Message ID | 20241208224844.570491-14-richard.henderson@linaro.org (mailing list archive) |
---|---|
State | New |
Headers | show |
Series | softfloat, hexagon: Cleanup fmaf | expand |
On 12/8/2024 4:48 PM, Richard Henderson wrote: > This massive macro is now only used once. > Expand it for use only by float64. > > Signed-off-by: Richard Henderson <richard.henderson@linaro.org> > --- > target/hexagon/fma_emu.c | 253 +++++++++++++++++++-------------------- > 1 file changed, 125 insertions(+), 128 deletions(-) > > diff --git a/target/hexagon/fma_emu.c b/target/hexagon/fma_emu.c > index 0c7c7f636c..bce3bd4dfb 100644 > --- a/target/hexagon/fma_emu.c > +++ b/target/hexagon/fma_emu.c > @@ -354,136 +354,133 @@ float32 infinite_float32(uint8_t sign) > } > > /* Return a maximum finite value with the requested sign */ > -#define GEN_XF_ROUND(SUFFIX, MANTBITS, INF_EXP, INTERNAL_TYPE) \ > -static SUFFIX accum_round_##SUFFIX(Accum a, float_status * fp_status) \ > -{ \ > - if ((int128_gethi(a.mant) == 0) && (int128_getlo(a.mant) == 0) \ > - && ((a.guard | a.round | a.sticky) == 0)) { \ > - /* result zero */ \ > - switch (fp_status->float_rounding_mode) { \ > - case float_round_down: \ > - return zero_##SUFFIX(1); \ > - default: \ > - return zero_##SUFFIX(0); \ > - } \ > - } \ > - /* Normalize right */ \ > - /* We want MANTBITS bits of mantissa plus the leading one. */ \ > - /* That means that we want MANTBITS+1 bits, or 0x000000000000FF_FFFF */ \ > - /* So we need to normalize right while the high word is non-zero and \ > - * while the low word is nonzero when masked with 0xffe0_0000_0000_0000 */ \ > - while ((int128_gethi(a.mant) != 0) || \ > - ((int128_getlo(a.mant) >> (MANTBITS + 1)) != 0)) { \ > - a = accum_norm_right(a, 1); \ > - } \ > - /* \ > - * OK, now normalize left \ > - * We want to normalize left until we have a leading one in bit 24 \ > - * Theoretically, we only need to shift a maximum of one to the left if we \ > - * shifted out lots of bits from B, or if we had no shift / 1 shift sticky \ > - * should be 0 \ > - */ \ > - while ((int128_getlo(a.mant) & (1ULL << MANTBITS)) == 0) { \ > - a = accum_norm_left(a); \ > - } \ > - /* \ > - * OK, now we might need to denormalize because of potential underflow. \ > - * We need to do this before rounding, and rounding might make us normal \ > - * again \ > - */ \ > - while (a.exp <= 0) { \ > - a = accum_norm_right(a, 1 - a.exp); \ > - /* \ > - * Do we have underflow? \ > - * That's when we get an inexact answer because we ran out of bits \ > - * in a denormal. \ > - */ \ > - if (a.guard || a.round || a.sticky) { \ > - float_raise(float_flag_underflow, fp_status); \ > - } \ > - } \ > - /* OK, we're relatively canonical... now we need to round */ \ > - if (a.guard || a.round || a.sticky) { \ > - float_raise(float_flag_inexact, fp_status); \ > - switch (fp_status->float_rounding_mode) { \ > - case float_round_to_zero: \ > - /* Chop and we're done */ \ > - break; \ > - case float_round_up: \ > - if (a.sign == 0) { \ > - a.mant = int128_add(a.mant, int128_one()); \ > - } \ > - break; \ > - case float_round_down: \ > - if (a.sign != 0) { \ > - a.mant = int128_add(a.mant, int128_one()); \ > - } \ > - break; \ > - default: \ > - if (a.round || a.sticky) { \ > - /* round up if guard is 1, down if guard is zero */ \ > - a.mant = int128_add(a.mant, int128_make64(a.guard)); \ > - } else if (a.guard) { \ > - /* exactly .5, round up if odd */ \ > - a.mant = int128_add(a.mant, int128_and(a.mant, int128_one())); \ > - } \ > - break; \ > - } \ > - } \ > - /* \ > - * OK, now we might have carried all the way up. \ > - * So we might need to shr once \ > - * at least we know that the lsb should be zero if we rounded and \ > - * got a carry out... \ > - */ \ > - if ((int128_getlo(a.mant) >> (MANTBITS + 1)) != 0) { \ > - a = accum_norm_right(a, 1); \ > - } \ > - /* Overflow? */ \ > - if (a.exp >= INF_EXP) { \ > - /* Yep, inf result */ \ > - float_raise(float_flag_overflow, fp_status); \ > - float_raise(float_flag_inexact, fp_status); \ > - switch (fp_status->float_rounding_mode) { \ > - case float_round_to_zero: \ > - return maxfinite_##SUFFIX(a.sign); \ > - case float_round_up: \ > - if (a.sign == 0) { \ > - return infinite_##SUFFIX(a.sign); \ > - } else { \ > - return maxfinite_##SUFFIX(a.sign); \ > - } \ > - case float_round_down: \ > - if (a.sign != 0) { \ > - return infinite_##SUFFIX(a.sign); \ > - } else { \ > - return maxfinite_##SUFFIX(a.sign); \ > - } \ > - default: \ > - return infinite_##SUFFIX(a.sign); \ > - } \ > - } \ > - /* Underflow? */ \ > - if (int128_getlo(a.mant) & (1ULL << MANTBITS)) { \ > - /* Leading one means: No, we're normal. So, we should be done... */ \ > - INTERNAL_TYPE ret; \ > - ret.i = 0; \ > - ret.sign = a.sign; \ > - ret.exp = a.exp; \ > - ret.mant = int128_getlo(a.mant); \ > - return ret.i; \ > - } \ > - assert(a.exp == 1); \ > - INTERNAL_TYPE ret; \ > - ret.i = 0; \ > - ret.sign = a.sign; \ > - ret.exp = 0; \ > - ret.mant = int128_getlo(a.mant); \ > - return ret.i; \ > +static float64 accum_round_float64(Accum a, float_status * fp_status) > +{ > + if ((int128_gethi(a.mant) == 0) && (int128_getlo(a.mant) == 0) > + && ((a.guard | a.round | a.sticky) == 0)) { > + /* result zero */ > + switch (fp_status->float_rounding_mode) { > + case float_round_down: > + return zero_float64(1); > + default: > + return zero_float64(0); > + } > + } > + /* Normalize right */ > + /* We want DF_MANTBITS bits of mantissa plus the leading one. */ > + /* That means that we want DF_MANTBITS+1 bits, or 0x000000000000FF_FFFF */ > + /* So we need to normalize right while the high word is non-zero and > + * while the low word is nonzero when masked with 0xffe0_0000_0000_0000 */ > + while ((int128_gethi(a.mant) != 0) || > + ((int128_getlo(a.mant) >> (DF_MANTBITS + 1)) != 0)) { > + a = accum_norm_right(a, 1); > + } > + /* > + * OK, now normalize left > + * We want to normalize left until we have a leading one in bit 24 > + * Theoretically, we only need to shift a maximum of one to the left if we > + * shifted out lots of bits from B, or if we had no shift / 1 shift sticky > + * should be 0 > + */ > + while ((int128_getlo(a.mant) & (1ULL << DF_MANTBITS)) == 0) { > + a = accum_norm_left(a); > + } > + /* > + * OK, now we might need to denormalize because of potential underflow. > + * We need to do this before rounding, and rounding might make us normal > + * again > + */ > + while (a.exp <= 0) { > + a = accum_norm_right(a, 1 - a.exp); > + /* > + * Do we have underflow? > + * That's when we get an inexact answer because we ran out of bits > + * in a denormal. > + */ > + if (a.guard || a.round || a.sticky) { > + float_raise(float_flag_underflow, fp_status); > + } > + } > + /* OK, we're relatively canonical... now we need to round */ > + if (a.guard || a.round || a.sticky) { > + float_raise(float_flag_inexact, fp_status); > + switch (fp_status->float_rounding_mode) { > + case float_round_to_zero: > + /* Chop and we're done */ > + break; > + case float_round_up: > + if (a.sign == 0) { > + a.mant = int128_add(a.mant, int128_one()); > + } > + break; > + case float_round_down: > + if (a.sign != 0) { > + a.mant = int128_add(a.mant, int128_one()); > + } > + break; > + default: > + if (a.round || a.sticky) { > + /* round up if guard is 1, down if guard is zero */ > + a.mant = int128_add(a.mant, int128_make64(a.guard)); > + } else if (a.guard) { > + /* exactly .5, round up if odd */ > + a.mant = int128_add(a.mant, int128_and(a.mant, int128_one())); > + } > + break; > + } > + } > + /* > + * OK, now we might have carried all the way up. > + * So we might need to shr once > + * at least we know that the lsb should be zero if we rounded and > + * got a carry out... > + */ > + if ((int128_getlo(a.mant) >> (DF_MANTBITS + 1)) != 0) { > + a = accum_norm_right(a, 1); > + } > + /* Overflow? */ > + if (a.exp >= DF_INF_EXP) { > + /* Yep, inf result */ > + float_raise(float_flag_overflow, fp_status); > + float_raise(float_flag_inexact, fp_status); > + switch (fp_status->float_rounding_mode) { > + case float_round_to_zero: > + return maxfinite_float64(a.sign); > + case float_round_up: > + if (a.sign == 0) { > + return infinite_float64(a.sign); > + } else { > + return maxfinite_float64(a.sign); > + } > + case float_round_down: > + if (a.sign != 0) { > + return infinite_float64(a.sign); > + } else { > + return maxfinite_float64(a.sign); > + } > + default: > + return infinite_float64(a.sign); > + } > + } > + /* Underflow? */ > + if (int128_getlo(a.mant) & (1ULL << DF_MANTBITS)) { > + /* Leading one means: No, we're normal. So, we should be done... */ > + Double ret; > + ret.i = 0; > + ret.sign = a.sign; > + ret.exp = a.exp; > + ret.mant = int128_getlo(a.mant); > + return ret.i; > + } > + assert(a.exp == 1); > + Double ret; > + ret.i = 0; > + ret.sign = a.sign; > + ret.exp = 0; > + ret.mant = int128_getlo(a.mant); > + return ret.i; > } > > -GEN_XF_ROUND(float64, DF_MANTBITS, DF_INF_EXP, Double) > - > float64 internal_mpyhh(float64 a, float64 b, > unsigned long long int accumulated, > float_status *fp_status) Reviewed-by: Brian Cain <brian.cain@oss.qualcomm.com>
diff --git a/target/hexagon/fma_emu.c b/target/hexagon/fma_emu.c index 0c7c7f636c..bce3bd4dfb 100644 --- a/target/hexagon/fma_emu.c +++ b/target/hexagon/fma_emu.c @@ -354,136 +354,133 @@ float32 infinite_float32(uint8_t sign) } /* Return a maximum finite value with the requested sign */ -#define GEN_XF_ROUND(SUFFIX, MANTBITS, INF_EXP, INTERNAL_TYPE) \ -static SUFFIX accum_round_##SUFFIX(Accum a, float_status * fp_status) \ -{ \ - if ((int128_gethi(a.mant) == 0) && (int128_getlo(a.mant) == 0) \ - && ((a.guard | a.round | a.sticky) == 0)) { \ - /* result zero */ \ - switch (fp_status->float_rounding_mode) { \ - case float_round_down: \ - return zero_##SUFFIX(1); \ - default: \ - return zero_##SUFFIX(0); \ - } \ - } \ - /* Normalize right */ \ - /* We want MANTBITS bits of mantissa plus the leading one. */ \ - /* That means that we want MANTBITS+1 bits, or 0x000000000000FF_FFFF */ \ - /* So we need to normalize right while the high word is non-zero and \ - * while the low word is nonzero when masked with 0xffe0_0000_0000_0000 */ \ - while ((int128_gethi(a.mant) != 0) || \ - ((int128_getlo(a.mant) >> (MANTBITS + 1)) != 0)) { \ - a = accum_norm_right(a, 1); \ - } \ - /* \ - * OK, now normalize left \ - * We want to normalize left until we have a leading one in bit 24 \ - * Theoretically, we only need to shift a maximum of one to the left if we \ - * shifted out lots of bits from B, or if we had no shift / 1 shift sticky \ - * should be 0 \ - */ \ - while ((int128_getlo(a.mant) & (1ULL << MANTBITS)) == 0) { \ - a = accum_norm_left(a); \ - } \ - /* \ - * OK, now we might need to denormalize because of potential underflow. \ - * We need to do this before rounding, and rounding might make us normal \ - * again \ - */ \ - while (a.exp <= 0) { \ - a = accum_norm_right(a, 1 - a.exp); \ - /* \ - * Do we have underflow? \ - * That's when we get an inexact answer because we ran out of bits \ - * in a denormal. \ - */ \ - if (a.guard || a.round || a.sticky) { \ - float_raise(float_flag_underflow, fp_status); \ - } \ - } \ - /* OK, we're relatively canonical... now we