diff mbox series

[v4,12/12] target/mips: Extract MXU code to new mxu_translate.c file

Message ID 20210224185706.3293058-13-f4bug@amsat.org (mailing list archive)
State New, archived
Headers show
Series target/mips: Extract MXU code to new mxu_translate.c file | expand

Commit Message

Philippe Mathieu-Daudé Feb. 24, 2021, 6:57 p.m. UTC
Extract 1600+ lines from the big translate.c into a new file.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
---
 target/mips/mxu_translate.c | 1609 +++++++++++++++++++++++++++++++++++
 target/mips/translate.c     | 1605 ----------------------------------
 target/mips/meson.build     |    4 +
 3 files changed, 1613 insertions(+), 1605 deletions(-)
 create mode 100644 target/mips/mxu_translate.c
diff mbox series

Patch

diff --git a/target/mips/mxu_translate.c b/target/mips/mxu_translate.c
new file mode 100644
index 00000000000..afc008eeeef
--- /dev/null
+++ b/target/mips/mxu_translate.c
@@ -0,0 +1,1609 @@ 
+/*
+ *  Ingenic XBurst Media eXtension Unit (MXU) translation routines.
+ *
+ *  Copyright (c) 2004-2005 Jocelyn Mayer
+ *  Copyright (c) 2006 Marius Groeger (FPU operations)
+ *  Copyright (c) 2006 Thiemo Seufer (MIPS32R2 support)
+ *  Copyright (c) 2009 CodeSourcery (MIPS16 and microMIPS support)
+ *  Copyright (c) 2012 Jia Liu & Dongxue Zhang (MIPS ASE DSP support)
+ *
+ * SPDX-License-Identifier: LGPL-2.1-or-later
+ *
+ * Datasheet:
+ *
+ *   "XBurst® Instruction Set Architecture MIPS eXtension/enhanced Unit
+ *   Programming Manual", Ingenic Semiconductor Co, Ltd., revision June 2, 2017
+ */
+
+#include "qemu/osdep.h"
+#include "tcg/tcg-op.h"
+#include "exec/helper-gen.h"
+#include "translate.h"
+
+/*
+ *
+ *       AN OVERVIEW OF MXU EXTENSION INSTRUCTION SET
+ *       ============================================
+ *
+ *
+ * MXU (full name: MIPS eXtension/enhanced Unit) is a SIMD extension of MIPS32
+ * instructions set. It is designed to fit the needs of signal, graphical and
+ * video processing applications. MXU instruction set is used in Xburst family
+ * of microprocessors by Ingenic.
+ *
+ * MXU unit contains 17 registers called X0-X16. X0 is always zero, and X16 is
+ * the control register.
+ *
+ *
+ *     The notation used in MXU assembler mnemonics
+ *     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ *
+ *  Register operands:
+ *
+ *   XRa, XRb, XRc, XRd - MXU registers
+ *   Rb, Rc, Rd, Rs, Rt - general purpose MIPS registers
+ *
+ *  Non-register operands:
+ *
+ *   aptn1 - 1-bit accumulate add/subtract pattern
+ *   aptn2 - 2-bit accumulate add/subtract pattern
+ *   eptn2 - 2-bit execute add/subtract pattern
+ *   optn2 - 2-bit operand pattern
+ *   optn3 - 3-bit operand pattern
+ *   sft4  - 4-bit shift amount
+ *   strd2 - 2-bit stride amount
+ *
+ *  Prefixes:
+ *
+ *   Level of parallelism:                Operand size:
+ *    S - single operation at a time       32 - word
+ *    D - two operations in parallel       16 - half word
+ *    Q - four operations in parallel       8 - byte
+ *
+ *  Operations:
+ *
+ *   ADD   - Add or subtract
+ *   ADDC  - Add with carry-in
+ *   ACC   - Accumulate
+ *   ASUM  - Sum together then accumulate (add or subtract)
+ *   ASUMC - Sum together then accumulate (add or subtract) with carry-in
+ *   AVG   - Average between 2 operands
+ *   ABD   - Absolute difference
+ *   ALN   - Align data
+ *   AND   - Logical bitwise 'and' operation
+ *   CPS   - Copy sign
+ *   EXTR  - Extract bits
+ *   I2M   - Move from GPR register to MXU register
+ *   LDD   - Load data from memory to XRF
+ *   LDI   - Load data from memory to XRF (and increase the address base)
+ *   LUI   - Load unsigned immediate
+ *   MUL   - Multiply
+ *   MULU  - Unsigned multiply
+ *   MADD  - 64-bit operand add 32x32 product
+ *   MSUB  - 64-bit operand subtract 32x32 product
+ *   MAC   - Multiply and accumulate (add or subtract)
+ *   MAD   - Multiply and add or subtract
+ *   MAX   - Maximum between 2 operands
+ *   MIN   - Minimum between 2 operands
+ *   M2I   - Move from MXU register to GPR register
+ *   MOVZ  - Move if zero
+ *   MOVN  - Move if non-zero
+ *   NOR   - Logical bitwise 'nor' operation
+ *   OR    - Logical bitwise 'or' operation
+ *   STD   - Store data from XRF to memory
+ *   SDI   - Store data from XRF to memory (and increase the address base)
+ *   SLT   - Set of less than comparison
+ *   SAD   - Sum of absolute differences
+ *   SLL   - Logical shift left
+ *   SLR   - Logical shift right
+ *   SAR   - Arithmetic shift right
+ *   SAT   - Saturation
+ *   SFL   - Shuffle
+ *   SCOP  - Calculate x’s scope (-1, means x<0; 0, means x==0; 1, means x>0)
+ *   XOR   - Logical bitwise 'exclusive or' operation
+ *
+ *  Suffixes:
+ *
+ *   E - Expand results
+ *   F - Fixed point multiplication
+ *   L - Low part result
+ *   R - Doing rounding
+ *   V - Variable instead of immediate
+ *   W - Combine above L and V
+ *
+ *
+ *     The list of MXU instructions grouped by functionality
+ *     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ *
+ * Load/Store instructions           Multiplication instructions
+ * -----------------------           ---------------------------
+ *
+ *  S32LDD XRa, Rb, s12               S32MADD XRa, XRd, Rs, Rt
+ *  S32STD XRa, Rb, s12               S32MADDU XRa, XRd, Rs, Rt
+ *  S32LDDV XRa, Rb, rc, strd2        S32MSUB XRa, XRd, Rs, Rt
+ *  S32STDV XRa, Rb, rc, strd2        S32MSUBU XRa, XRd, Rs, Rt
+ *  S32LDI XRa, Rb, s12               S32MUL XRa, XRd, Rs, Rt
+ *  S32SDI XRa, Rb, s12               S32MULU XRa, XRd, Rs, Rt
+ *  S32LDIV XRa, Rb, rc, strd2        D16MUL XRa, XRb, XRc, XRd, optn2
+ *  S32SDIV XRa, Rb, rc, strd2        D16MULE XRa, XRb, XRc, optn2
+ *  S32LDDR XRa, Rb, s12              D16MULF XRa, XRb, XRc, optn2
+ *  S32STDR XRa, Rb, s12              D16MAC XRa, XRb, XRc, XRd, aptn2, optn2
+ *  S32LDDVR XRa, Rb, rc, strd2       D16MACE XRa, XRb, XRc, XRd, aptn2, optn2
+ *  S32STDVR XRa, Rb, rc, strd2       D16MACF XRa, XRb, XRc, XRd, aptn2, optn2
+ *  S32LDIR XRa, Rb, s12              D16MADL XRa, XRb, XRc, XRd, aptn2, optn2
+ *  S32SDIR XRa, Rb, s12              S16MAD XRa, XRb, XRc, XRd, aptn1, optn2
+ *  S32LDIVR XRa, Rb, rc, strd2       Q8MUL XRa, XRb, XRc, XRd
+ *  S32SDIVR XRa, Rb, rc, strd2       Q8MULSU XRa, XRb, XRc, XRd
+ *  S16LDD XRa, Rb, s10, eptn2        Q8MAC XRa, XRb, XRc, XRd, aptn2
+ *  S16STD XRa, Rb, s10, eptn2        Q8MACSU XRa, XRb, XRc, XRd, aptn2
+ *  S16LDI XRa, Rb, s10, eptn2        Q8MADL XRa, XRb, XRc, XRd, aptn2
+ *  S16SDI XRa, Rb, s10, eptn2
+ *  S8LDD XRa, Rb, s8, eptn3
+ *  S8STD XRa, Rb, s8, eptn3         Addition and subtraction instructions
+ *  S8LDI XRa, Rb, s8, eptn3         -------------------------------------
+ *  S8SDI XRa, Rb, s8, eptn3
+ *  LXW Rd, Rs, Rt, strd2             D32ADD XRa, XRb, XRc, XRd, eptn2
+ *  LXH Rd, Rs, Rt, strd2             D32ADDC XRa, XRb, XRc, XRd
+ *  LXHU Rd, Rs, Rt, strd2            D32ACC XRa, XRb, XRc, XRd, eptn2
+ *  LXB Rd, Rs, Rt, strd2             D32ACCM XRa, XRb, XRc, XRd, eptn2
+ *  LXBU Rd, Rs, Rt, strd2            D32ASUM XRa, XRb, XRc, XRd, eptn2
+ *                                    S32CPS XRa, XRb, XRc
+ *                                    Q16ADD XRa, XRb, XRc, XRd, eptn2, optn2
+ * Comparison instructions            Q16ACC XRa, XRb, XRc, XRd, eptn2
+ * -----------------------            Q16ACCM XRa, XRb, XRc, XRd, eptn2
+ *                                    D16ASUM XRa, XRb, XRc, XRd, eptn2
+ *  S32MAX XRa, XRb, XRc              D16CPS XRa, XRb,
+ *  S32MIN XRa, XRb, XRc              D16AVG XRa, XRb, XRc
+ *  S32SLT XRa, XRb, XRc              D16AVGR XRa, XRb, XRc
+ *  S32MOVZ XRa, XRb, XRc             Q8ADD XRa, XRb, XRc, eptn2
+ *  S32MOVN XRa, XRb, XRc             Q8ADDE XRa, XRb, XRc, XRd, eptn2
+ *  D16MAX XRa, XRb, XRc              Q8ACCE XRa, XRb, XRc, XRd, eptn2
+ *  D16MIN XRa, XRb, XRc              Q8ABD XRa, XRb, XRc
+ *  D16SLT XRa, XRb, XRc              Q8SAD XRa, XRb, XRc, XRd
+ *  D16MOVZ XRa, XRb, XRc             Q8AVG XRa, XRb, XRc
+ *  D16MOVN XRa, XRb, XRc             Q8AVGR XRa, XRb, XRc
+ *  Q8MAX XRa, XRb, XRc               D8SUM XRa, XRb, XRc, XRd
+ *  Q8MIN XRa, XRb, XRc               D8SUMC XRa, XRb, XRc, XRd
+ *  Q8SLT XRa, XRb, XRc
+ *  Q8SLTU XRa, XRb, XRc
+ *  Q8MOVZ XRa, XRb, XRc             Shift instructions
+ *  Q8MOVN XRa, XRb, XRc             ------------------
+ *
+ *                                    D32SLL XRa, XRb, XRc, XRd, sft4
+ * Bitwise instructions               D32SLR XRa, XRb, XRc, XRd, sft4
+ * --------------------               D32SAR XRa, XRb, XRc, XRd, sft4
+ *                                    D32SARL XRa, XRb, XRc, sft4
+ *  S32NOR XRa, XRb, XRc              D32SLLV XRa, XRb, Rb
+ *  S32AND XRa, XRb, XRc              D32SLRV XRa, XRb, Rb
+ *  S32XOR XRa, XRb, XRc              D32SARV XRa, XRb, Rb
+ *  S32OR XRa, XRb, XRc               D32SARW XRa, XRb, XRc, Rb
+ *                                    Q16SLL XRa, XRb, XRc, XRd, sft4
+ *                                    Q16SLR XRa, XRb, XRc, XRd, sft4
+ * Miscellaneous instructions         Q16SAR XRa, XRb, XRc, XRd, sft4
+ * -------------------------          Q16SLLV XRa, XRb, Rb
+ *                                    Q16SLRV XRa, XRb, Rb
+ *  S32SFL XRa, XRb, XRc, XRd, optn2  Q16SARV XRa, XRb, Rb
+ *  S32ALN XRa, XRb, XRc, Rb
+ *  S32ALNI XRa, XRb, XRc, s3
+ *  S32LUI XRa, s8, optn3            Move instructions
+ *  S32EXTR XRa, XRb, Rb, bits5      -----------------
+ *  S32EXTRV XRa, XRb, Rs, Rt
+ *  Q16SCOP XRa, XRb, XRc, XRd        S32M2I XRa, Rb
+ *  Q16SAT XRa, XRb, XRc              S32I2M XRa, Rb
+ *
+ *
+ *     The opcode organization of MXU instructions
+ *     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ *
+ * The bits 31..26 of all MXU instructions are equal to 0x1C (also referred
+ * as opcode SPECIAL2 in the base MIPS ISA). The organization and meaning of
+ * other bits up to the instruction level is as follows:
+ *
+ *              bits
+ *             05..00
+ *
+ *          ┌─ 000000 ─ OPC_MXU_S32MADD
+ *          ├─ 000001 ─ OPC_MXU_S32MADDU
+ *          ├─ 000010 ─ <not assigned>   (non-MXU OPC_MUL)
+ *          │
+ *          │                               20..18
+ *          ├─ 000011 ─ OPC_MXU__POOL00 ─┬─ 000 ─ OPC_MXU_S32MAX
+ *          │                            ├─ 001 ─ OPC_MXU_S32MIN
+ *          │                            ├─ 010 ─ OPC_MXU_D16MAX
+ *          │                            ├─ 011 ─ OPC_MXU_D16MIN
+ *          │                            ├─ 100 ─ OPC_MXU_Q8MAX
+ *          │                            ├─ 101 ─ OPC_MXU_Q8MIN
+ *          │                            ├─ 110 ─ OPC_MXU_Q8SLT
+ *          │                            └─ 111 ─ OPC_MXU_Q8SLTU
+ *          ├─ 000100 ─ OPC_MXU_S32MSUB
+ *          ├─ 000101 ─ OPC_MXU_S32MSUBU    20..18
+ *          ├─ 000110 ─ OPC_MXU__POOL01 ─┬─ 000 ─ OPC_MXU_S32SLT
+ *          │                            ├─ 001 ─ OPC_MXU_D16SLT
+ *          │                            ├─ 010 ─ OPC_MXU_D16AVG
+ *          │                            ├─ 011 ─ OPC_MXU_D16AVGR
+ *          │                            ├─ 100 ─ OPC_MXU_Q8AVG
+ *          │                            ├─ 101 ─ OPC_MXU_Q8AVGR
+ *          │                            └─ 111 ─ OPC_MXU_Q8ADD
+ *          │
+ *          │                               20..18
+ *          ├─ 000111 ─ OPC_MXU__POOL02 ─┬─ 000 ─ OPC_MXU_S32CPS
+ *          │                            ├─ 010 ─ OPC_MXU_D16CPS
+ *          │                            ├─ 100 ─ OPC_MXU_Q8ABD
+ *          │                            └─ 110 ─ OPC_MXU_Q16SAT
+ *          ├─ 001000 ─ OPC_MXU_D16MUL
+ *          │                               25..24
+ *          ├─ 001001 ─ OPC_MXU__POOL03 ─┬─ 00 ─ OPC_MXU_D16MULF
+ *          │                            └─ 01 ─ OPC_MXU_D16MULE
+ *          ├─ 001010 ─ OPC_MXU_D16MAC
+ *          ├─ 001011 ─ OPC_MXU_D16MACF
+ *          ├─ 001100 ─ OPC_MXU_D16MADL
+ *          ├─ 001101 ─ OPC_MXU_S16MAD
+ *          ├─ 001110 ─ OPC_MXU_Q16ADD
+ *          ├─ 001111 ─ OPC_MXU_D16MACE     23
+ *          │                            ┌─ 0 ─ OPC_MXU_S32LDD
+ *          ├─ 010000 ─ OPC_MXU__POOL04 ─┴─ 1 ─ OPC_MXU_S32LDDR
+ *          │
+ *          │                               23
+ *          ├─ 010001 ─ OPC_MXU__POOL05 ─┬─ 0 ─ OPC_MXU_S32STD
+ *          │                            └─ 1 ─ OPC_MXU_S32STDR
+ *          │
+ *          │                               13..10
+ *          ├─ 010010 ─ OPC_MXU__POOL06 ─┬─ 0000 ─ OPC_MXU_S32LDDV
+ *          │                            └─ 0001 ─ OPC_MXU_S32LDDVR
+ *          │
+ *          │                               13..10
+ *          ├─ 010011 ─ OPC_MXU__POOL07 ─┬─ 0000 ─ OPC_MXU_S32STDV
+ *          │                            └─ 0001 ─ OPC_MXU_S32STDVR
+ *          │
+ *          │                               23
+ *          ├─ 010100 ─ OPC_MXU__POOL08 ─┬─ 0 ─ OPC_MXU_S32LDI
+ *          │                            └─ 1 ─ OPC_MXU_S32LDIR
+ *          │
+ *          │                               23
+ *          ├─ 010101 ─ OPC_MXU__POOL09 ─┬─ 0 ─ OPC_MXU_S32SDI
+ *          │                            └─ 1 ─ OPC_MXU_S32SDIR
+ *          │
