);
+
+ val = 0;
+ ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPSR, &val);
+ assert_hvf_ok(ret);
+ vfp_set_fpsr(env, val);
+
+ ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_CPSR, &val);
+ assert_hvf_ok(ret);
+ pstate_write(env, val);
+
+ for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
+ ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, &val);
+ assert_hvf_ok(ret);
+
+ arm_cpu->cpreg_values[i] = val;
+ }
+ write_list_to_cpustate(arm_cpu);
+
+ return 0;
+}
+
+int hvf_put_registers(CPUState *cpu)
+{
+ ARMCPU *arm_cpu = ARM_CPU(cpu);
+ CPUARMState *env = &arm_cpu->env;
+ hv_return_t ret;
+ uint64_t val;
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
+ val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
+ ret = hv_vcpu_set_reg(cpu->hvf->fd, hvf_reg_match[i].reg, val);
+
+ assert_hvf_ok(ret);
+ }
+
+ ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPCR, vfp_get_fpcr(env));
+ assert_hvf_ok(ret);
+
+ ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPSR, vfp_get_fpsr(env));
+ assert_hvf_ok(ret);
+
+ ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_CPSR, pstate_read(env));
+ assert_hvf_ok(ret);
+
+ write_cpustate_to_list(arm_cpu, false);
+ for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
+ val = arm_cpu->cpreg_values[i];
+ ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, val);
+ assert_hvf_ok(ret);
+ }
+
+ return 0;
+}
+
+static void flush_cpu_state(CPUState *cpu)
+{
+ if (cpu->vcpu_dirty) {
+ hvf_put_registers(cpu);
+ cpu->vcpu_dirty = false;
+ }
+}
+
+static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
+{
+ hv_return_t r;
+
+ flush_cpu_state(cpu);
+
+ if (rt < 31) {
+ r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_X0 + rt, val);
+ assert_hvf_ok(r);
+ }
+}
+
+static uint64_t hvf_get_reg(CPUState *cpu, int rt)
+{
+ uint64_t val = 0;
+ hv_return_t r;
+
+ flush_cpu_state(cpu);
+
+ if (rt < 31) {
+ r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_X0 + rt, &val);
+ assert_hvf_ok(r);
+ }
+
+ return val;
+}
+
+void hvf_arch_vcpu_destroy(CPUState *cpu)
+{
+}
+
+int hvf_arch_init_vcpu(CPUState *cpu)
+{
+ ARMCPU *arm_cpu = ARM_CPU(cpu);
+ CPUARMState *env = &arm_cpu->env;
+ uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
+ uint64_t pfr;
+ hv_return_t ret;
+ int i;
+
+ env->aarch64 = 1;
+ asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
+
+ /* Allocate enough space for our sysreg sync */
+ arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
+ sregs_match_len);
+ arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
+ sregs_match_len);
+ arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
+ arm_cpu->cpreg_vmstate_indexes,
+ sregs_match_len);
+ arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
+ arm_cpu->cpreg_vmstate_values,
+ sregs_match_len);
+
+ memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
+ arm_cpu->cpreg_array_len = sregs_match_len;
+ arm_cpu->cpreg_vmstate_array_len = sregs_match_len;
+
+ /* Populate cp list for all known sysregs */
+ for (i = 0; i < sregs_match_len; i++) {
+ const ARMCPRegInfo *ri;
+
+ arm_cpu->cpreg_indexes[i] = cpreg_to_kvm_id(hvf_sreg_match[i].key);
+
+ ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_sreg_match[i].key);
+ if (ri) {
+ assert(!(ri->type & ARM_CP_NO_RAW));
+ }
+ }
+ write_cpustate_to_list(arm_cpu, false);
+
+ /* Set CP_NO_RAW system registers on init */
+ ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MIDR_EL1,
+ arm_cpu->midr);
+ assert_hvf_ok(ret);
+
+ ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MPIDR_EL1,
+ arm_cpu->mp_affinity);
+ assert_hvf_ok(ret);
+
+ ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