+ *          │                               13..10
+ *          ├─ 010110 ─ OPC_MXU__POOL10 ─┬─ 0000 ─ OPC_MXU_S32LDIV
+ *          │                            └─ 0001 ─ OPC_MXU_S32LDIVR
+ *          │
+ *          │                               13..10
+ *          ├─ 010111 ─ OPC_MXU__POOL11 ─┬─ 0000 ─ OPC_MXU_S32SDIV
+ *          │                            └─ 0001 ─ OPC_MXU_S32SDIVR
+ *          ├─ 011000 ─ OPC_MXU_D32ADD
+ *          │                               23..22
+ *   MXU    ├─ 011001 ─ OPC_MXU__POOL12 ─┬─ 00 ─ OPC_MXU_D32ACC
+ * opcodes ─┤                            ├─ 01 ─ OPC_MXU_D32ACCM
+ *          │                            └─ 10 ─ OPC_MXU_D32ASUM
+ *          ├─ 011010 ─ <not assigned>
+ *          │                               23..22
+ *          ├─ 011011 ─ OPC_MXU__POOL13 ─┬─ 00 ─ OPC_MXU_Q16ACC
+ *          │                            ├─ 01 ─ OPC_MXU_Q16ACCM
+ *          │                            └─ 10 ─ OPC_MXU_Q16ASUM
+ *          │
+ *          │                               23..22
+ *          ├─ 011100 ─ OPC_MXU__POOL14 ─┬─ 00 ─ OPC_MXU_Q8ADDE
+ *          │                            ├─ 01 ─ OPC_MXU_D8SUM
+ *          ├─ 011101 ─ OPC_MXU_Q8ACCE   └─ 10 ─ OPC_MXU_D8SUMC
+ *          ├─ 011110 ─ <not assigned>
+ *          ├─ 011111 ─ <not assigned>
+ *          ├─ 100000 ─ <not assigned>   (overlaps with CLZ)
+ *          ├─ 100001 ─ <not assigned>   (overlaps with CLO)
+ *          ├─ 100010 ─ OPC_MXU_S8LDD
+ *          ├─ 100011 ─ OPC_MXU_S8STD       15..14
+ *          ├─ 100100 ─ OPC_MXU_S8LDI    ┌─ 00 ─ OPC_MXU_S32MUL
+ *          ├─ 100101 ─ OPC_MXU_S8SDI    ├─ 00 ─ OPC_MXU_S32MULU
+ *          │                            ├─ 00 ─ OPC_MXU_S32EXTR
+ *          ├─ 100110 ─ OPC_MXU__POOL15 ─┴─ 00 ─ OPC_MXU_S32EXTRV
+ *          │
+ *          │                               20..18
+ *          ├─ 100111 ─ OPC_MXU__POOL16 ─┬─ 000 ─ OPC_MXU_D32SARW
+ *          │                            ├─ 001 ─ OPC_MXU_S32ALN
+ *          │                            ├─ 010 ─ OPC_MXU_S32ALNI
+ *          │                            ├─ 011 ─ OPC_MXU_S32LUI
+ *          │                            ├─ 100 ─ OPC_MXU_S32NOR
+ *          │                            ├─ 101 ─ OPC_MXU_S32AND
+ *          │                            ├─ 110 ─ OPC_MXU_S32OR
+ *          │                            └─ 111 ─ OPC_MXU_S32XOR
+ *          │
+ *          │                               7..5
+ *          ├─ 101000 ─ OPC_MXU__POOL17 ─┬─ 000 ─ OPC_MXU_LXB
+ *          │                            ├─ 001 ─ OPC_MXU_LXH
+ *          ├─ 101001 ─ <not assigned>   ├─ 011 ─ OPC_MXU_LXW
+ *          ├─ 101010 ─ OPC_MXU_S16LDD   ├─ 100 ─ OPC_MXU_LXBU
+ *          ├─ 101011 ─ OPC_MXU_S16STD   └─ 101 ─ OPC_MXU_LXHU
+ *          ├─ 101100 ─ OPC_MXU_S16LDI
+ *          ├─ 101101 ─ OPC_MXU_S16SDI
+ *          ├─ 101110 ─ OPC_MXU_S32M2I
+ *          ├─ 101111 ─ OPC_MXU_S32I2M
+ *          ├─ 110000 ─ OPC_MXU_D32SLL
+ *          ├─ 110001 ─ OPC_MXU_D32SLR      20..18
+ *          ├─ 110010 ─ OPC_MXU_D32SARL  ┌─ 000 ─ OPC_MXU_D32SLLV
+ *          ├─ 110011 ─ OPC_MXU_D32SAR   ├─ 001 ─ OPC_MXU_D32SLRV
+ *          ├─ 110100 ─ OPC_MXU_Q16SLL   ├─ 010 ─ OPC_MXU_D32SARV
+ *          ├─ 110101 ─ OPC_MXU_Q16SLR   ├─ 011 ─ OPC_MXU_Q16SLLV
+ *          │                            ├─ 100 ─ OPC_MXU_Q16SLRV
+ *          ├─ 110110 ─ OPC_MXU__POOL18 ─┴─ 101 ─ OPC_MXU_Q16SARV
+ *          │
+ *          ├─ 110111 ─ OPC_MXU_Q16SAR
+ *          │                               23..22
+ *          ├─ 111000 ─ OPC_MXU__POOL19 ─┬─ 00 ─ OPC_MXU_Q8MUL
+ *          │                            └─ 01 ─ OPC_MXU_Q8MULSU
+ *          │
+ *          │                               20..18
+ *          ├─ 111001 ─ OPC_MXU__POOL20 ─┬─ 000 ─ OPC_MXU_Q8MOVZ
+ *          │                            ├─ 001 ─ OPC_MXU_Q8MOVN
+ *          │                            ├─ 010 ─ OPC_MXU_D16MOVZ
+ *          │                            ├─ 011 ─ OPC_MXU_D16MOVN
+ *          │                            ├─ 100 ─ OPC_MXU_S32MOVZ
+ *          │                            └─ 101 ─ OPC_MXU_S32MOVN
+ *          │
+ *          │                               23..22
+ *          ├─ 111010 ─ OPC_MXU__POOL21 ─┬─ 00 ─ OPC_MXU_Q8MAC
+ *          │                            └─ 10 ─ OPC_MXU_Q8MACSU
+ *          ├─ 111011 ─ OPC_MXU_Q16SCOP
+ *          ├─ 111100 ─ OPC_MXU_Q8MADL
+ *          ├─ 111101 ─ OPC_MXU_S32SFL
+ *          ├─ 111110 ─ OPC_MXU_Q8SAD
+ *          └─ 111111 ─ <not assigned>   (overlaps with SDBBP)
+ *
+ *
+ * Compiled after:
+ *
+ *   "XBurst® Instruction Set Architecture MIPS eXtension/enhanced Unit
+ *   Programming Manual", Ingenic Semiconductor Co, Ltd., revision June 2, 2017
+ */
+
+enum {
+    OPC_MXU__POOL00  = 0x03,
+    OPC_MXU_D16MUL   = 0x08,
+    OPC_MXU_D16MAC   = 0x0A,
+    OPC_MXU__POOL04  = 0x10,
+    OPC_MXU_S8LDD    = 0x22,
+    OPC_MXU__POOL16  = 0x27,
+    OPC_MXU_S32M2I   = 0x2E,
+    OPC_MXU_S32I2M   = 0x2F,
+    OPC_MXU__POOL19  = 0x38,
+};
+
+
+/*
+ * MXU pool 00
+ */
+enum {
+    OPC_MXU_S32MAX   = 0x00,
+    OPC_MXU_S32MIN   = 0x01,
+    OPC_MXU_D16MAX   = 0x02,
+    OPC_MXU_D16MIN   = 0x03,
+    OPC_MXU_Q8MAX    = 0x04,
+    OPC_MXU_Q8MIN    = 0x05,
+};
+
+/*
+ * MXU pool 04
+ */
+enum {
+    OPC_MXU_S32LDD   = 0x00,
+    OPC_MXU_S32LDDR  = 0x01,
+};
+
+/*
+ * MXU pool 16
+ */
+enum {
+    OPC_MXU_S32ALNI  = 0x02,
+    OPC_MXU_S32NOR   = 0x04,
+    OPC_MXU_S32AND   = 0x05,
+    OPC_MXU_S32OR    = 0x06,
+    OPC_MXU_S32XOR   = 0x07,
+};
+
+/*
+ * MXU pool 19
+ */
+enum {
+    OPC_MXU_Q8MUL    = 0x00,
+    OPC_MXU_Q8MULSU  = 0x01,
+};
+
+/* MXU accumulate add/subtract 1-bit pattern 'aptn1' */
+#define MXU_APTN1_A    0
+#define MXU_APTN1_S    1
+
+/* MXU accumulate add/subtract 2-bit pattern 'aptn2' */
+#define MXU_APTN2_AA    0
+#define MXU_APTN2_AS    1
+#define MXU_APTN2_SA    2
+#define MXU_APTN2_SS    3
+
+/* MXU execute add/subtract 2-bit pattern 'eptn2' */
+#define MXU_EPTN2_AA    0
+#define MXU_EPTN2_AS    1
+#define MXU_EPTN2_SA    2
+#define MXU_EPTN2_SS    3
+
+/* MXU operand getting pattern 'optn2' */
+#define MXU_OPTN2_PTN0  0
+#define MXU_OPTN2_PTN1  1
+#define MXU_OPTN2_PTN2  2
+#define MXU_OPTN2_PTN3  3
+/* alternative naming scheme for 'optn2' */
+#define MXU_OPTN2_WW    0
+#define MXU_OPTN2_LW    1
+#define MXU_OPTN2_HW    2
+#define MXU_OPTN2_XW    3
+
+/* MXU operand getting pattern 'optn3' */
+#define MXU_OPTN3_PTN0  0
+#define MXU_OPTN3_PTN1  1
+#define MXU_OPTN3_PTN2  2
+#define MXU_OPTN3_PTN3  3
+#define MXU_OPTN3_PTN4  4
+#define MXU_OPTN3_PTN5  5
+#define MXU_OPTN3_PTN6  6
+#define MXU_OPTN3_PTN7  7
+
+/* MXU registers */
+static TCGv mxu_gpr[NUMBER_OF_MXU_REGISTERS - 1];
+static TCGv mxu_CR;
+
+static const char * const mxuregnames[] = {
+    "XR1",  "XR2",  "XR3",  "XR4",  "XR5",  "XR6",  "XR7",  "XR8",
+    "XR9",  "XR10", "XR11", "XR12", "XR13", "XR14", "XR15", "MXU_CR",
+};
+
+void mxu_translate_init(void)
+{
+    for (unsigned i = 0; i < NUMBER_OF_MXU_REGISTERS - 1; i++) {
+        mxu_gpr[i] = tcg_global_mem_new(cpu_env,
+                                        offsetof(CPUMIPSState, active_tc.mxu_gpr[i]),
+                                        mxuregnames[i]);
+    }
+
+    mxu_CR = tcg_global_mem_new(cpu_env,
+                                offsetof(CPUMIPSState, active_tc.mxu_cr),
+                                mxuregnames[NUMBER_OF_MXU_REGISTERS - 1]);
+}
+
+/* MXU General purpose registers moves. */
+static inline void gen_load_mxu_gpr(TCGv t, unsigned int reg)
+{
+    if (reg == 0) {
+        tcg_gen_movi_tl(t, 0);
+    } else if (reg <= 15) {
+        tcg_gen_mov_tl(t, mxu_gpr[reg - 1]);
+    }
+}
+
+static inline void gen_store_mxu_gpr(TCGv t, unsigned int reg)
+{
+    if (reg > 0 && reg <= 15) {
+        tcg_gen_mov_tl(mxu_gpr[reg - 1], t);
+    }
+}
+
+/* MXU control register moves. */
+static inline void gen_load_mxu_cr(TCGv t)
+{
+    tcg_gen_mov_tl(t, mxu_CR);
+}
+
+static inline void gen_store_mxu_cr(TCGv t)
+{
+    /* TODO: Add handling of RW rules for MXU_CR. */
+    tcg_gen_mov_tl(mxu_CR, t);
+}
+
+/*
+ * S32I2M XRa, rb - Register move from GRF to XRF
+ */
+static void gen_mxu_s32i2m(DisasContext *ctx)
+{
+    TCGv t0;
+    uint32_t XRa, Rb;
+
+    t0 = tcg_temp_new();
+
+    XRa = extract32(ctx->opcode, 6, 5);
+    Rb = extract32(ctx->opcode, 16, 5);
+
+    gen_load_gpr(t0, Rb);
+    if (XRa <= 15) {
+        gen_store_mxu_gpr(t0, XRa);
+    } else if (XRa == 16) {
+        gen_store_mxu_cr(t0);
+    }
+
+    tcg_temp_free(t0);
+}
+
+/*
+ * S32M2I XRa, rb - Register move from XRF to GRF
+ */
+static void gen_mxu_s32m2i(DisasContext *ctx)
+{
+    TCGv t0;
+    uint32_t XRa, Rb;
+
+    t0 = tcg_temp_new();
+
+    XRa = extract32(ctx->opcode, 6, 5);
+    Rb = extract32(ctx->opcode, 16, 5);
+
+    if (XRa <= 15) {
+        gen_load_mxu_gpr(t0, XRa);
+    } else if (XRa == 16) {
+        gen_load_mxu_cr(t0);
+    }
+
+    gen_store_gpr(t0, Rb);
+
+    tcg_temp_free(t0);
+}
+
+/*
+ * S8LDD XRa, Rb, s8, optn3 - Load a byte from memory to XRF
+ */
+static void gen_mxu_s8ldd(DisasContext *ctx)
+{
+    TCGv t0, t1;
+    uint32_t XRa, Rb, s8, optn3;
+
+    t0 = tcg_temp_new();
+    t1 = tcg_temp_new();
+
+    XRa = extract32(ctx->opcode, 6, 4);
+    s8 = extract32(ctx->opcode, 10, 8);
+    optn3 = extract32(ctx->opcode, 18, 3);
+    Rb = extract32(ctx->opcode, 21, 5);
+
+    gen_load_gpr(t0, Rb);
+    tcg_gen_addi_tl(t0, t0, (int8_t)s8);
+
+    switch (optn3) {
+    /* XRa[7:0] = tmp8 */
+    case MXU_OPTN3_PTN0:
+        tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
+        gen_load_mxu_gpr(t0, XRa);
+        tcg_gen_deposit_tl(t0, t0, t1, 0, 8);
+        break;
+    /* XRa[15:8] = tmp8 */
+    case MXU_OPTN3_PTN1:
+        tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
+        gen_load_mxu_gpr(t0, XRa);
+        tcg_gen_deposit_tl(t0, t0, t1, 8, 8);
+        break;
+    /* XRa[23:16] = tmp8 */
+    case MXU_OPTN3_PTN2:
+        tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
+        gen_load_mxu_gpr(t0, XRa);
+        tcg_gen_deposit_tl(t0, t0, t1, 16, 8);
+        break;
+    /* XRa[31:24] = tmp8 */
+    case MXU_OPTN3_PTN3:
+        tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
+        gen_load_mxu_gpr(t0, XRa);
+        tcg_gen_deposit_tl(t0, t0, t1, 24, 8);
+        break;
+    /* XRa = {8'b0, tmp8, 8'b0, tmp8} */
+    case MXU_OPTN3_PTN4:
+        tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
+        tcg_gen_deposit_tl(t0, t1, t1, 16, 16);
+        break;
+    /* XRa = {tmp8, 8'b0, tmp8, 8'b0} */
+    case MXU_OPTN3_PTN5:
+        tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
+        tcg_gen_shli_tl(t1, t1, 8);
+        tcg_gen_deposit_tl(t0, t1, t1, 16, 16);
+        break;
+    /* XRa = {{8{sign of tmp8}}, tmp8, {8{sign of tmp8}}, tmp8} */
+    case MXU_OPTN3_PTN6:
+        tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_SB);
+        tcg_gen_mov_tl(t0, t1);
+        tcg_gen_andi_tl(t0, t0, 0xFF00FFFF);
+        tcg_gen_shli_tl(t1, t1, 16);
+        tcg_gen_or_tl(t0, t0, t1);
+        break;
+    /* XRa = {tmp8, tmp8, tmp8, tmp8} */
+    case MXU_OPTN3_PTN7:
+        tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
+        tcg_gen_deposit_tl(t1, t1, t1, 8, 8);
+        tcg_gen_deposit_tl(t0, t1, t1, 16, 16);
+        break;
+    }
+
+    gen_store_mxu_gpr(t0, XRa);
+
+    tcg_temp_free(t0);
+    tcg_temp_free(t1);
+}
+
+/*
+ * D16MUL XRa, XRb, XRc, XRd, optn2 - Signed 16 bit pattern multiplication
+ */
+static void gen_mxu_d16mul(DisasContext *ctx)
+{
+    TCGv t0, t1, t2, t3;
+    uint32_t XRa, XRb, XRc, XRd, optn2;
+
+    t0 = tcg_temp_new();
+    t1 = tcg_temp_new();
+    t2 = tcg_temp_new();
+    t3 = tcg_temp_new();
+
+    XRa = extract32(ctx->opcode, 6, 4);
+    XRb = extract32(ctx->opcode, 10, 4);
+    XRc = extract32(ctx->opcode, 14, 4);
+    XRd = extract32(ctx->opcode, 18, 4);
+    optn2 = extract32(ctx->opcode, 22, 2);
+
+    gen_load_mxu_gpr(t1, XRb);
+    tcg_gen_sextract_tl(t0, t1, 0, 16);
+    tcg_gen_sextract_tl(t1, t1, 16, 16);
+    gen_load_mxu_gpr(t3, XRc);
+    tcg_gen_sextract_tl(t2, t3, 0, 16);
+    tcg_gen_sextract_tl(t3, t3, 16, 16);
+
+    switch (optn2) {
+    case MXU_OPTN2_WW: /* XRB.H*XRC.H == lop, XRB.L*XRC.L == rop */
+        tcg_gen_mul_tl(t3, t1, t3);
+        tcg_gen_mul_tl(t2, t0, t2);
+        break;
+    case MXU_OPTN2_LW: /* XRB.L*XRC.H == lop, XRB.L*XRC.L == rop */
+        tcg_gen_mul_tl(t3, t0, t3);
+        tcg_gen_mul_tl(t2, t0, t2);
+        break;
+    case MXU_OPTN2_HW: /* XRB.H*XRC.H == lop, XRB.H*XRC.L == rop */
+        tcg_gen_mul_tl(t3, t1, t3);
+        tcg_gen_mul_tl(t2, t1, t2);
+        break;
+    case MXU_OPTN2_XW: /* XRB.L*XRC.H == lop, XRB.H*XRC.L == rop */
+        tcg_gen_mul_tl(t3, t0, t3);
+        tcg_gen_mul_tl(t2, t1, t2);
+        break;
+    }
+    gen_store_mxu_gpr(t3, XRa);
+    gen_store_mxu_gpr(t2, XRd);
+
+    tcg_temp_free(t0);
+    tcg_temp_free(t1);
+    tcg_temp_free(t2);
+    tcg_temp_free(t3);
+}
+
+/*
+ * D16MAC XRa, XRb, XRc, XRd, aptn2, optn2 - Signed 16 bit pattern multiply
+ *                                           and accumulate
+ */
+static void gen_mxu_d16mac(DisasContext *ctx)
+{
+    TCGv t0, t1, t2, t3;
+    uint32_t XRa, XRb, XRc, XRd, optn2, aptn2;
+
+    t0 = tcg_temp_new();
+    t1 = tcg_temp_new();
+    t2 = tcg_temp_new();
+    t3 = tcg_temp_new();
+
+    XRa = extract32(ctx->opcode, 6, 4);
+    XRb = extract32(ctx->opcode, 10, 4);
+    XRc = extract32(ctx->opcode, 14, 4);
+    XRd = extract32(ctx->opcode, 18, 4);
+    optn2 = extract32(ctx->opcode, 22, 2);
+    aptn2 = extract32(ctx->opcode, 24, 2);
+
+    gen_load_mxu_gpr(t1, XRb);
+    tcg_gen_sextract_tl(t0, t1, 0, 16);
+    tcg_gen_sextract_tl(t1, t1, 16, 16);
+
+    gen_load_mxu_gpr(t3, XRc);
+    tcg_gen_sextract_tl(t2, t3, 0, 16);
+    tcg_gen_sextract_tl(t3, t3, 16, 16);
+
+    switch (optn2) {
+    case MXU_OPTN2_WW: /* XRB.H*XRC.H == lop, XRB.L*XRC.L == rop */
+        tcg_gen_mul_tl(t3, t1, t3);
+        tcg_gen_mul_tl(t2, t0, t2);
+        break;
+    case MXU_OPTN2_LW: /* XRB.L*XRC.H == lop, XRB.L*XRC.L == rop */
+        tcg_gen_mul_tl(t3, t0, t3);
+        tcg_gen_mul_tl(t2, t0, t2);
+        break;
+    case MXU_OPTN2_HW: /* XRB.H*XRC.H == lop, XRB.H*XRC.L == rop */
+        tcg_gen_mul_tl(t3, t1, t3);
+        tcg_gen_mul_tl(t2, t1, t2);
+        break;
+    case MXU_OPTN2_XW: /* XRB.L*XRC.H == lop, XRB.H*XRC.L == rop */
+        tcg_gen_mul_tl(t3, t0, t3);
+        tcg_gen_mul_tl(t2, t1, t2);
+        break;
+    }
+    gen_load_mxu_gpr(t0, XRa);
+    gen_load_mxu_gpr(t1, XRd);
+
+    switch (aptn2) {
+    case MXU_APTN2_AA:
+        tcg_gen_add_tl(t3, t0, t3);
+        tcg_gen_add_tl(t2, t1, t2);
+        break;
+    case MXU_APTN2_AS:
+        tcg_gen_add_tl(t3, t0, t3);
+        tcg_gen_sub_tl(t2, t1, t2);
+        break;
+    case MXU_APTN2_SA:
+        tcg_gen_sub_tl(t3, t0, t3);
+        tcg_gen_add_tl(t2, t1, t2);
+        break;
+    case MXU_APTN2_SS:
+        tcg_gen_sub_tl(t3, t0, t3);
+        tcg_gen_sub_tl(t2, t1, t2);
+        break;
+    }
+    gen_store_mxu_gpr(t3, XRa);
+    gen_store_mxu_gpr(t2, XRd);
+
+    tcg_temp_free(t0);
+    tcg_temp_free(t1);
+    tcg_temp_free(t2);
+    tcg_temp_free(t3);
+}
+
+/*
+ * Q8MUL   XRa, XRb, XRc, XRd - Parallel unsigned 8 bit pattern multiply
+ * Q8MULSU XRa, XRb, XRc, XRd - Parallel signed 8 bit pattern multiply
+ */
+static void gen_mxu_q8mul_q8mulsu(DisasContext *ctx)
+{
+    TCGv t0, t1, t2, t3, t4, t5, t6, t7;
+    uint32_t XRa, XRb, XRc, XRd, sel;
+
+    t0 = tcg_temp_new();
+    t1 = tcg_temp_new();
+    t2 = tcg_temp_new();
+    t3 = tcg_temp_new();
+    t4 = tcg_temp_new();
+    t5 = tcg_temp_new();
+    t6 = tcg_temp_new();
+    t7 = tcg_temp_new();
+
+    XRa = extract32(ctx->opcode, 6, 4);
+    XRb = extract32(ctx->opcode, 10, 4);
+    XRc = extract32(ctx->opcode, 14, 4);
+    XRd = extract32(ctx->opcode, 18, 4);
+    sel = extract32(ctx->opcode, 22, 2);
+
+    gen_load_mxu_gpr(t3, XRb);
+    gen_load_mxu_gpr(t7, XRc);
+
+    if (sel == 0x2) {
+        /* Q8MULSU */
+        tcg_gen_ext8s_tl(t0, t3);
+        tcg_gen_shri_tl(t3, t3, 8);
+        tcg_gen_ext8s_tl(t1, t3);
+        tcg_gen_shri_tl(t3, t3, 8);
+        tcg_gen_ext8s_tl(t2, t3);
+        tcg_gen_shri_tl(t3, t3, 8);
+        tcg_gen_ext8s_tl(t3, t3);
+    } else {
+        /* Q8MUL */
+        tcg_gen_ext8u_tl(t0, t3);
+        tcg_gen_shri_tl(t3, t3, 8);
+        tcg_gen_ext8u_tl(t1, t3);
+        tcg_gen_shri_tl(t3, t3, 8);
+        tcg_gen_ext8u_tl(t2, t3);
+        tcg_gen_shri_tl(t3, t3, 8);
+        tcg_gen_ext8u_tl(t3, t3);
+    }
+
+    tcg_gen_ext8u_tl(t4, t7);
+    tcg_gen_shri_tl(t7, t7, 8);
+    tcg_gen_ext8u_tl(t5, t7);
+    tcg_gen_shri_tl(t7, t7, 8);
+    tcg_gen_ext8u_tl(t6, t7);
+    tcg_gen_shri_tl(t7, t7, 8);
+    tcg_gen_ext8u_tl(t7, t7);
+
+    tcg_gen_mul_tl(t0, t0, t4);
+    tcg_gen_mul_tl(t1, t1, t5);
+    tcg_gen_mul_tl(t2, t2, t6);
+    tcg_gen_mul_tl(t3, t3, t7);
+
+    tcg_gen_andi_tl(t0, t0, 0xFFFF);
+    tcg_gen_andi_tl(t1, t1, 0xFFFF);
+    tcg_gen_andi_tl(t2, t2, 0xFFFF);
+    tcg_gen_andi_tl(t3, t3, 0xFFFF);
+
+    tcg_gen_shli_tl(t1, t1, 16);
+    tcg_gen_shli_tl(t3, t3, 16);
+
+    tcg_gen_or_tl(t0, t0, t1);
+    tcg_gen_or_tl(t1, t2, t3);
+
+    gen_store_mxu_gpr(t0, XRd);
+    gen_store_mxu_gpr(t1, XRa);
+
+    tcg_temp_free(t0);
+    tcg_temp_free(t1);
+    tcg_temp_free(t2);
+    tcg_temp_free(t3);
+    tcg_temp_free(t4);
+    tcg_temp_free(t5);
+    tcg_temp_free(t6);
+    tcg_temp_free(t7);
+}
+
+/*
+ * S32LDD  XRa, Rb, S12 - Load a word from memory to XRF
+ * S32LDDR XRa, Rb, S12 - Load a word from memory to XRF, reversed byte seq.
+ */
+static void gen_mxu_s32ldd_s32lddr(DisasContext *ctx)
+{
+    TCGv t0, t1;
+    uint32_t XRa, Rb, s12, sel;
+
+    t0 = tcg_temp_new();
+    t1 = tcg_temp_new();
+
+    XRa = extract32(ctx->opcode, 6, 4);
+    s12 = extract32(ctx->opcode, 10, 10);
+    sel = extract32(ctx->opcode, 20, 1);
+    Rb = extract32(ctx->opcode, 21, 5);
+
+    gen_load_gpr(t0, Rb);
+
+    tcg_gen_movi_tl(t1, s12);
+    tcg_gen_shli_tl(t1, t1, 2);
+    if (s12 & 0x200) {
+        tcg_gen_ori_tl(t1, t1, 0xFFFFF000);
+    }
+    tcg_gen_add_tl(t1, t0, t1);
+    tcg_gen_qemu_ld_tl(t1, t1, ctx->mem_idx, MO_SL);
+
+    if (sel == 1) {
+        /* S32LDDR */
+        tcg_gen_bswap32_tl(t1, t1);
+    }
+    gen_store_mxu_gpr(t1, XRa);
+
+    tcg_temp_free(t0);
+    tcg_temp_free(t1);
+}
+
+
+/*
+ *                 MXU instruction category: logic
+ *                 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ *
+ *               S32NOR    S32AND    S32OR    S32XOR
+ */
+
+/*
+ *  S32NOR XRa, XRb, XRc
+ *    Update XRa with the result of logical bitwise 'nor' operation
+ *    applied to the content of XRb and XRc.
+ */
+static void gen_mxu_S32NOR(DisasContext *ctx)
+{
+    uint32_t pad, XRc, XRb, XRa;
+
+    pad = extract32(ctx->opcode, 21, 5);
+    XRc = extract32(ctx->opcode, 14, 4);
+    XRb = extract32(ctx->opcode, 10, 4);
+    XRa = extract32(ctx->opcode,  6, 4);
+
+    if (unlikely(pad != 0)) {
+        /* opcode padding incorrect -> do nothing */
+    } else if (unlikely(XRa == 0)) {
+        /* destination is zero register -> do nothing */
+    } else if (unlikely((XRb == 0) && (XRc == 0))) {
+        /* both operands zero registers -> just set destination to all 1s */
+        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0xFFFFFFFF);
+    } else if (unlikely(XRb == 0)) {
+        /* XRb zero register -> just set destination to the negation of XRc */
+        tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
+    } else if (unlikely(XRc == 0)) {
+        /* XRa zero register -> just set destination to the negation of XRb */
+        tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
+    } else if (unlikely(XRb == XRc)) {
+        /* both operands same -> just set destination to the negation of XRb */
+        tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
+    } else {
+        /* the most general case */
+        tcg_gen_nor_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
+    }
+}
+
+/*
+ *  S32AND XRa, XRb, XRc
+ *    Update XRa with the result of logical bitwise 'and' operation
+ *    applied to the content of XRb and XRc.
+ */
+static void gen_mxu_S32AND(DisasContext *ctx)
+{
+    uint32_t pad, XRc, XRb, XRa;
+
+    pad = extract32(ctx->opcode, 21, 5);
+    XRc = extract32(ctx->opcode, 14, 4);
+    XRb = extract32(ctx->opcode, 10, 4);
+    XRa = extract32(ctx->opcode,  6, 4);
+
+    if (unlikely(pad != 0)) {
+        /* opcode padding incorrect -> do nothing */
+    } else if (unlikely(XRa == 0)) {
+        /* destination is zero register -> do nothing */
+    } else if (unlikely((XRb == 0) || (XRc == 0))) {
+        /* one of operands zero register -> just set destination to all 0s */
+        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
+    } else if (unlikely(XRb == XRc)) {
+        /* both operands same -> just set destination to one of them */
+        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
+    } else {
+        /* the most general case */
+        tcg_gen_and_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
+    }
+}
+
+/*
+ *  S32OR XRa, XRb, XRc
+ *    Update XRa with the result of logical bitwise 'or' operation
+ *    applied to the content of XRb and XRc.
+ */
+static void gen_mxu_S32OR(DisasContext *ctx)
+{
+    uint32_t pad, XRc, XRb, XRa;
+
+    pad = extract32(ctx->opcode, 21, 5);
+    XRc = extract32(ctx->opcode, 14, 4);
+    XRb = extract32(ctx->opcode, 10, 4);
+    XRa = extract32(ctx->opcode,  6, 4);
+
+    if (unlikely(pad != 0)) {
+        /* opcode padding incorrect -> do nothing */
+    } else if (unlikely(XRa == 0)) {
+        /* destination is zero register -> do nothing */
+    } else if (unlikely((XRb == 0) && (XRc == 0))) {
+        /* both operands zero registers -> just set destination to all 0s */
+        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
+    } else if (unlikely(XRb == 0)) {
+        /* XRb zero register -> just set destination to the content of XRc */
+        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
+    } else if (unlikely(XRc == 0)) {
+        /* XRc zero register -> just set destination to the content of XRb */
+        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
+    } else if (unlikely(XRb == XRc)) {
+        /* both operands same -> just set destination to one of them */
+        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
+    } else {
+        /* the most general case */
+        tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
+    }
+}
+
+/*
+ *  S32XOR XRa, XRb, XRc
+ *    Update XRa with the result of logical bitwise 'xor' operation
+ *    applied to the content of XRb and XRc.
+ */
+static void gen_mxu_S32XOR(DisasContext *ctx)
+{
+    uint32_t pad, XRc, XRb, XRa;
+
+    pad = extract32(ctx->opcode, 21, 5);
+    XRc = extract32(ctx->opcode, 14, 4);
+    XRb = extract32(ctx->opcode, 10, 4);
+    XRa = extract32(ctx->opcode,  6, 4);
+
+    if (unlikely(pad != 0)) {
+        /* opcode padding incorrect -> do nothing */
+    } else if (unlikely(XRa == 0)) {
+        /* destination is zero register -> do nothing */
+    } else if (unlikely((XRb == 0) && (XRc == 0))) {
+        /* both operands zero registers -> just set destination to all 0s */
+        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
+    } else if (unlikely(XRb == 0)) {
+        /* XRb zero register -> just set destination to the content of XRc */
+        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
+    } else if (unlikely(XRc == 0)) {
+        /* XRc zero register -> just set destination to the content of XRb */
+        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
+    } else if (unlikely(XRb == XRc)) {
+        /* both operands same -> just set destination to all 0s */
+        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
+    } else {
+        /* the most general case */
+        tcg_gen_xor_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
+    }
+}
+
+
+/*
+ *                   MXU instruction category max/min
+ *                   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ *
+ *                     S32MAX     D16MAX     Q8MAX
+ *                     S32MIN     D16MIN     Q8MIN
+ */
+
+/*
+ *  S32MAX XRa, XRb, XRc
+ *    Update XRa with the maximum of signed 32-bit integers contained
+ *    in XRb and XRc.
+ *
+ *  S32MIN XRa, XRb, XRc
+ *    Update XRa with the minimum of signed 32-bit integers contained
+ *    in XRb and XRc.
+ */
+static void gen_mxu_S32MAX_S32MIN(DisasContext *ctx)
+{
+    uint32_t pad, opc, XRc, XRb, XRa;
+
+    pad = extract32(ctx->opcode, 21, 5);
+    opc = extract32(ctx->opcode, 18, 3);
+    XRc = extract32(ctx->opcode, 14, 4);
+    XRb = extract32(ctx->opcode, 10, 4);
+    XRa = extract32(ctx->opcode,  6, 4);
+
+    if (unlikely(pad != 0)) {
+        /* opcode padding incorrect -> do nothing */
+    } else if (unlikely(XRa == 0)) {
+        /* destination is zero register -> do nothing */
+    } else if (unlikely((XRb == 0) && (XRc == 0))) {
+        /* both operands zero registers -> just set destination to zero */
+        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
+    } else if (unlikely((XRb == 0) || (XRc == 0))) {
+        /* exactly one operand is zero register - find which one is not...*/
+        uint32_t XRx = XRb ? XRb : XRc;
+        /* ...and do max/min operation with one operand 0 */
+        if (opc == OPC_MXU_S32MAX) {
+            tcg_gen_smax_i32(mxu_gpr[XRa - 1], mxu_gpr[XRx - 1], 0);
+        } else {
+            tcg_gen_smin_i32(mxu_gpr[XRa - 1], mxu_gpr[XRx - 1], 0);
+        }
+    } else if (unlikely(XRb == XRc)) {
+        /* both operands same -> just set destination to one of them */
+        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
+    } else {
+        /* the most general case */
+        if (opc == OPC_MXU_S32MAX) {
+            tcg_gen_smax_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1],
+                                               mxu_gpr[XRc - 1]);
+        } else {
+            tcg_gen_smin_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1],
+                                               mxu_gpr[XRc - 1]);
+        }
+    }
+}
+
+/*
+ *  D16MAX
+ *    Update XRa with the 16-bit-wise maximums of signed integers
+ *    contained in XRb and XRc.