+ assert_hvf_ok(ret);
+ pfr |= env->gicv3state ? (1 << 24) : 0;
+ ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
+ assert_hvf_ok(ret);
+
+ /* We're limited to underlying hardware caps, override internal versions */
+ ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
+ &arm_cpu->isar.id_aa64mmfr0);
+ assert_hvf_ok(ret);
+
+ return 0;
+}
+
+void hvf_kick_vcpu_thread(CPUState *cpu)
+{
+ hv_vcpus_exit(&cpu->hvf->fd, 1);
+}
+
+static uint64_t hvf_sysreg_read(CPUState *cpu, uint32_t reg)
+{
+ ARMCPU *arm_cpu = ARM_CPU(cpu);
+ uint64_t val = 0;
+
+ switch (reg) {
+ case SYSREG_CNTPCT_EL0:
+ val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
+ gt_cntfrq_period_ns(arm_cpu);
+ break;
+ case SYSREG_PMCCNTR_EL0:
+ val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
+ break;
+ default:
+ DPRINTF("unhandled sysreg read %08x (op0=%d op1=%d op2=%d "
+ "crn=%d crm=%d)", reg, (reg >> 20) & 0x3,
+ (reg >> 14) & 0x7, (reg >> 17) & 0x7,
+ (reg >> 10) & 0xf, (reg >> 1) & 0xf);
+ break;
+ }
+
+ return val;
+}
+
+static void hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
+{
+ ARMCPU *arm_cpu = ARM_CPU(cpu);
+
+ switch (reg) {
+ case SYSREG_CNTPCT_EL0:
+ break;
+ default:
+ DPRINTF("unhandled sysreg write %08x", reg);
+ break;
+ }
+}
+
+static int hvf_inject_interrupts(CPUState *cpu)
+{
+ if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
+ DPRINTF("injecting FIQ");
+ hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_FIQ, true);
+ }
+
+ if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
+ DPRINTF("injecting IRQ");
+ hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_IRQ, true);
+ }
+
+ return 0;
+}
+
+int hvf_vcpu_exec(CPUState *cpu)
+{
+ ARMCPU *arm_cpu = ARM_CPU(cpu);
+ CPUARMState *env = &arm_cpu->env;
+ hv_vcpu_exit_t *hvf_exit = cpu->hvf->exit;
+ hv_return_t r;
+
+ while (1) {
+ bool advance_pc = false;
+
+ qemu_wait_io_event_common(cpu);
+ flush_cpu_state(cpu);
+
+ if (hvf_inject_interrupts(cpu)) {
+ return EXCP_INTERRUPT;
+ }
+
+ if (cpu->halted) {
+ return EXCP_HLT;
+ }
+
+ qemu_mutex_unlock_iothread();
+ assert_hvf_ok(hv_vcpu_run(cpu->hvf->fd));
+
+ /* handle VMEXIT */
+ uint64_t exit_reason = hvf_exit->reason;
+ uint64_t syndrome = hvf_exit->exception.syndrome;
+ uint32_t ec = syn_get_ec(syndrome);
+
+ qemu_mutex_lock_iothread();
+ switch (exit_reason) {
+ case HV_EXIT_REASON_EXCEPTION:
+ /* This is the main one, handle below. */
+ break;
+ case HV_EXIT_REASON_VTIMER_ACTIVATED:
+ qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
+ continue;
+ case HV_EXIT_REASON_CANCELED:
+ /* we got kicked, no exit to process */
+ continue;
+ default:
+ assert(0);
+ }
+
+ switch (ec) {
+ case EC_DATAABORT: {
+ bool isv = syndrome & ARM_EL_ISV;
+ bool iswrite = (syndrome >> 6) & 1;
+ bool s1ptw = (syndrome >> 7) & 1;
+ uint32_t sas = (syndrome >> 22) & 3;
+ uint32_t len = 1 << sas;
+ uint32_t srt = (syndrome >> 16) & 0x1f;
+ uint64_t val = 0;
+
+ DPRINTF("data abort: [pc=0x%llx va=0x%016llx pa=0x%016llx isv=%x "
+ "iswrite=%x s1ptw=%x len=%d srt=%d]\n",
+ env->pc, hvf_exit->exception.virtual_address,
+ hvf_exit->exception.physical_address, isv, iswrite,
+ s1ptw, len, srt);
+
+ assert(isv);
+
+ if (iswrite) {
+ val = hvf_get_reg(cpu, srt);
+ address_space_write(&address_space_memory,
+ hvf_exit->exception.physical_address,
+ MEMTXATTRS_UNSPECIFIED, &val, len);
+
+ /*
+ * We do not have a callback to see if the timer is out of
+ * pending state. That means every MMIO write could
+ * potentially be an EOI ends the vtimer. Until we get an
+ * actual callback, let's just see if the timer is still
+ * pending on every possible toggle point.