+ *
+ *  D16MIN
+ *    Update XRa with the 16-bit-wise minimums of signed integers
+ *    contained in XRb and XRc.
+ */
+static void gen_mxu_D16MAX_D16MIN(DisasContext *ctx)
+{
+    uint32_t pad, opc, XRc, XRb, XRa;
+
+    pad = extract32(ctx->opcode, 21, 5);
+    opc = extract32(ctx->opcode, 18, 3);
+    XRc = extract32(ctx->opcode, 14, 4);
+    XRb = extract32(ctx->opcode, 10, 4);
+    XRa = extract32(ctx->opcode,  6, 4);
+
+    if (unlikely(pad != 0)) {
+        /* opcode padding incorrect -> do nothing */
+    } else if (unlikely(XRc == 0)) {
+        /* destination is zero register -> do nothing */
+    } else if (unlikely((XRb == 0) && (XRa == 0))) {
+        /* both operands zero registers -> just set destination to zero */
+        tcg_gen_movi_i32(mxu_gpr[XRc - 1], 0);
+    } else if (unlikely((XRb == 0) || (XRa == 0))) {
+        /* exactly one operand is zero register - find which one is not...*/
+        uint32_t XRx = XRb ? XRb : XRc;
+        /* ...and do half-word-wise max/min with one operand 0 */
+        TCGv_i32 t0 = tcg_temp_new();
+        TCGv_i32 t1 = tcg_const_i32(0);
+
+        /* the left half-word first */
+        tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFFFF0000);
+        if (opc == OPC_MXU_D16MAX) {
+            tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
+        } else {
+            tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
+        }
+
+        /* the right half-word */
+        tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0x0000FFFF);
+        /* move half-words to the leftmost position */
+        tcg_gen_shli_i32(t0, t0, 16);
+        /* t0 will be max/min of t0 and t1 */
+        if (opc == OPC_MXU_D16MAX) {
+            tcg_gen_smax_i32(t0, t0, t1);
+        } else {
+            tcg_gen_smin_i32(t0, t0, t1);
+        }
+        /* return resulting half-words to its original position */
+        tcg_gen_shri_i32(t0, t0, 16);
+        /* finally update the destination */
+        tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
+
+        tcg_temp_free(t1);
+        tcg_temp_free(t0);
+    } else if (unlikely(XRb == XRc)) {
+        /* both operands same -> just set destination to one of them */
+        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
+    } else {
+        /* the most general case */
+        TCGv_i32 t0 = tcg_temp_new();
+        TCGv_i32 t1 = tcg_temp_new();
+
+        /* the left half-word first */
+        tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFFFF0000);
+        tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFF0000);
+        if (opc == OPC_MXU_D16MAX) {
+            tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
+        } else {
+            tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
+        }
+
+        /* the right half-word */
+        tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x0000FFFF);
+        tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0x0000FFFF);
+        /* move half-words to the leftmost position */
+        tcg_gen_shli_i32(t0, t0, 16);
+        tcg_gen_shli_i32(t1, t1, 16);
+        /* t0 will be max/min of t0 and t1 */
+        if (opc == OPC_MXU_D16MAX) {
+            tcg_gen_smax_i32(t0, t0, t1);
+        } else {
+            tcg_gen_smin_i32(t0, t0, t1);
+        }
+        /* return resulting half-words to its original position */
+        tcg_gen_shri_i32(t0, t0, 16);
+        /* finally update the destination */
+        tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
+
+        tcg_temp_free(t1);
+        tcg_temp_free(t0);
+    }
+}
+
+/*
+ *  Q8MAX
+ *    Update XRa with the 8-bit-wise maximums of signed integers
+ *    contained in XRb and XRc.
+ *
+ *  Q8MIN
+ *    Update XRa with the 8-bit-wise minimums of signed integers
+ *    contained in XRb and XRc.
+ */
+static void gen_mxu_Q8MAX_Q8MIN(DisasContext *ctx)
+{
+    uint32_t pad, opc, XRc, XRb, XRa;
+
+    pad = extract32(ctx->opcode, 21, 5);
+    opc = extract32(ctx->opcode, 18, 3);
+    XRc = extract32(ctx->opcode, 14, 4);
+    XRb = extract32(ctx->opcode, 10, 4);
+    XRa = extract32(ctx->opcode,  6, 4);
+
+    if (unlikely(pad != 0)) {
+        /* opcode padding incorrect -> do nothing */
+    } else if (unlikely(XRa == 0)) {
+        /* destination is zero register -> do nothing */
+    } else if (unlikely((XRb == 0) && (XRc == 0))) {
+        /* both operands zero registers -> just set destination to zero */
+        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
+    } else if (unlikely((XRb == 0) || (XRc == 0))) {
+        /* exactly one operand is zero register - make it be the first...*/
+        uint32_t XRx = XRb ? XRb : XRc;
+        /* ...and do byte-wise max/min with one operand 0 */
+        TCGv_i32 t0 = tcg_temp_new();
+        TCGv_i32 t1 = tcg_const_i32(0);
+        int32_t i;
+
+        /* the leftmost byte (byte 3) first */
+        tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFF000000);
+        if (opc == OPC_MXU_Q8MAX) {
+            tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
+        } else {
+            tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
+        }
+
+        /* bytes 2, 1, 0 */
+        for (i = 2; i >= 0; i--) {
+            /* extract the byte */
+            tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFF << (8 * i));
+            /* move the byte to the leftmost position */
+            tcg_gen_shli_i32(t0, t0, 8 * (3 - i));
+            /* t0 will be max/min of t0 and t1 */
+            if (opc == OPC_MXU_Q8MAX) {
+                tcg_gen_smax_i32(t0, t0, t1);
+            } else {
+                tcg_gen_smin_i32(t0, t0, t1);
+            }
+            /* return resulting byte to its original position */
+            tcg_gen_shri_i32(t0, t0, 8 * (3 - i));
+            /* finally update the destination */
+            tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
+        }
+
+        tcg_temp_free(t1);
+        tcg_temp_free(t0);
+    } else if (unlikely(XRb == XRc)) {
+        /* both operands same -> just set destination to one of them */
+        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
+    } else {
+        /* the most general case */
+        TCGv_i32 t0 = tcg_temp_new();
+        TCGv_i32 t1 = tcg_temp_new();
+        int32_t i;
+
+        /* the leftmost bytes (bytes 3) first */
+        tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFF000000);
+        tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF000000);
+        if (opc == OPC_MXU_Q8MAX) {
+            tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
+        } else {
+            tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
+        }
+
+        /* bytes 2, 1, 0 */
+        for (i = 2; i >= 0; i--) {
+            /* extract corresponding bytes */
+            tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFF << (8 * i));
+            tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF << (8 * i));
+            /* move the bytes to the leftmost position */
+            tcg_gen_shli_i32(t0, t0, 8 * (3 - i));
+            tcg_gen_shli_i32(t1, t1, 8 * (3 - i));
+            /* t0 will be max/min of t0 and t1 */
+            if (opc == OPC_MXU_Q8MAX) {
+                tcg_gen_smax_i32(t0, t0, t1);
+            } else {
+                tcg_gen_smin_i32(t0, t0, t1);
+            }
+            /* return resulting byte to its original position */
+            tcg_gen_shri_i32(t0, t0, 8 * (3 - i));
+            /* finally update the destination */
+            tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
+        }
+
+        tcg_temp_free(t1);
+        tcg_temp_free(t0);
+    }
+}
+
+
+/*
+ *                 MXU instruction category: align
+ *                 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ *
+ *                       S32ALN     S32ALNI
+ */
+
+/*
+ *  S32ALNI XRc, XRb, XRa, optn3
+ *    Arrange bytes from XRb and XRc according to one of five sets of
+ *    rules determined by optn3, and place the result in XRa.
+ */
+static void gen_mxu_S32ALNI(DisasContext *ctx)
+{
+    uint32_t optn3, pad, XRc, XRb, XRa;
+
+    optn3 = extract32(ctx->opcode,  23, 3);
+    pad   = extract32(ctx->opcode,  21, 2);
+    XRc   = extract32(ctx->opcode, 14, 4);
+    XRb   = extract32(ctx->opcode, 10, 4);
+    XRa   = extract32(ctx->opcode,  6, 4);
+
+    if (unlikely(pad != 0)) {
+        /* opcode padding incorrect -> do nothing */
+    } else if (unlikely(XRa == 0)) {
+        /* destination is zero register -> do nothing */
+    } else if (unlikely((XRb == 0) && (XRc == 0))) {
+        /* both operands zero registers -> just set destination to all 0s */
+        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
+    } else if (unlikely(XRb == 0)) {
+        /* XRb zero register -> just appropriatelly shift XRc into XRa */
+        switch (optn3) {
+        case MXU_OPTN3_PTN0:
+            tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
+            break;
+        case MXU_OPTN3_PTN1:
+        case MXU_OPTN3_PTN2:
+        case MXU_OPTN3_PTN3:
+            tcg_gen_shri_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1],
+                             8 * (4 - optn3));
+            break;
+        case MXU_OPTN3_PTN4:
+            tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
+            break;
+        }
+    } else if (unlikely(XRc == 0)) {
+        /* XRc zero register -> just appropriatelly shift XRb into XRa */
+        switch (optn3) {
+        case MXU_OPTN3_PTN0:
+            tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
+            break;
+        case MXU_OPTN3_PTN1:
+        case MXU_OPTN3_PTN2:
+        case MXU_OPTN3_PTN3:
+            tcg_gen_shri_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], 8 * optn3);
+            break;
+        case MXU_OPTN3_PTN4:
+            tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
+            break;
+        }
+    } else if (unlikely(XRb == XRc)) {
+        /* both operands same -> just rotation or moving from any of them */
+        switch (optn3) {
+        case MXU_OPTN3_PTN0:
+        case MXU_OPTN3_PTN4:
+            tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
+            break;
+        case MXU_OPTN3_PTN1:
+        case MXU_OPTN3_PTN2:
+        case MXU_OPTN3_PTN3:
+            tcg_gen_rotli_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], 8 * optn3);
+            break;
+        }
+    } else {
+        /* the most general case */
+        switch (optn3) {
+        case MXU_OPTN3_PTN0:
+            {
+                /*                                         */
+                /*         XRb                XRc          */
+                /*  +---------------+                      */
+                /*  | A   B   C   D |    E   F   G   H     */
+                /*  +-------+-------+                      */
+                /*          |                              */
+                /*         XRa                             */
+                /*                                         */
+
+                tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
+            }
+            break;
+        case MXU_OPTN3_PTN1:
+            {
+                /*                                         */
+                /*         XRb                 XRc         */
+                /*      +-------------------+              */
+                /*    A | B   C   D       E | F   G   H    */
+                /*      +---------+---------+              */
+                /*                |                        */
+                /*               XRa                       */
+                /*                                         */
+
+                TCGv_i32 t0 = tcg_temp_new();
+                TCGv_i32 t1 = tcg_temp_new();
+
+                tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x00FFFFFF);
+                tcg_gen_shli_i32(t0, t0, 8);
+
+                tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF000000);
+                tcg_gen_shri_i32(t1, t1, 24);
+
+                tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1);
+
+                tcg_temp_free(t1);
+                tcg_temp_free(t0);
+            }
+            break;
+        case MXU_OPTN3_PTN2:
+            {
+                /*                                         */
+                /*         XRb                 XRc         */
+                /*          +-------------------+          */
+                /*    A   B | C   D       E   F | G   H    */
+                /*          +---------+---------+          */
+                /*                    |                    */
+                /*                   XRa                   */
+                /*                                         */
+
+                TCGv_i32 t0 = tcg_temp_new();
+                TCGv_i32 t1 = tcg_temp_new();
+
+                tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x0000FFFF);
+                tcg_gen_shli_i32(t0, t0, 16);
+
+                tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFF0000);
+                tcg_gen_shri_i32(t1, t1, 16);
+
+                tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1);
+
+                tcg_temp_free(t1);
+                tcg_temp_free(t0);
+            }
+            break;
+        case MXU_OPTN3_PTN3:
+            {
+                /*                                         */
+                /*         XRb                 XRc         */
+                /*              +-------------------+      */
+                /*    A   B   C | D       E   F   G | H    */
+                /*              +---------+---------+      */
+                /*                        |                */
+                /*                       XRa               */
+                /*                                         */
+
+                TCGv_i32 t0 = tcg_temp_new();
+                TCGv_i32 t1 = tcg_temp_new();
+
+                tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x000000FF);
+                tcg_gen_shli_i32(t0, t0, 24);
+
+                tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFFFF00);
+                tcg_gen_shri_i32(t1, t1, 8);
+
+                tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1);
+
+                tcg_temp_free(t1);
+                tcg_temp_free(t0);
+            }
+            break;
+        case MXU_OPTN3_PTN4:
+            {
+                /*                                         */
+                /*         XRb                 XRc         */
+                /*                     +---------------+   */
+                /*    A   B   C   D    | E   F   G   H |   */
+                /*                     +-------+-------+   */
+                /*                             |           */
+                /*                            XRa          */
+                /*                                         */
+
+                tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
+            }
+            break;
+        }
+    }
+}
+
+
+/*
+ * Decoding engine for MXU
+ * =======================
+ */
+
+static void decode_opc_mxu__pool00(DisasContext *ctx)
+{
+    uint32_t opcode = extract32(ctx->opcode, 18, 3);
+
+    switch (opcode) {
+    case OPC_MXU_S32MAX:
+    case OPC_MXU_S32MIN:
+        gen_mxu_S32MAX_S32MIN(ctx);
+        break;
+    case OPC_MXU_D16MAX:
+    case OPC_MXU_D16MIN:
+        gen_mxu_D16MAX_D16MIN(ctx);
+        break;
+    case OPC_MXU_Q8MAX:
+    case OPC_MXU_Q8MIN:
+        gen_mxu_Q8MAX_Q8MIN(ctx);
+        break;
+    default:
+        MIPS_INVAL("decode_opc_mxu");
+        gen_reserved_instruction(ctx);
+        break;
+    }
+}
+
+static void decode_opc_mxu__pool04(DisasContext *ctx)
+{
+    uint32_t opcode = extract32(ctx->opcode, 20, 1);
+
+    switch (opcode) {
+    case OPC_MXU_S32LDD:
+    case OPC_MXU_S32LDDR:
+        gen_mxu_s32ldd_s32lddr(ctx);
+        break;
+    default:
+        MIPS_INVAL("decode_opc_mxu");
+        gen_reserved_instruction(ctx);
+        break;
+    }
+}
+
+static void decode_opc_mxu__pool16(DisasContext *ctx)
+{
+    uint32_t opcode = extract32(ctx->opcode, 18, 3);
+
+    switch (opcode) {
+    case OPC_MXU_S32ALNI:
+        gen_mxu_S32ALNI(ctx);
+        break;
+    case OPC_MXU_S32NOR:
+        gen_mxu_S32NOR(ctx);
+        break;
+    case OPC_MXU_S32AND:
+        gen_mxu_S32AND(ctx);
+        break;
+    case OPC_MXU_S32OR:
+        gen_mxu_S32OR(ctx);
+        break;
+    case OPC_MXU_S32XOR:
+        gen_mxu_S32XOR(ctx);
+        break;
+    default:
+        MIPS_INVAL("decode_opc_mxu");
+        gen_reserved_instruction(ctx);
+        break;
+    }
+}
+
+static void decode_opc_mxu__pool19(DisasContext *ctx)
+{
+    uint32_t opcode = extract32(ctx->opcode, 22, 2);
+
+    switch (opcode) {
+    case OPC_MXU_Q8MUL:
+    case OPC_MXU_Q8MULSU:
+        gen_mxu_q8mul_q8mulsu(ctx);
+        break;
+    default:
+        MIPS_INVAL("decode_opc_mxu");
+        gen_reserved_instruction(ctx);
+        break;
+    }
+}
+
+bool decode_ase_mxu(DisasContext *ctx, uint32_t insn)
+{
+    uint32_t opcode = extract32(insn, 0, 6);
+
+    if (opcode == OPC_MXU_S32M2I) {
+        gen_mxu_s32m2i(ctx);
+        return true;
+    }
+
+    if (opcode == OPC_MXU_S32I2M) {
+        gen_mxu_s32i2m(ctx);
+        return true;
+    }
+
+    {
+        TCGv t_mxu_cr = tcg_temp_new();
+        TCGLabel *l_exit = gen_new_label();
+
+        gen_load_mxu_cr(t_mxu_cr);
+        tcg_gen_andi_tl(t_mxu_cr, t_mxu_cr, MXU_CR_MXU_EN);
+        tcg_gen_brcondi_tl(TCG_COND_NE, t_mxu_cr, MXU_CR_MXU_EN, l_exit);
+
+        switch (opcode) {
+        case OPC_MXU__POOL00:
+            decode_opc_mxu__pool00(ctx);
+            break;
+        case OPC_MXU_D16MUL:
+            gen_mxu_d16mul(ctx);
+            break;
+        case OPC_MXU_D16MAC:
+            gen_mxu_d16mac(ctx);
+            break;
+        case OPC_MXU__POOL04:
+            decode_opc_mxu__pool04(ctx);
+            break;
+        case OPC_MXU_S8LDD:
+            gen_mxu_s8ldd(ctx);
+            break;
+        case OPC_MXU__POOL16:
+            decode_opc_mxu__pool16(ctx);
+            break;
+        case OPC_MXU__POOL19:
+            decode_opc_mxu__pool19(ctx);
+            break;
+        default:
+            MIPS_INVAL("decode_opc_mxu");
+            gen_reserved_instruction(ctx);
+        }
+
+        gen_set_label(l_exit);
+        tcg_temp_free(t_mxu_cr);
+    }
+
+    return true;
+}
diff --git a/target/mips/translate.c b/target/mips/translate.c
index da6825c2fec..64e0baf11b7 100644
--- a/target/mips/translate.c
+++ b/target/mips/translate.c
@@ -1129,392 +1129,6 @@  enum {
     OPC_NMSUB_PS    = 0x3E | OPC_CP3,
 };
 
-/*
- *
- *       AN OVERVIEW OF MXU EXTENSION INSTRUCTION SET
- *       ============================================
- *
- *
- * MXU (full name: MIPS eXtension/enhanced Unit) is a SIMD extension of MIPS32
- * instructions set. It is designed to fit the needs of signal, graphical and
- * video processing applications. MXU instruction set is used in Xburst family
- * of microprocessors by Ingenic.