+ */
+ qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 0);
+ hv_vcpu_set_vtimer_mask(cpu->hvf->fd, false);
+ } else {
+ address_space_read(&address_space_memory,
+ hvf_exit->exception.physical_address,
+ MEMTXATTRS_UNSPECIFIED, &val, len);
+ hvf_set_reg(cpu, srt, val);
+ }
+
+ advance_pc = true;
+ break;
+ }
+ case EC_SYSTEMREGISTERTRAP: {
+ bool isread = (syndrome >> 0) & 1;
+ uint32_t rt = (syndrome >> 5) & 0x1f;
+ uint32_t reg = syndrome & SYSREG_MASK;
+ uint64_t val = 0;
+
+ DPRINTF("sysreg %s operation reg=%08x (op0=%d op1=%d op2=%d "
+ "crn=%d crm=%d)", (isread) ? "read" : "write",
+ reg, (reg >> 20) & 0x3,
+ (reg >> 14) & 0x7, (reg >> 17) & 0x7,
+ (reg >> 10) & 0xf, (reg >> 1) & 0xf);
+
+ if (isread) {
+ hvf_set_reg(cpu, rt, hvf_sysreg_read(cpu, reg));
+ } else {
+ val = hvf_get_reg(cpu, rt);
+ hvf_sysreg_write(cpu, reg, val);
+ }
+
+ advance_pc = true;
+ break;
+ }
+ case EC_WFX_TRAP:
+ advance_pc = true;
+ break;
+ case EC_AA64_HVC:
+ cpu_synchronize_state(cpu);
+ if (arm_is_psci_call(arm_cpu, EXCP_HVC)) {
+ arm_handle_psci_call(arm_cpu);
+ } else {
+ DPRINTF("unknown HVC! %016llx", env->xregs[0]);
+ env->xregs[0] = -1;
+ }
+ break;
+ case EC_AA64_SMC:
+ cpu_synchronize_state(cpu);
+ if (arm_is_psci_call(arm_cpu, EXCP_SMC)) {
+ arm_handle_psci_call(arm_cpu);
+ } else {
+ DPRINTF("unknown SMC! %016llx", env->xregs[0]);
+ env->xregs[0] = -1;
+ }
+ env->pc += 4;
+ break;
+ default:
+ cpu_synchronize_state(cpu);
+ DPRINTF("exit: %llx [ec=0x%x pc=0x%llx]", syndrome, ec, env->pc);
+ error_report("%llx: unhandled exit %llx", env->pc, exit_reason);
+ }
+
+ if (advance_pc) {
+ uint64_t pc;
+
+ flush_cpu_state(cpu);
+
+ r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_PC, &pc);
+ assert_hvf_ok(r);
+ pc += 4;
+ r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_PC, pc);
+ assert_hvf_ok(r);
+ }
+ }
+}