- *
- * MXU unit contains 17 registers called X0-X16. X0 is always zero, and X16 is
- * the control register.
- *
- *
- *     The notation used in MXU assembler mnemonics
- *     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- *
- *  Register operands:
- *
- *   XRa, XRb, XRc, XRd - MXU registers
- *   Rb, Rc, Rd, Rs, Rt - general purpose MIPS registers
- *
- *  Non-register operands:
- *
- *   aptn1 - 1-bit accumulate add/subtract pattern
- *   aptn2 - 2-bit accumulate add/subtract pattern
- *   eptn2 - 2-bit execute add/subtract pattern
- *   optn2 - 2-bit operand pattern
- *   optn3 - 3-bit operand pattern
- *   sft4  - 4-bit shift amount
- *   strd2 - 2-bit stride amount
- *
- *  Prefixes:
- *
- *   Level of parallelism:                Operand size:
- *    S - single operation at a time       32 - word
- *    D - two operations in parallel       16 - half word
- *    Q - four operations in parallel       8 - byte
- *
- *  Operations:
- *
- *   ADD   - Add or subtract
- *   ADDC  - Add with carry-in
- *   ACC   - Accumulate
- *   ASUM  - Sum together then accumulate (add or subtract)
- *   ASUMC - Sum together then accumulate (add or subtract) with carry-in
- *   AVG   - Average between 2 operands
- *   ABD   - Absolute difference
- *   ALN   - Align data
- *   AND   - Logical bitwise 'and' operation
- *   CPS   - Copy sign
- *   EXTR  - Extract bits
- *   I2M   - Move from GPR register to MXU register
- *   LDD   - Load data from memory to XRF
- *   LDI   - Load data from memory to XRF (and increase the address base)
- *   LUI   - Load unsigned immediate
- *   MUL   - Multiply
- *   MULU  - Unsigned multiply
- *   MADD  - 64-bit operand add 32x32 product
- *   MSUB  - 64-bit operand subtract 32x32 product
- *   MAC   - Multiply and accumulate (add or subtract)
- *   MAD   - Multiply and add or subtract
- *   MAX   - Maximum between 2 operands
- *   MIN   - Minimum between 2 operands
- *   M2I   - Move from MXU register to GPR register
- *   MOVZ  - Move if zero
- *   MOVN  - Move if non-zero
- *   NOR   - Logical bitwise 'nor' operation
- *   OR    - Logical bitwise 'or' operation
- *   STD   - Store data from XRF to memory
- *   SDI   - Store data from XRF to memory (and increase the address base)
- *   SLT   - Set of less than comparison
- *   SAD   - Sum of absolute differences
- *   SLL   - Logical shift left
- *   SLR   - Logical shift right
- *   SAR   - Arithmetic shift right
- *   SAT   - Saturation
- *   SFL   - Shuffle
- *   SCOP  - Calculate x’s scope (-1, means x<0; 0, means x==0; 1, means x>0)
- *   XOR   - Logical bitwise 'exclusive or' operation
- *
- *  Suffixes:
- *
- *   E - Expand results
- *   F - Fixed point multiplication
- *   L - Low part result
- *   R - Doing rounding
- *   V - Variable instead of immediate
- *   W - Combine above L and V
- *
- *
- *     The list of MXU instructions grouped by functionality
- *     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- *
- * Load/Store instructions           Multiplication instructions
- * -----------------------           ---------------------------
- *
- *  S32LDD XRa, Rb, s12               S32MADD XRa, XRd, Rs, Rt
- *  S32STD XRa, Rb, s12               S32MADDU XRa, XRd, Rs, Rt
- *  S32LDDV XRa, Rb, rc, strd2        S32MSUB XRa, XRd, Rs, Rt
- *  S32STDV XRa, Rb, rc, strd2        S32MSUBU XRa, XRd, Rs, Rt
- *  S32LDI XRa, Rb, s12               S32MUL XRa, XRd, Rs, Rt
- *  S32SDI XRa, Rb, s12               S32MULU XRa, XRd, Rs, Rt
- *  S32LDIV XRa, Rb, rc, strd2        D16MUL XRa, XRb, XRc, XRd, optn2
- *  S32SDIV XRa, Rb, rc, strd2        D16MULE XRa, XRb, XRc, optn2
- *  S32LDDR XRa, Rb, s12              D16MULF XRa, XRb, XRc, optn2
- *  S32STDR XRa, Rb, s12              D16MAC XRa, XRb, XRc, XRd, aptn2, optn2
- *  S32LDDVR XRa, Rb, rc, strd2       D16MACE XRa, XRb, XRc, XRd, aptn2, optn2
- *  S32STDVR XRa, Rb, rc, strd2       D16MACF XRa, XRb, XRc, XRd, aptn2, optn2
- *  S32LDIR XRa, Rb, s12              D16MADL XRa, XRb, XRc, XRd, aptn2, optn2
- *  S32SDIR XRa, Rb, s12              S16MAD XRa, XRb, XRc, XRd, aptn1, optn2
- *  S32LDIVR XRa, Rb, rc, strd2       Q8MUL XRa, XRb, XRc, XRd
- *  S32SDIVR XRa, Rb, rc, strd2       Q8MULSU XRa, XRb, XRc, XRd
- *  S16LDD XRa, Rb, s10, eptn2        Q8MAC XRa, XRb, XRc, XRd, aptn2
- *  S16STD XRa, Rb, s10, eptn2        Q8MACSU XRa, XRb, XRc, XRd, aptn2
- *  S16LDI XRa, Rb, s10, eptn2        Q8MADL XRa, XRb, XRc, XRd, aptn2
- *  S16SDI XRa, Rb, s10, eptn2
- *  S8LDD XRa, Rb, s8, eptn3
- *  S8STD XRa, Rb, s8, eptn3         Addition and subtraction instructions
- *  S8LDI XRa, Rb, s8, eptn3         -------------------------------------
- *  S8SDI XRa, Rb, s8, eptn3
- *  LXW Rd, Rs, Rt, strd2             D32ADD XRa, XRb, XRc, XRd, eptn2
- *  LXH Rd, Rs, Rt, strd2             D32ADDC XRa, XRb, XRc, XRd
- *  LXHU Rd, Rs, Rt, strd2            D32ACC XRa, XRb, XRc, XRd, eptn2
- *  LXB Rd, Rs, Rt, strd2             D32ACCM XRa, XRb, XRc, XRd, eptn2
- *  LXBU Rd, Rs, Rt, strd2            D32ASUM XRa, XRb, XRc, XRd, eptn2
- *                                    S32CPS XRa, XRb, XRc
- *                                    Q16ADD XRa, XRb, XRc, XRd, eptn2, optn2
- * Comparison instructions            Q16ACC XRa, XRb, XRc, XRd, eptn2
- * -----------------------            Q16ACCM XRa, XRb, XRc, XRd, eptn2
- *                                    D16ASUM XRa, XRb, XRc, XRd, eptn2
- *  S32MAX XRa, XRb, XRc              D16CPS XRa, XRb,
- *  S32MIN XRa, XRb, XRc              D16AVG XRa, XRb, XRc
- *  S32SLT XRa, XRb, XRc              D16AVGR XRa, XRb, XRc
- *  S32MOVZ XRa, XRb, XRc             Q8ADD XRa, XRb, XRc, eptn2
- *  S32MOVN XRa, XRb, XRc             Q8ADDE XRa, XRb, XRc, XRd, eptn2
- *  D16MAX XRa, XRb, XRc              Q8ACCE XRa, XRb, XRc, XRd, eptn2
- *  D16MIN XRa, XRb, XRc              Q8ABD XRa, XRb, XRc
- *  D16SLT XRa, XRb, XRc              Q8SAD XRa, XRb, XRc, XRd
- *  D16MOVZ XRa, XRb, XRc             Q8AVG XRa, XRb, XRc
- *  D16MOVN XRa, XRb, XRc             Q8AVGR XRa, XRb, XRc
- *  Q8MAX XRa, XRb, XRc               D8SUM XRa, XRb, XRc, XRd
- *  Q8MIN XRa, XRb, XRc               D8SUMC XRa, XRb, XRc, XRd
- *  Q8SLT XRa, XRb, XRc
- *  Q8SLTU XRa, XRb, XRc
- *  Q8MOVZ XRa, XRb, XRc             Shift instructions
- *  Q8MOVN XRa, XRb, XRc             ------------------
- *
- *                                    D32SLL XRa, XRb, XRc, XRd, sft4
- * Bitwise instructions               D32SLR XRa, XRb, XRc, XRd, sft4
- * --------------------               D32SAR XRa, XRb, XRc, XRd, sft4
- *                                    D32SARL XRa, XRb, XRc, sft4
- *  S32NOR XRa, XRb, XRc              D32SLLV XRa, XRb, Rb
- *  S32AND XRa, XRb, XRc              D32SLRV XRa, XRb, Rb
- *  S32XOR XRa, XRb, XRc              D32SARV XRa, XRb, Rb
- *  S32OR XRa, XRb, XRc               D32SARW XRa, XRb, XRc, Rb
- *                                    Q16SLL XRa, XRb, XRc, XRd, sft4
- *                                    Q16SLR XRa, XRb, XRc, XRd, sft4
- * Miscellaneous instructions         Q16SAR XRa, XRb, XRc, XRd, sft4
- * -------------------------          Q16SLLV XRa, XRb, Rb
- *                                    Q16SLRV XRa, XRb, Rb
- *  S32SFL XRa, XRb, XRc, XRd, optn2  Q16SARV XRa, XRb, Rb
- *  S32ALN XRa, XRb, XRc, Rb
- *  S32ALNI XRa, XRb, XRc, s3
- *  S32LUI XRa, s8, optn3            Move instructions
- *  S32EXTR XRa, XRb, Rb, bits5      -----------------
- *  S32EXTRV XRa, XRb, Rs, Rt
- *  Q16SCOP XRa, XRb, XRc, XRd        S32M2I XRa, Rb
- *  Q16SAT XRa, XRb, XRc              S32I2M XRa, Rb
- *
- *
- *     The opcode organization of MXU instructions
- *     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- *
- * The bits 31..26 of all MXU instructions are equal to 0x1C (also referred
- * as opcode SPECIAL2 in the base MIPS ISA). The organization and meaning of
- * other bits up to the instruction level is as follows:
- *
- *              bits
- *             05..00
- *
- *          ┌─ 000000 ─ OPC_MXU_S32MADD
- *          ├─ 000001 ─ OPC_MXU_S32MADDU
- *          ├─ 000010 ─ <not assigned>   (non-MXU OPC_MUL)
- *          │
- *          │                               20..18
- *          ├─ 000011 ─ OPC_MXU__POOL00 ─┬─ 000 ─ OPC_MXU_S32MAX
- *          │                            ├─ 001 ─ OPC_MXU_S32MIN
- *          │                            ├─ 010 ─ OPC_MXU_D16MAX
- *          │                            ├─ 011 ─ OPC_MXU_D16MIN
- *          │                            ├─ 100 ─ OPC_MXU_Q8MAX
- *          │                            ├─ 101 ─ OPC_MXU_Q8MIN
- *          │                            ├─ 110 ─ OPC_MXU_Q8SLT
- *          │                            └─ 111 ─ OPC_MXU_Q8SLTU
- *          ├─ 000100 ─ OPC_MXU_S32MSUB
- *          ├─ 000101 ─ OPC_MXU_S32MSUBU    20..18
- *          ├─ 000110 ─ OPC_MXU__POOL01 ─┬─ 000 ─ OPC_MXU_S32SLT
- *          │                            ├─ 001 ─ OPC_MXU_D16SLT
- *          │                            ├─ 010 ─ OPC_MXU_D16AVG
- *          │                            ├─ 011 ─ OPC_MXU_D16AVGR
- *          │                            ├─ 100 ─ OPC_MXU_Q8AVG
- *          │                            ├─ 101 ─ OPC_MXU_Q8AVGR
- *          │                            └─ 111 ─ OPC_MXU_Q8ADD
- *          │
- *          │                               20..18
- *          ├─ 000111 ─ OPC_MXU__POOL02 ─┬─ 000 ─ OPC_MXU_S32CPS
- *          │                            ├─ 010 ─ OPC_MXU_D16CPS
- *          │                            ├─ 100 ─ OPC_MXU_Q8ABD
- *          │                            └─ 110 ─ OPC_MXU_Q16SAT
- *          ├─ 001000 ─ OPC_MXU_D16MUL
- *          │                               25..24
- *          ├─ 001001 ─ OPC_MXU__POOL03 ─┬─ 00 ─ OPC_MXU_D16MULF
- *          │                            └─ 01 ─ OPC_MXU_D16MULE
- *          ├─ 001010 ─ OPC_MXU_D16MAC
- *          ├─ 001011 ─ OPC_MXU_D16MACF
- *          ├─ 001100 ─ OPC_MXU_D16MADL
- *          ├─ 001101 ─ OPC_MXU_S16MAD
- *          ├─ 001110 ─ OPC_MXU_Q16ADD
- *          ├─ 001111 ─ OPC_MXU_D16MACE     23
- *          │                            ┌─ 0 ─ OPC_MXU_S32LDD
- *          ├─ 010000 ─ OPC_MXU__POOL04 ─┴─ 1 ─ OPC_MXU_S32LDDR
- *          │
- *          │                               23
- *          ├─ 010001 ─ OPC_MXU__POOL05 ─┬─ 0 ─ OPC_MXU_S32STD
- *          │                            └─ 1 ─ OPC_MXU_S32STDR
- *          │
- *          │                               13..10
- *          ├─ 010010 ─ OPC_MXU__POOL06 ─┬─ 0000 ─ OPC_MXU_S32LDDV
- *          │                            └─ 0001 ─ OPC_MXU_S32LDDVR
- *          │
- *          │                               13..10
- *          ├─ 010011 ─ OPC_MXU__POOL07 ─┬─ 0000 ─ OPC_MXU_S32STDV
- *          │                            └─ 0001 ─ OPC_MXU_S32STDVR
- *          │
- *          │                               23
- *          ├─ 010100 ─ OPC_MXU__POOL08 ─┬─ 0 ─ OPC_MXU_S32LDI
- *          │                            └─ 1 ─ OPC_MXU_S32LDIR
- *          │
- *          │                               23
- *          ├─ 010101 ─ OPC_MXU__POOL09 ─┬─ 0 ─ OPC_MXU_S32SDI
- *          │                            └─ 1 ─ OPC_MXU_S32SDIR
- *          │
- *          │                               13..10
- *          ├─ 010110 ─ OPC_MXU__POOL10 ─┬─ 0000 ─ OPC_MXU_S32LDIV
- *          │                            └─ 0001 ─ OPC_MXU_S32LDIVR
- *          │
- *          │                               13..10
- *          ├─ 010111 ─ OPC_MXU__POOL11 ─┬─ 0000 ─ OPC_MXU_S32SDIV
- *          │                            └─ 0001 ─ OPC_MXU_S32SDIVR
- *          ├─ 011000 ─ OPC_MXU_D32ADD
- *          │                               23..22
- *   MXU    ├─ 011001 ─ OPC_MXU__POOL12 ─┬─ 00 ─ OPC_MXU_D32ACC
- * opcodes ─┤                            ├─ 01 ─ OPC_MXU_D32ACCM
- *          │                            └─ 10 ─ OPC_MXU_D32ASUM
- *          ├─ 011010 ─ <not assigned>
- *          │                               23..22
- *          ├─ 011011 ─ OPC_MXU__POOL13 ─┬─ 00 ─ OPC_MXU_Q16ACC
- *          │                            ├─ 01 ─ OPC_MXU_Q16ACCM
- *          │                            └─ 10 ─ OPC_MXU_Q16ASUM
- *          │
- *          │                               23..22
- *          ├─ 011100 ─ OPC_MXU__POOL14 ─┬─ 00 ─ OPC_MXU_Q8ADDE
- *          │                            ├─ 01 ─ OPC_MXU_D8SUM
- *          ├─ 011101 ─ OPC_MXU_Q8ACCE   └─ 10 ─ OPC_MXU_D8SUMC
- *          ├─ 011110 ─ <not assigned>
- *          ├─ 011111 ─ <not assigned>
- *          ├─ 100000 ─ <not assigned>   (overlaps with CLZ)
- *          ├─ 100001 ─ <not assigned>   (overlaps with CLO)
- *          ├─ 100010 ─ OPC_MXU_S8LDD
- *          ├─ 100011 ─ OPC_MXU_S8STD       15..14
- *          ├─ 100100 ─ OPC_MXU_S8LDI    ┌─ 00 ─ OPC_MXU_S32MUL
- *          ├─ 100101 ─ OPC_MXU_S8SDI    ├─ 00 ─ OPC_MXU_S32MULU
- *          │                            ├─ 00 ─ OPC_MXU_S32EXTR
- *          ├─ 100110 ─ OPC_MXU__POOL15 ─┴─ 00 ─ OPC_MXU_S32EXTRV
- *          │
- *          │                               20..18
- *          ├─ 100111 ─ OPC_MXU__POOL16 ─┬─ 000 ─ OPC_MXU_D32SARW
- *          │                            ├─ 001 ─ OPC_MXU_S32ALN
- *          │                            ├─ 010 ─ OPC_MXU_S32ALNI
- *          │                            ├─ 011 ─ OPC_MXU_S32LUI
- *          │                            ├─ 100 ─ OPC_MXU_S32NOR
- *          │                            ├─ 101 ─ OPC_MXU_S32AND
- *          │                            ├─ 110 ─ OPC_MXU_S32OR
- *          │                            └─ 111 ─ OPC_MXU_S32XOR
- *          │
- *          │                               7..5
- *          ├─ 101000 ─ OPC_MXU__POOL17 ─┬─ 000 ─ OPC_MXU_LXB
- *          │                            ├─ 001 ─ OPC_MXU_LXH
- *          ├─ 101001 ─ <not assigned>   ├─ 011 ─ OPC_MXU_LXW
- *          ├─ 101010 ─ OPC_MXU_S16LDD   ├─ 100 ─ OPC_MXU_LXBU
- *          ├─ 101011 ─ OPC_MXU_S16STD   └─ 101 ─ OPC_MXU_LXHU
- *          ├─ 101100 ─ OPC_MXU_S16LDI
- *          ├─ 101101 ─ OPC_MXU_S16SDI
- *          ├─ 101110 ─ OPC_MXU_S32M2I
- *          ├─ 101111 ─ OPC_MXU_S32I2M
- *          ├─ 110000 ─ OPC_MXU_D32SLL
- *          ├─ 110001 ─ OPC_MXU_D32SLR      20..18
- *          ├─ 110010 ─ OPC_MXU_D32SARL  ┌─ 000 ─ OPC_MXU_D32SLLV
- *          ├─ 110011 ─ OPC_MXU_D32SAR   ├─ 001 ─ OPC_MXU_D32SLRV
- *          ├─ 110100 ─ OPC_MXU_Q16SLL   ├─ 010 ─ OPC_MXU_D32SARV
- *          ├─ 110101 ─ OPC_MXU_Q16SLR   ├─ 011 ─ OPC_MXU_Q16SLLV
- *          │                            ├─ 100 ─ OPC_MXU_Q16SLRV
- *          ├─ 110110 ─ OPC_MXU__POOL18 ─┴─ 101 ─ OPC_MXU_Q16SARV
- *          │
- *          ├─ 110111 ─ OPC_MXU_Q16SAR
- *          │                               23..22
- *          ├─ 111000 ─ OPC_MXU__POOL19 ─┬─ 00 ─ OPC_MXU_Q8MUL
- *          │                            └─ 01 ─ OPC_MXU_Q8MULSU
- *          │
- *          │                               20..18
- *          ├─ 111001 ─ OPC_MXU__POOL20 ─┬─ 000 ─ OPC_MXU_Q8MOVZ
- *          │                            ├─ 001 ─ OPC_MXU_Q8MOVN
- *          │                            ├─ 010 ─ OPC_MXU_D16MOVZ
- *          │                            ├─ 011 ─ OPC_MXU_D16MOVN
- *          │                            ├─ 100 ─ OPC_MXU_S32MOVZ
- *          │                            └─ 101 ─ OPC_MXU_S32MOVN
- *          │
- *          │                               23..22
- *          ├─ 111010 ─ OPC_MXU__POOL21 ─┬─ 00 ─ OPC_MXU_Q8MAC
- *          │                            └─ 10 ─ OPC_MXU_Q8MACSU
- *          ├─ 111011 ─ OPC_MXU_Q16SCOP
- *          ├─ 111100 ─ OPC_MXU_Q8MADL
- *          ├─ 111101 ─ OPC_MXU_S32SFL
- *          ├─ 111110 ─ OPC_MXU_Q8SAD
- *          └─ 111111 ─ <not assigned>   (overlaps with SDBBP)
- *
- *
- * Compiled after:
- *
- *   "XBurst® Instruction Set Architecture MIPS eXtension/enhanced Unit
- *   Programming Manual", Ingenic Semiconductor Co, Ltd., revision June 2, 2017
- */
-
-enum {
-    OPC_MXU__POOL00  = 0x03,
-    OPC_MXU_D16MUL   = 0x08,
-    OPC_MXU_D16MAC   = 0x0A,
-    OPC_MXU__POOL04  = 0x10,
-    OPC_MXU_S8LDD    = 0x22,
-    OPC_MXU__POOL16  = 0x27,
-    OPC_MXU_S32M2I   = 0x2E,
-    OPC_MXU_S32I2M   = 0x2F,
-    OPC_MXU__POOL19  = 0x38,
-};
-
-
-/*
- * MXU pool 00
- */
-enum {
-    OPC_MXU_S32MAX   = 0x00,
-    OPC_MXU_S32MIN   = 0x01,
-    OPC_MXU_D16MAX   = 0x02,
-    OPC_MXU_D16MIN   = 0x03,
-    OPC_MXU_Q8MAX    = 0x04,
-    OPC_MXU_Q8MIN    = 0x05,
-};
-
-/*
- * MXU pool 04
- */
-enum {
-    OPC_MXU_S32LDD   = 0x00,
-    OPC_MXU_S32LDDR  = 0x01,
-};
-
-/*
- * MXU pool 16
- */
-enum {
-    OPC_MXU_S32ALNI  = 0x02,
-    OPC_MXU_S32NOR   = 0x04,
-    OPC_MXU_S32AND   = 0x05,
-    OPC_MXU_S32OR    = 0x06,
-    OPC_MXU_S32XOR   = 0x07,
-};
-
-/*
- * MXU pool 19
- */
-enum {
-    OPC_MXU_Q8MUL    = 0x00,
-    OPC_MXU_Q8MULSU  = 0x01,
-};
-
 /*
  *     Overview of the TX79-specific instruction set
  *     =============================================
@@ -1965,12 +1579,6 @@  static TCGv_i32 hflags;
 TCGv_i32 fpu_fcr0, fpu_fcr31;
 TCGv_i64 fpu_f64[32];
 
-#if !defined(TARGET_MIPS64)
-/* MXU registers */
-static TCGv mxu_gpr[NUMBER_OF_MXU_REGISTERS - 1];
-static TCGv mxu_CR;
-#endif
-
 #include "exec/gen-icount.h"
 
 #define gen_helper_0e0i(name, arg) do {                           \
@@ -2040,26 +1648,6 @@  static const char * const fregnames[] = {
     "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
 };
 
-#if !defined(TARGET_MIPS64)
-static const char * const mxuregnames[] = {
-    "XR1",  "XR2",  "XR3",  "XR4",  "XR5",  "XR6",  "XR7",  "XR8",
-    "XR9",  "XR10", "XR11", "XR12", "XR13", "XR14", "XR15", "MXU_CR",
-};
-
-void mxu_translate_init(void)
-{
-    for (unsigned i = 0; i < NUMBER_OF_MXU_REGISTERS - 1; i++) {
-        mxu_gpr[i] = tcg_global_mem_new(cpu_env,
-                                        offsetof(CPUMIPSState, active_tc.mxu_gpr[i]),
-                                        mxuregnames[i]);
-    }
-
-    mxu_CR = tcg_global_mem_new(cpu_env,
-                                offsetof(CPUMIPSState, active_tc.mxu_cr),
-                                mxuregnames[NUMBER_OF_MXU_REGISTERS - 1]);
-}
-#endif /* !TARGET_MIPS64 */
-
 /* General purpose registers moves. */
 void gen_load_gpr(TCGv t, int reg)
 {
@@ -2143,38 +1731,6 @@  static inline void gen_store_srsgpr(int from, int to)
     }
 }
 
-#if !defined(TARGET_MIPS64)
-/* MXU General purpose registers moves. */
-static inline void gen_load_mxu_gpr(TCGv t, unsigned int reg)
-{
-    if (reg == 0) {
-        tcg_gen_movi_tl(t, 0);
-    } else if (reg <= 15) {
-        tcg_gen_mov_tl(t, mxu_gpr[reg - 1]);
-    }
-}
-
-static inline void gen_store_mxu_gpr(TCGv t, unsigned int reg)
-{
-    if (reg > 0 && reg <= 15) {
-        tcg_gen_mov_tl(mxu_gpr[reg - 1], t);
-    }
-}
-
-/* MXU control register moves. */
-static inline void gen_load_mxu_cr(TCGv t)
-{
-    tcg_gen_mov_tl(t, mxu_CR);
-}
-
-static inline void gen_store_mxu_cr(TCGv t)
-{
-    /* TODO: Add handling of RW rules for MXU_CR. */
-    tcg_gen_mov_tl(mxu_CR, t);
-}
-#endif
-
-
 /* Tests */
 static inline void gen_save_pc(target_ulong pc)
 {
@@ -24690,1167 +24246,6 @@  static void gen_mmi_pcpyud(DisasContext *ctx)
 
 #endif
 
-
-#if !defined(TARGET_MIPS64)
-
-/* MXU accumulate add/subtract 1-bit pattern 'aptn1' */
-#define MXU_APTN1_A    0
-#define MXU_APTN1_S    1
-
-/* MXU accumulate add/subtract 2-bit pattern 'aptn2' */
-#define MXU_APTN2_AA    0
-#define MXU_APTN2_AS    1
-#define MXU_APTN2_SA    2
-#define MXU_APTN2_SS    3
-
-/* MXU execute add/subtract 2-bit pattern 'eptn2' */
-#define MXU_EPTN2_AA    0
-#define MXU_EPTN2_AS    1
-#define MXU_EPTN2_SA    2
-#define MXU_EPTN2_SS    3
-
-/* MXU operand getting pattern 'optn2' */
-#define MXU_OPTN2_PTN0  0
-#define MXU_OPTN2_PTN1  1
-#define MXU_OPTN2_PTN2  2
-#define MXU_OPTN2_PTN3  3
-/* alternative naming scheme for 'optn2' */
-#define MXU_OPTN2_WW    0
-#define MXU_OPTN2_LW    1
-#define MXU_OPTN2_HW    2
-#define MXU_OPTN2_XW    3
-
-/* MXU operand getting pattern 'optn3' */
-#define MXU_OPTN3_PTN0  0
-#define MXU_OPTN3_PTN1  1
-#define MXU_OPTN3_PTN2  2
-#define MXU_OPTN3_PTN3  3
-#define MXU_OPTN3_PTN4  4
-#define MXU_OPTN3_PTN5  5
-#define MXU_OPTN3_PTN6  6
-#define MXU_OPTN3_PTN7  7
-
-
-/*
- * S32I2M XRa, rb - Register move from GRF to XRF
- */
-static void gen_mxu_s32i2m(DisasContext *ctx)
-{
-    TCGv t0;
-    uint32_t XRa, Rb;
-
-    t0 = tcg_temp_new();
-
-    XRa = extract32(ctx->opcode, 6, 5);
-    Rb = extract32(ctx->opcode, 16, 5);
-
-    gen_load_gpr(t0, Rb);
-    if (XRa <= 15) {
-        gen_store_mxu_gpr(t0, XRa);
-    } else if (XRa == 16) {
-        gen_store_mxu_cr(t0);
-    }
-
-    tcg_temp_free(t0);
-}
-
-/*
- * S32M2I XRa, rb - Register move from XRF to GRF
- */
-static void gen_mxu_s32m2i(DisasContext *ctx)
-{
-    TCGv t0;
-    uint32_t XRa, Rb;
-
-    t0 = tcg_temp_new();
-
-    XRa = extract32(ctx->opcode, 6, 5);
-    Rb = extract32(ctx->opcode, 16, 5);
-
-    if (XRa <= 15) {
-        gen_load_mxu_gpr(t0, XRa);
-    } else if (XRa == 16) {
-        gen_load_mxu_cr(t0);
-    }
-
-    gen_store_gpr(t0, Rb);
-
-    tcg_temp_free(t0);
-}
-
-/*
- * S8LDD XRa, Rb, s8, optn3 - Load a byte from memory to XRF
- */
-static void gen_mxu_s8ldd(DisasContext *ctx)
-{
-    TCGv t0, t1;
-    uint32_t XRa, Rb, s8, optn3;
-
-    t0 = tcg_temp_new();
-    t1 = tcg_temp_new();
-
-    XRa = extract32(ctx->opcode, 6, 4);
-    s8 = extract32(ctx->opcode, 10, 8);
-    optn3 = extract32(ctx->opcode, 18, 3);
-    Rb = extract32(ctx->opcode, 21, 5);
-
-    gen_load_gpr(t0, Rb);
-    tcg_gen_addi_tl(t0, t0, (int8_t)s8);
-
-    switch (optn3) {
-    /* XRa[7:0] = tmp8 */
-    case MXU_OPTN3_PTN0:
-        tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
-        gen_load_mxu_gpr(t0, XRa);
-        tcg_gen_deposit_tl(t0, t0, t1, 0, 8);
-        break;
-    /* XRa[15:8] = tmp8 */
-    case MXU_OPTN3_PTN1:
-        tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
-        gen_load_mxu_gpr(t0, XRa);
-        tcg_gen_deposit_tl(t0, t0, t1, 8, 8);
-        break;
-    /* XRa[23:16] = tmp8 */
-    case MXU_OPTN3_PTN2:
-        tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
-        gen_load_mxu_gpr(t0, XRa);
-        tcg_gen_deposit_tl(t0, t0, t1, 16, 8);
-        break;
-    /* XRa[31:24] = tmp8 */
-    case MXU_OPTN3_PTN3:
-        tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
-        gen_load_mxu_gpr(t0, XRa);
-        tcg_gen_deposit_tl(t0, t0, t1, 24, 8);
-        break;
-    /* XRa = {8'b0, tmp8, 8'b0, tmp8} */
-    case MXU_OPTN3_PTN4:
-        tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
-        tcg_gen_deposit_tl(t0, t1, t1, 16, 16);
-        break;
-    /* XRa = {tmp8, 8'b0, tmp8, 8'b0} */
-    case MXU_OPTN3_PTN5:
-        tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
-        tcg_gen_shli_tl(t1, t1, 8);
-        tcg_gen_deposit_tl(t0, t1, t1, 16, 16);
-        break;
-    /* XRa = {{8{sign of tmp8}}, tmp8, {8{sign of tmp8}}, tmp8} */
-    case MXU_OPTN3_PTN6:
-        tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_SB);
-        tcg_gen_mov_tl(t0, t1);
-        tcg_gen_andi_tl(t0, t0, 0xFF00FFFF);
-        tcg_gen_shli_tl(t1, t1, 16);
-        tcg_gen_or_tl(t0, t0, t1);
-        break;
-    /* XRa = {tmp8, tmp8, tmp8, tmp8} */
-    case MXU_OPTN3_PTN7:
-        tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB);
-        tcg_gen_deposit_tl(t1, t1, t1, 8, 8);
-        tcg_gen_deposit_tl(t0, t1, t1, 16, 16);
-        break;
-    }
-
-    gen_store_mxu_gpr(t0, XRa);
-
-    tcg_temp_free(t0);
-    tcg_temp_free(t1);
-}
-
-/*
- * D16MUL XRa, XRb, XRc, XRd, optn2 - Signed 16 bit pattern multiplication
- */
-static void gen_mxu_d16mul(DisasContext *ctx)
-{
-    TCGv t0, t1, t2, t3;
-    uint32_t XRa, XRb, XRc, XRd, optn2;
-
-    t0 = tcg_temp_new();
-    t1 = tcg_temp_new();
-    t2 = tcg_temp_new();
-    t3 = tcg_temp_new();
-
-    XRa = extract32(ctx->opcode, 6, 4);
-    XRb = extract32(ctx->opcode, 10, 4);
-    XRc = extract32(ctx->opcode, 14, 4);
-    XRd = extract32(ctx->opcode, 18, 4);
-    optn2 = extract32(ctx->opcode, 22, 2);
-
-    gen_load_mxu_gpr(t1, XRb);
-    tcg_gen_sextract_tl(t0, t1, 0, 16);
-    tcg_gen_sextract_tl(t1, t1, 16, 16);
-    gen_load_mxu_gpr(t3, XRc);
-    tcg_gen_sextract_tl(t2, t3, 0, 16);
-    tcg_gen_sextract_tl(t3, t3, 16, 16);
-
-    switch (optn2) {
-    case MXU_OPTN2_WW: /* XRB.H*XRC.H == lop, XRB.L*XRC.L == rop */
-        tcg_gen_mul_tl(t3, t1, t3);
-        tcg_gen_mul_tl(t2, t0, t2);
-        break;
-    case MXU_OPTN2_LW: /* XRB.L*XRC.H == lop, XRB.L*XRC.L == rop */
-        tcg_gen_mul_tl(t3, t0, t3);
-        tcg_gen_mul_tl(t2, t0, t2);
-        break;
-    case MXU_OPTN2_HW: /* XRB.H*XRC.H == lop, XRB.H*XRC.L == rop */
-        tcg_gen_mul_tl(t3, t1, t3);
-        tcg_gen_mul_tl(t2, t1, t2);
-        break;
-    case MXU_OPTN2_XW: /* XRB.L*XRC.H == lop, XRB.H*XRC.L == rop */
-        tcg_gen_mul_tl(t3, t0, t3);
-        tcg_gen_mul_tl(t2, t1, t2);
-        break;
-    }
-    gen_store_mxu_gpr(t3, XRa);
-    gen_store_mxu_gpr(t2, XRd);
-
-    tcg_temp_free(t0);
-    tcg_temp_free(t1);
-    tcg_temp_free(t2);
-    tcg_temp_free(t3);
-}
-
-/*
- * D16MAC XRa, XRb, XRc, XRd, aptn2, optn2 - Signed 16 bit pattern multiply
- *                                           and accumulate
- */
-static void gen_mxu_d16mac(DisasContext *ctx)
-{
-    TCGv t0, t1, t2, t3;
-    uint32_t XRa, XRb, XRc, XRd, optn2, aptn2;
-
-    t0 = tcg_temp_new();
-    t1 = tcg_temp_new();
-    t2 = tcg_temp_new();
-    t3 = tcg_temp_new();
-
-    XRa = extract32(ctx->opcode, 6, 4);
-    XRb = extract32(ctx->opcode, 10, 4);
-    XRc = extract32(ctx->opcode, 14, 4);
-    XRd = extract32(ctx->opcode, 18, 4);
-    optn2 = extract32(ctx->opcode, 22, 2);
-    aptn2 = extract32(ctx->opcode, 24, 2);
-
-    gen_load_mxu_gpr(t1, XRb);
-    tcg_gen_sextract_tl(t0, t1, 0, 16);
-    tcg_gen_sextract_tl(t1, t1, 16, 16);
-
-    gen_load_mxu_gpr(t3, XRc);
-    tcg_gen_sextract_tl(t2, t3, 0, 16);
-    tcg_gen_sextract_tl(t3, t3, 16, 16);
-
-    switch (optn2) {
-    case MXU_OPTN2_WW: /* XRB.H*XRC.H == lop, XRB.L*XRC.L == rop */
-        tcg_gen_mul_tl(t3, t1, t3);
-        tcg_gen_mul_tl(t2, t0, t2);
-        break;
-    case MXU_OPTN2_LW: /* XRB.L*XRC.H == lop, XRB.L*XRC.L == rop */
-        tcg_gen_mul_tl(t3, t0, t3);
-        tcg_gen_mul_tl(t2, t0, t2);
-        break;
-    case MXU_OPTN2_HW: /* XRB.H*XRC.H == lop, XRB.H*XRC.L == rop */
-        tcg_gen_mul_tl(t3, t1, t3);
-        tcg_gen_mul_tl(t2, t1, t2);
-        break;
-    case MXU_OPTN2_XW: /* XRB.L*XRC.H == lop, XRB.H*XRC.L == rop */
-        tcg_gen_mul_tl(t3, t0, t3);
-        tcg_gen_mul_tl(t2, t1, t2);
-        break;
-    }
-    gen_load_mxu_gpr(t0, XRa);
-    gen_load_mxu_gpr(t1, XRd);
-
-    switch (aptn2) {
-    case MXU_APTN2_AA:
-        tcg_gen_add_tl(t3, t0, t3);
-        tcg_gen_add_tl(t2, t1, t2);
-        break;
-    case MXU_APTN2_AS:
-        tcg_gen_add_tl(t3, t0, t3);
-        tcg_gen_sub_tl(t2, t1, t2);
-        break;
-    case MXU_APTN2_SA:
-        tcg_gen_sub_tl(t3, t0, t3);
-        tcg_gen_add_tl(t2, t1, t2);
-        break;
-    case MXU_APTN2_SS:
-        tcg_gen_sub_tl(t3, t0, t3);
-        tcg_gen_sub_tl(t2, t1, t2);
-        break;
-    }
-    gen_store_mxu_gpr(t3, XRa);
-    gen_store_mxu_gpr(t2, XRd);
-
-    tcg_temp_free(t0);
-    tcg_temp_free(t1);
-    tcg_temp_free(t2);
-    tcg_temp_free(t3);
-}
-
-/*
- * Q8MUL   XRa, XRb, XRc, XRd - Parallel unsigned 8 bit pattern multiply
- * Q8MULSU XRa, XRb, XRc, XRd - Parallel signed 8 bit pattern multiply
- */
-static void gen_mxu_q8mul_q8mulsu(DisasContext *ctx)
-{
-    TCGv t0, t1, t2, t3, t4, t5, t6, t7;
-    uint32_t XRa, XRb, XRc, XRd, sel;
-
-    t0 = tcg_temp_new();
-    t1 = tcg_temp_new();
-    t2 = tcg_temp_new();
-    t3 = tcg_temp_new();
-    t4 = tcg_temp_new();
-    t5 = tcg_temp_new();
-    t6 = tcg_temp_new();
-    t7 = tcg_temp_new();
-
-    XRa = extract32(ctx->opcode, 6, 4);
-    XRb = extract32(ctx->opcode, 10, 4);
-    XRc = extract32(ctx->opcode, 14, 4);
-    XRd = extract32(ctx->opcode, 18, 4);
-    sel = extract32(ctx->opcode, 22, 2);
-
-    gen_load_mxu_gpr(t3, XRb);
-    gen_load_mxu_gpr(t7, XRc);
-
-    if (sel == 0x2) {
-        /* Q8MULSU */
-        tcg_gen_ext8s_tl(t0, t3);
-        tcg_gen_shri_tl(t3, t3, 8);
-        tcg_gen_ext8s_tl(t1, t3);
-        tcg_gen_shri_tl(t3, t3, 8);
-        tcg_gen_ext8s_tl(t2, t3);
-        tcg_gen_shri_tl(t3, t3, 8);
-        tcg_gen_ext8s_tl(t3, t3);
-    } else {
-        /* Q8MUL */
-        tcg_gen_ext8u_tl(t0, t3);
-        tcg_gen_shri_tl(t3, t3, 8);
-        tcg_gen_ext8u_tl(t1, t3);
-        tcg_gen_shri_tl(t3, t3, 8);
-        tcg_gen_ext8u_tl(t2, t3);
-        tcg_gen_shri_tl(t3, t3, 8);
-        tcg_gen_ext8u_tl(t3, t3);
-    }
-
-    tcg_gen_ext8u_tl(t4, t7);
-    tcg_gen_shri_tl(t7, t7, 8);
-    tcg_gen_ext8u_tl(t5, t7);
-    tcg_gen_shri_tl(t7, t7, 8);
-    tcg_gen_ext8u_tl(t6, t7);
-    tcg_gen_shri_tl(t7, t7, 8);
-    tcg_gen_ext8u_tl(t7, t7);
-
-    tcg_gen_mul_tl(t0, t0, t4);
-    tcg_gen_mul_tl(t1, t1, t5);
-    tcg_gen_mul_tl(t2, t2, t6);
-    tcg_gen_mul_tl(t3, t3, t7);
-
-    tcg_gen_andi_tl(t0, t0, 0xFFFF);
-    tcg_gen_andi_tl(t1, t1, 0xFFFF);
-    tcg_gen_andi_tl(t2, t2, 0xFFFF);
-    tcg_gen_andi_tl(t3, t3, 0xFFFF);
-
-    tcg_gen_shli_tl(t1, t1, 16);
-    tcg_gen_shli_tl(t3, t3, 16);
-
-    tcg_gen_or_tl(t0, t0, t1);
-    tcg_gen_or_tl(t1, t2, t3);
-
-    gen_store_mxu_gpr(t0, XRd);
-    gen_store_mxu_gpr(t1, XRa);
-
-    tcg_temp_free(t0);
-    tcg_temp_free(t1);
-    tcg_temp_free(t2);
-    tcg_temp_free(t3);
-    tcg_temp_free(t4);
-    tcg_temp_free(t5);
-    tcg_temp_free(t6);
-    tcg_temp_free(t7);
-}
-
-/*
- * S32LDD  XRa, Rb, S12 - Load a word from memory to XRF
- * S32LDDR XRa, Rb, S12 - Load a word from memory to XRF, reversed byte seq.
- */
-static void gen_mxu_s32ldd_s32lddr(DisasContext *ctx)
-{
-    TCGv t0, t1;
-    uint32_t XRa, Rb, s12, sel;
-
-    t0 = tcg_temp_new();
-    t1 = tcg_temp_new();
-
-    XRa = extract32(ctx->opcode, 6, 4);
-    s12 = extract32(ctx->opcode, 10, 10);
-    sel = extract32(ctx->opcode, 20, 1);
-    Rb = extract32(ctx->opcode, 21, 5);
-
-    gen_load_gpr(t0, Rb);
-
-    tcg_gen_movi_tl(t1, s12);
-    tcg_gen_shli_tl(t1, t1, 2);
-    if (s12 & 0x200) {
-        tcg_gen_ori_tl(t1, t1, 0xFFFFF000);
-    }
-    tcg_gen_add_tl(t1, t0, t1);
-    tcg_gen_qemu_ld_tl(t1, t1, ctx->mem_idx, MO_SL);
-
-    if (sel == 1) {
-        /* S32LDDR */
-        tcg_gen_bswap32_tl(t1, t1);
-    }
-    gen_store_mxu_gpr(t1, XRa);
-
-    tcg_temp_free(t0);
-    tcg_temp_free(t1);
-}
-
-
-/*
- *                 MXU instruction category: logic
- *                 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- *
- *               S32NOR    S32AND    S32OR    S32XOR
- */
-
-/*
- *  S32NOR XRa, XRb, XRc
- *    Update XRa with the result of logical bitwise 'nor' operation
- *    applied to the content of XRb and XRc.
- */
-static void gen_mxu_S32NOR(DisasContext *ctx)
-{
-    uint32_t pad, XRc, XRb, XRa;
-
-    pad = extract32(ctx->opcode, 21, 5);
-    XRc = extract32(ctx->opcode, 14, 4);
-    XRb = extract32(ctx->opcode, 10, 4);
-    XRa = extract32(ctx->opcode,  6, 4);
-
-    if (unlikely(pad != 0)) {
-        /* opcode padding incorrect -> do nothing */
-    } else if (unlikely(XRa == 0)) {
-        /* destination is zero register -> do nothing */
-    } else if (unlikely((XRb == 0) && (XRc == 0))) {
-        /* both operands zero registers -> just set destination to all 1s */
-        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0xFFFFFFFF);
-    } else if (unlikely(XRb == 0)) {
-        /* XRb zero register -> just set destination to the negation of XRc */
-        tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
-    } else if (unlikely(XRc == 0)) {
-        /* XRa zero register -> just set destination to the negation of XRb */
-        tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
-    } else if (unlikely(XRb == XRc)) {
-        /* both operands same -> just set destination to the negation of XRb */
-        tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
-    } else {
-        /* the most general case */
-        tcg_gen_nor_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
-    }
-}
-
-/*
- *  S32AND XRa, XRb, XRc
- *    Update XRa with the result of logical bitwise 'and' operation
- *    applied to the content of XRb and XRc.
- */
-static void gen_mxu_S32AND(DisasContext *ctx)
-{
-    uint32_t pad, XRc, XRb, XRa;
-
-    pad = extract32(ctx->opcode, 21, 5);
-    XRc = extract32(ctx->opcode, 14, 4);
-    XRb = extract32(ctx->opcode, 10, 4);
-    XRa = extract32(ctx->opcode,  6, 4);
-
-    if (unlikely(pad != 0)) {
-        /* opcode padding incorrect -> do nothing */
-    } else if (unlikely(XRa == 0)) {
-        /* destination is zero register -> do nothing */
-    } else if (unlikely((XRb == 0) || (XRc == 0))) {
-        /* one of operands zero register -> just set destination to all 0s */
-        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
-    } else if (unlikely(XRb == XRc)) {
-        /* both operands same -> just set destination to one of them */
-        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
-    } else {
-        /* the most general case */
-        tcg_gen_and_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
-    }
-}
-
-/*
- *  S32OR XRa, XRb, XRc
- *    Update XRa with the result of logical bitwise 'or' operation
- *    applied to the content of XRb and XRc.
- */
-static void gen_mxu_S32OR(DisasContext *ctx)
-{
-    uint32_t pad, XRc, XRb, XRa;
-
-    pad = extract32(ctx->opcode, 21, 5);
-    XRc = extract32(ctx->opcode, 14, 4);
-    XRb = extract32(ctx->opcode, 10, 4);
-    XRa = extract32(ctx->opcode,  6, 4);
-
-    if (unlikely(pad != 0)) {
-        /* opcode padding incorrect -> do nothing */
-    } else if (unlikely(XRa == 0)) {
-        /* destination is zero register -> do nothing */
-    } else if (unlikely((XRb == 0) && (XRc == 0))) {
-        /* both operands zero registers -> just set destination to all 0s */
-        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
-    } else if (unlikely(XRb == 0)) {
-        /* XRb zero register -> just set destination to the content of XRc */
-        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
-    } else if (unlikely(XRc == 0)) {
-        /* XRc zero register -> just set destination to the content of XRb */
-        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
-    } else if (unlikely(XRb == XRc)) {
-        /* both operands same -> just set destination to one of them */
-        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
-    } else {
-        /* the most general case */
-        tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
-    }
-}
-
-/*
- *  S32XOR XRa, XRb, XRc
- *    Update XRa with the result of logical bitwise 'xor' operation
- *    applied to the content of XRb and XRc.
- */
-static void gen_mxu_S32XOR(DisasContext *ctx)
-{
-    uint32_t pad, XRc, XRb, XRa;
-
-    pad = extract32(ctx->opcode, 21, 5);
-    XRc = extract32(ctx->opcode, 14, 4);
-    XRb = extract32(ctx->opcode, 10, 4);
-    XRa = extract32(ctx->opcode,  6, 4);
-
-    if (unlikely(pad != 0)) {
-        /* opcode padding incorrect -> do nothing */
-    } else if (unlikely(XRa == 0)) {
-        /* destination is zero register -> do nothing */
-    } else if (unlikely((XRb == 0) && (XRc == 0))) {
-        /* both operands zero registers -> just set destination to all 0s */
-        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
-    } else if (unlikely(XRb == 0)) {
-        /* XRb zero register -> just set destination to the content of XRc */
-        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
-    } else if (unlikely(XRc == 0)) {
-        /* XRc zero register -> just set destination to the content of XRb */
-        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
-    } else if (unlikely(XRb == XRc)) {
-        /* both operands same -> just set destination to all 0s */
-        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
-    } else {
-        /* the most general case */
-        tcg_gen_xor_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]);
-    }
-}
-
-
-/*
- *                   MXU instruction category max/min
- *                   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- *
- *                     S32MAX     D16MAX     Q8MAX
- *                     S32MIN     D16MIN     Q8MIN
- */
-
-/*
- *  S32MAX XRa, XRb, XRc
- *    Update XRa with the maximum of signed 32-bit integers contained
- *    in XRb and XRc.
- *
- *  S32MIN XRa, XRb, XRc
- *    Update XRa with the minimum of signed 32-bit integers contained
- *    in XRb and XRc.
- */
-static void gen_mxu_S32MAX_S32MIN(DisasContext *ctx)
-{
-    uint32_t pad, opc, XRc, XRb, XRa;
-
-    pad = extract32(ctx->opcode, 21, 5);
-    opc = extract32(ctx->opcode, 18, 3);
-    XRc = extract32(ctx->opcode, 14, 4);
-    XRb = extract32(ctx->opcode, 10, 4);
-    XRa = extract32(ctx->opcode,  6, 4);
-
-    if (unlikely(pad != 0)) {
-        /* opcode padding incorrect -> do nothing */
-    } else if (unlikely(XRa == 0)) {
-        /* destination is zero register -> do nothing */
-    } else if (unlikely((XRb == 0) && (XRc == 0))) {
-        /* both operands zero registers -> just set destination to zero */
-        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
-    } else if (unlikely((XRb == 0) || (XRc == 0))) {
-        /* exactly one operand is zero register - find which one is not...*/
-        uint32_t XRx = XRb ? XRb : XRc;
-        /* ...and do max/min operation with one operand 0 */
-        if (opc == OPC_MXU_S32MAX) {
-            tcg_gen_smax_i32(mxu_gpr[XRa - 1], mxu_gpr[XRx - 1], 0);
-        } else {
-            tcg_gen_smin_i32(mxu_gpr[XRa - 1], mxu_gpr[XRx - 1], 0);
-        }
-    } else if (unlikely(XRb == XRc)) {
-        /* both operands same -> just set destination to one of them */
-        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
-    } else {
-        /* the most general case */
-        if (opc == OPC_MXU_S32MAX) {
-            tcg_gen_smax_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1],
-                                               mxu_gpr[XRc - 1]);
-        } else {
-            tcg_gen_smin_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1],
-                                               mxu_gpr[XRc - 1]);
-        }
-    }
-}
-
-/*
- *  D16MAX
- *    Update XRa with the 16-bit-wise maximums of signed integers
- *    contained in XRb and XRc.
- *
- *  D16MIN
- *    Update XRa with the 16-bit-wise minimums of signed integers
- *    contained in XRb and XRc.
- */
-static void gen_mxu_D16MAX_D16MIN(DisasContext *ctx)
-{
-    uint32_t pad, opc, XRc, XRb, XRa;
-
-    pad = extract32(ctx->opcode, 21, 5);
-    opc = extract32(ctx->opcode, 18, 3);
-    XRc = extract32(ctx->opcode, 14, 4);
-    XRb = extract32(ctx->opcode, 10, 4);
-    XRa = extract32(ctx->opcode,  6, 4);
-
-    if (unlikely(pad != 0)) {
-        /* opcode padding incorrect -> do nothing */
-    } else if (unlikely(XRc == 0)) {
-        /* destination is zero register -> do nothing */
-    } else if (unlikely((XRb == 0) && (XRa == 0))) {
-        /* both operands zero registers -> just set destination to zero */
-        tcg_gen_movi_i32(mxu_gpr[XRc - 1], 0);
-    } else if (unlikely((XRb == 0) || (XRa == 0))) {
-        /* exactly one operand is zero register - find which one is not...*/
-        uint32_t XRx = XRb ? XRb : XRc;
-        /* ...and do half-word-wise max/min with one operand 0 */
-        TCGv_i32 t0 = tcg_temp_new();
-        TCGv_i32 t1 = tcg_const_i32(0);
-
-        /* the left half-word first */
-        tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFFFF0000);
-        if (opc == OPC_MXU_D16MAX) {
-            tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
-        } else {
-            tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
-        }
-
-        /* the right half-word */
-        tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0x0000FFFF);
-        /* move half-words to the leftmost position */
-        tcg_gen_shli_i32(t0, t0, 16);
-        /* t0 will be max/min of t0 and t1 */
-        if (opc == OPC_MXU_D16MAX) {
-            tcg_gen_smax_i32(t0, t0, t1);
-        } else {
-            tcg_gen_smin_i32(t0, t0, t1);
-        }
-        /* return resulting half-words to its original position */
-        tcg_gen_shri_i32(t0, t0, 16);
-        /* finally update the destination */
-        tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
-
-        tcg_temp_free(t1);
-        tcg_temp_free(t0);
-    } else if (unlikely(XRb == XRc)) {
-        /* both operands same -> just set destination to one of them */
-        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
-    } else {
-        /* the most general case */
-        TCGv_i32 t0 = tcg_temp_new();
-        TCGv_i32 t1 = tcg_temp_new();
-
-        /* the left half-word first */
-        tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFFFF0000);
-        tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFF0000);
-        if (opc == OPC_MXU_D16MAX) {
-            tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
-        } else {
-            tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
-        }
-
-        /* the right half-word */
-        tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x0000FFFF);
-        tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0x0000FFFF);
-        /* move half-words to the leftmost position */
-        tcg_gen_shli_i32(t0, t0, 16);
-        tcg_gen_shli_i32(t1, t1, 16);
-        /* t0 will be max/min of t0 and t1 */
-        if (opc == OPC_MXU_D16MAX) {
-            tcg_gen_smax_i32(t0, t0, t1);
-        } else {
-            tcg_gen_smin_i32(t0, t0, t1);
-        }
-        /* return resulting half-words to its original position */
-        tcg_gen_shri_i32(t0, t0, 16);
-        /* finally update the destination */
-        tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
-
-        tcg_temp_free(t1);
-        tcg_temp_free(t0);
-    }
-}
-
-/*
- *  Q8MAX
- *    Update XRa with the 8-bit-wise maximums of signed integers
- *    contained in XRb and XRc.
- *
- *  Q8MIN
- *    Update XRa with the 8-bit-wise minimums of signed integers
- *    contained in XRb and XRc.
- */
-static void gen_mxu_Q8MAX_Q8MIN(DisasContext *ctx)
-{
-    uint32_t pad, opc, XRc, XRb, XRa;
-
-    pad = extract32(ctx->opcode, 21, 5);
-    opc = extract32(ctx->opcode, 18, 3);
-    XRc = extract32(ctx->opcode, 14, 4);
-    XRb = extract32(ctx->opcode, 10, 4);
-    XRa = extract32(ctx->opcode,  6, 4);
-
-    if (unlikely(pad != 0)) {
-        /* opcode padding incorrect -> do nothing */
-    } else if (unlikely(XRa == 0)) {
-        /* destination is zero register -> do nothing */
-    } else if (unlikely((XRb == 0) && (XRc == 0))) {
-        /* both operands zero registers -> just set destination to zero */
-        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
-    } else if (unlikely((XRb == 0) || (XRc == 0))) {
-        /* exactly one operand is zero register - make it be the first...*/
-        uint32_t XRx = XRb ? XRb : XRc;
-        /* ...and do byte-wise max/min with one operand 0 */
-        TCGv_i32 t0 = tcg_temp_new();
-        TCGv_i32 t1 = tcg_const_i32(0);
-        int32_t i;
-
-        /* the leftmost byte (byte 3) first */
-        tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFF000000);
-        if (opc == OPC_MXU_Q8MAX) {
-            tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
-        } else {
-            tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
-        }
-
-        /* bytes 2, 1, 0 */
-        for (i = 2; i >= 0; i--) {
-            /* extract the byte */
-            tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFF << (8 * i));
-            /* move the byte to the leftmost position */
-            tcg_gen_shli_i32(t0, t0, 8 * (3 - i));
-            /* t0 will be max/min of t0 and t1 */
-            if (opc == OPC_MXU_Q8MAX) {
-                tcg_gen_smax_i32(t0, t0, t1);
-            } else {
-                tcg_gen_smin_i32(t0, t0, t1);
-            }
-            /* return resulting byte to its original position */
-            tcg_gen_shri_i32(t0, t0, 8 * (3 - i));
-            /* finally update the destination */
-            tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
-        }
-
-        tcg_temp_free(t1);
-        tcg_temp_free(t0);
-    } else if (unlikely(XRb == XRc)) {
-        /* both operands same -> just set destination to one of them */
-        tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
-    } else {
-        /* the most general case */
-        TCGv_i32 t0 = tcg_temp_new();
-        TCGv_i32 t1 = tcg_temp_new();
-        int32_t i;
-
-        /* the leftmost bytes (bytes 3) first */
-        tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFF000000);
-        tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF000000);
-        if (opc == OPC_MXU_Q8MAX) {
-            tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1);
-        } else {
-            tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1);
-        }
-
-        /* bytes 2, 1, 0 */
-        for (i = 2; i >= 0; i--) {
-            /* extract corresponding bytes */
-            tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFF << (8 * i));
-            tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF << (8 * i));
-            /* move the bytes to the leftmost position */
-            tcg_gen_shli_i32(t0, t0, 8 * (3 - i));
-            tcg_gen_shli_i32(t1, t1, 8 * (3 - i));
-            /* t0 will be max/min of t0 and t1 */
-            if (opc == OPC_MXU_Q8MAX) {
-                tcg_gen_smax_i32(t0, t0, t1);
-            } else {
-                tcg_gen_smin_i32(t0, t0, t1);
-            }
-            /* return resulting byte to its original position */
-            tcg_gen_shri_i32(t0, t0, 8 * (3 - i));
-            /* finally update the destination */
-            tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0);
-        }
-
-        tcg_temp_free(t1);
-        tcg_temp_free(t0);
-    }
-}
-
-
-/*
- *                 MXU instruction category: align
- *                 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- *
- *                       S32ALN     S32ALNI
- */
-
-/*
- *  S32ALNI XRc, XRb, XRa, optn3
- *    Arrange bytes from XRb and XRc according to one of five sets of
- *    rules determined by optn3, and place the result in XRa.
- */
-static void gen_mxu_S32ALNI(DisasContext *ctx)
-{
-    uint32_t optn3, pad, XRc, XRb, XRa;
-
-    optn3 = extract32(ctx->opcode,  23, 3);
-    pad   = extract32(ctx->opcode,  21, 2);
-    XRc   = extract32(ctx->opcode, 14, 4);
-    XRb   = extract32(ctx->opcode, 10, 4);
-    XRa   = extract32(ctx->opcode,  6, 4);
-
-    if (unlikely(pad != 0)) {
-        /* opcode padding incorrect -> do nothing */
-    } else if (unlikely(XRa == 0)) {
-        /* destination is zero register -> do nothing */
-    } else if (unlikely((XRb == 0) && (XRc == 0))) {
-        /* both operands zero registers -> just set destination to all 0s */
-        tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
-    } else if (unlikely(XRb == 0)) {
-        /* XRb zero register -> just appropriatelly shift XRc into XRa */
-        switch (optn3) {
-        case MXU_OPTN3_PTN0:
-            tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
-            break;
-        case MXU_OPTN3_PTN1:
-        case MXU_OPTN3_PTN2:
-        case MXU_OPTN3_PTN3:
-            tcg_gen_shri_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1],
-                             8 * (4 - optn3));
-            break;
-        case MXU_OPTN3_PTN4:
-            tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
-            break;
-        }
-    } else if (unlikely(XRc == 0)) {
-        /* XRc zero register -> just appropriatelly shift XRb into XRa */
-        switch (optn3) {
-        case MXU_OPTN3_PTN0:
-            tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
-            break;
-        case MXU_OPTN3_PTN1:
-        case MXU_OPTN3_PTN2:
-        case MXU_OPTN3_PTN3:
-            tcg_gen_shri_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], 8 * optn3);
-            break;
-        case MXU_OPTN3_PTN4:
-            tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0);
-            break;
-        }
-    } else if (unlikely(XRb == XRc)) {
-        /* both operands same -> just rotation or moving from any of them */
-        switch (optn3) {
-        case MXU_OPTN3_PTN0:
-        case MXU_OPTN3_PTN4:
-            tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
-            break;
-        case MXU_OPTN3_PTN1:
-        case MXU_OPTN3_PTN2:
-        case MXU_OPTN3_PTN3:
-            tcg_gen_rotli_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], 8 * optn3);
-            break;
-        }
-    } else {
-        /* the most general case */
-        switch (optn3) {
-        case MXU_OPTN3_PTN0:
-            {
-                /*                                         */
-                /*         XRb                XRc          */
-                /*  +---------------+                      */
-                /*  | A   B   C   D |    E   F   G   H     */
-                /*  +-------+-------+                      */
-                /*          |                              */
-                /*         XRa                             */
-                /*                                         */
-
-                tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]);
-            }
-            break;
-        case MXU_OPTN3_PTN1:
-            {
-                /*                                         */
-                /*         XRb                 XRc         */
-                /*      +-------------------+              */
-                /*    A | B   C   D       E | F   G   H    */
-                /*      +---------+---------+              */
-                /*                |                        */
-                /*               XRa                       */
-                /*                                         */
-
-                TCGv_i32 t0 = tcg_temp_new();
-                TCGv_i32 t1 = tcg_temp_new();
-
-                tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x00FFFFFF);
-                tcg_gen_shli_i32(t0, t0, 8);
-
-                tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF000000);
-                tcg_gen_shri_i32(t1, t1, 24);
-
-                tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1);
-
-                tcg_temp_free(t1);
-                tcg_temp_free(t0);
-            }
-            break;
-        case MXU_OPTN3_PTN2:
-            {
-                /*                                         */
-                /*         XRb                 XRc         */
-                /*          +-------------------+          */
-                /*    A   B | C   D       E   F | G   H    */
-                /*          +---------+---------+          */
-                /*                    |                    */
-                /*                   XRa                   */
-                /*                                         */
-
-                TCGv_i32 t0 = tcg_temp_new();
-                TCGv_i32 t1 = tcg_temp_new();
-
-                tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x0000FFFF);
-                tcg_gen_shli_i32(t0, t0, 16);
-
-                tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFF0000);
-                tcg_gen_shri_i32(t1, t1, 16);
-
-                tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1);
-
-                tcg_temp_free(t1);
-                tcg_temp_free(t0);
-            }
-            break;
-        case MXU_OPTN3_PTN3:
-            {
-                /*                                         */
-                /*         XRb                 XRc         */
-                /*              +-------------------+      */
-                /*    A   B   C | D       E   F   G | H    */
-                /*              +---------+---------+      */
-                /*                        |                */
-                /*                       XRa               */
-                /*                                         */
-
-                TCGv_i32 t0 = tcg_temp_new();
-                TCGv_i32 t1 = tcg_temp_new();
-
-                tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x000000FF);
-                tcg_gen_shli_i32(t0, t0, 24);
-
-                tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFFFF00);
-                tcg_gen_shri_i32(t1, t1, 8);
-
-                tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1);
-
-                tcg_temp_free(t1);
-                tcg_temp_free(t0);
-            }
-            break;
-        case MXU_OPTN3_PTN4:
-            {
-                /*                                         */
-                /*         XRb                 XRc         */
-                /*                     +---------------+   */
-                /*    A   B   C   D    | E   F   G   H |   */
-                /*                     +-------+-------+   */
-                /*                             |           */
-                /*                            XRa          */
-                /*                                         */
-
-                tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]);
-            }
-            break;
-        }
-    }
-}
-
-
-/*
- * Decoding engine for MXU
- * =======================
- */
-
-static void decode_opc_mxu__pool00(DisasContext *ctx)
-{
-    uint32_t opcode = extract32(ctx->opcode, 18, 3);
-
-    switch (opcode) {
-    case OPC_MXU_S32MAX:
-    case OPC_MXU_S32MIN:
-        gen_mxu_S32MAX_S32MIN(ctx);
-        break;
-    case OPC_MXU_D16MAX:
-    case OPC_MXU_D16MIN:
-        gen_mxu_D16MAX_D16MIN(ctx);
-        break;
-    case OPC_MXU_Q8MAX:
-    case OPC_MXU_Q8MIN:
-        gen_mxu_Q8MAX_Q8MIN(ctx);
-        break;
-    default:
-        MIPS_INVAL("decode_opc_mxu");
-        gen_reserved_instruction(ctx);
-        break;
-    }
-}
-
-static void decode_opc_mxu__pool04(DisasContext *ctx)
-{
-    uint32_t opcode = extract32(ctx->opcode, 20, 1);
-
-    switch (opcode) {
-    case OPC_MXU_S32LDD:
-    case OPC_MXU_S32LDDR:
-        gen_mxu_s32ldd_s32lddr(ctx);
-        break;
-    default:
-        MIPS_INVAL("decode_opc_mxu");
-        gen_reserved_instruction(ctx);
-        break;
-    }
-}
-
-static void decode_opc_mxu__pool16(DisasContext *ctx)
-{
-    uint32_t opcode = extract32(ctx->opcode, 18, 3);
-
-    switch (opcode) {
-    case OPC_MXU_S32ALNI:
-        gen_mxu_S32ALNI(ctx);
-        break;
-    case OPC_MXU_S32NOR:
-        gen_mxu_S32NOR(ctx);
-        break;
-    case OPC_MXU_S32AND:
-        gen_mxu_S32AND(ctx);
-        break;
-    case OPC_MXU_S32OR:
-        gen_mxu_S32OR(ctx);
-        break;
-    case OPC_MXU_S32XOR:
-        gen_mxu_S32XOR(ctx);
-        break;
-    default:
-        MIPS_INVAL("decode_opc_mxu");
-        gen_reserved_instruction(ctx);
-        break;
-    }
-}
-
-static void decode_opc_mxu__pool19(DisasContext *ctx)
-{
-    uint32_t opcode = extract32(ctx->opcode, 22, 2);
-
-    switch (opcode) {
-    case OPC_MXU_Q8MUL:
-    case OPC_MXU_Q8MULSU:
-        gen_mxu_q8mul_q8mulsu(ctx);
-        break;
-    default:
-        MIPS_INVAL("decode_opc_mxu");
-        gen_reserved_instruction(ctx);
-        break;
-    }
-}
-
-/*
- * Main MXU decoding function
- */
-bool decode_ase_mxu(DisasContext *ctx, uint32_t insn)
-{
-    uint32_t opcode = extract32(insn, 0, 6);
-
-    if (opcode == OPC_MXU_S32M2I) {
-        gen_mxu_s32m2i(ctx);
-        return true;
-    }
-
-    if (opcode == OPC_MXU_S32I2M) {
-        gen_mxu_s32i2m(ctx);
-        return true;
-    }
-
-    {
-        TCGv t_mxu_cr = tcg_temp_new();
-        TCGLabel *l_exit = gen_new_label();
-
-        gen_load_mxu_cr(t_mxu_cr);
-        tcg_gen_andi_tl(t_mxu_cr, t_mxu_cr, MXU_CR_MXU_EN);
-        tcg_gen_brcondi_tl(TCG_COND_NE, t_mxu_cr, MXU_CR_MXU_EN, l_exit);
-
-        switch (opcode) {
-        case OPC_MXU__POOL00:
-            decode_opc_mxu__pool00(ctx);
-            break;
-        case OPC_MXU_D16MUL:
-            gen_mxu_d16mul(ctx);
-            break;
-        case OPC_MXU_D16MAC:
-            gen_mxu_d16mac(ctx);
-            break;
-        case OPC_MXU__POOL04:
-            decode_opc_mxu__pool04(ctx);
-            break;
-        case OPC_MXU_S8LDD:
-            gen_mxu_s8ldd(ctx);
-            break;
-        case OPC_MXU__POOL16:
-            decode_opc_mxu__pool16(ctx);
-            break;
-        case OPC_MXU__POOL19:
-            decode_opc_mxu__pool19(ctx);
-            break;
-        default:
-            MIPS_INVAL("decode_opc_mxu");
-            gen_reserved_instruction(ctx);
-        }
-
-        gen_set_label(l_exit);
-        tcg_temp_free(t_mxu_cr);
-    }
-
-    return true;
-}
-
-#endif /* !defined(TARGET_MIPS64) */
-
-
 static void decode_opc_special2_legacy(CPUMIPSState *env, DisasContext *ctx)
 {
     int rs, rt, rd;
diff --git a/target/mips/meson.build b/target/mips/meson.build
index 53580633ce0..4a951e522d4 100644
--- a/target/mips/meson.build
+++ b/target/mips/meson.build
@@ -24,6 +24,10 @@ 
   'translate.c',
   'translate_addr_const.c',
 ))
+mips_tcg_ss.add(when: 'TARGET_MIPS64', if_false: files(
+  'mxu_translate.c',
+))
+
 mips_ss.add(when: 'CONFIG_KVM', if_true: files('kvm.c'))
 
 mips_softmmu_ss = ss.source_set()