need to round */ \ - if (a.guard || a.round || a.sticky) { \ - float_raise(float_flag_inexact, fp_status); \ - switch (fp_status->float_rounding_mode) { \ - case float_round_to_zero: \ - /* Chop and we're done */ \ - break; \ - case float_round_up: \ - if (a.sign == 0) { \ - a.mant = int128_add(a.mant, int128_one()); \ - } \ - break; \ - case float_round_down: \ - if (a.sign != 0) { \ - a.mant = int128_add(a.mant, int128_one()); \ - } \ - break; \ - default: \ - if (a.round || a.sticky) { \ - /* round up if guard is 1, down if guard is zero */ \ - a.mant = int128_add(a.mant, int128_make64(a.guard)); \ - } else if (a.guard) { \ - /* exactly .5, round up if odd */ \ - a.mant = int128_add(a.mant, int128_and(a.mant, int128_one())); \ - } \ - break; \ - } \ - } \ - /* \ - * OK, now we might have carried all the way up. \ - * So we might need to shr once \ - * at least we know that the lsb should be zero if we rounded and \ - * got a carry out... \ - */ \ - if ((int128_getlo(a.mant) >> (MANTBITS + 1)) != 0) { \ - a = accum_norm_right(a, 1); \ - } \ - /* Overflow? */ \ - if (a.exp >= INF_EXP) { \ - /* Yep, inf result */ \ - float_raise(float_flag_overflow, fp_status); \ - float_raise(float_flag_inexact, fp_status); \ - switch (fp_status->float_rounding_mode) { \ - case float_round_to_zero: \ - return maxfinite_##SUFFIX(a.sign); \ - case float_round_up: \ - if (a.sign == 0) { \ - return infinite_##SUFFIX(a.sign); \ - } else { \ - return maxfinite_##SUFFIX(a.sign); \ - } \ - case float_round_down: \ - if (a.sign != 0) { \ - return infinite_##SUFFIX(a.sign); \ - } else { \ - return maxfinite_##SUFFIX(a.sign); \ - } \ - default: \ - return infinite_##SUFFIX(a.sign); \ - } \ - } \ - /* Underflow? */ \ - if (int128_getlo(a.mant) & (1ULL << MANTBITS)) { \ - /* Leading one means: No, we're normal. So, we should be done... */ \ - INTERNAL_TYPE ret; \ - ret.i = 0; \ - ret.sign = a.sign; \ - ret.exp = a.exp; \ - ret.mant = int128_getlo(a.mant); \ - return ret.i; \ - } \ - assert(a.exp == 1); \ - INTERNAL_TYPE ret; \ - ret.i = 0; \ - ret.sign = a.sign; \ - ret.exp = 0; \ - ret.mant = int128_getlo(a.mant); \ - return ret.i; \ +static float64 accum_round_float64(Accum a, float_status * fp_status) +{ + if ((int128_gethi(a.mant) == 0) && (int128_getlo(a.mant) == 0) + && ((a.guard | a.round | a.sticky) == 0)) { + /* result zero */ + switch (fp_status->float_rounding_mode) { + case float_round_down: + return zero_float64(1); + default: + return zero_float64(0); + } + } + /* Normalize right */ + /* We want DF_MANTBITS bits of mantissa plus the leading one. */ + /* That means that we want DF_MANTBITS+1 bits, or 0x000000000000FF_FFFF */ + /* So we need to normalize right while the high word is non-zero and + * while the low word is nonzero when masked with 0xffe0_0000_0000_0000 */ + while ((int128_gethi(a.mant) != 0) || + ((int128_getlo(a.mant) >> (DF_MANTBITS + 1)) != 0)) { + a = accum_norm_right(a, 1); + } + /* + * OK, now normalize left + * We want to normalize left until we have a leading one in bit 24 + * Theoretically, we only need to shift a maximum of one to the left if we + * shifted out lots of bits from B, or if we had no shift / 1 shift sticky + * should be 0 + */ + while ((int128_getlo(a.mant) & (1ULL << DF_MANTBITS)) == 0) { + a = accum_norm_left(a); + } + /* + * OK, now we might need to denormalize because of potential underflow. + * We need to do this before rounding, and rounding might make us normal + * again + */ + while (a.exp <= 0) { + a = accum_norm_right(a, 1 - a.exp); + /* + * Do we have underflow? + * That's when we get an inexact answer because we ran out of bits + * in a denormal. + */ + if (a.guard || a.round || a.sticky) { + float_raise(float_flag_underflow, fp_status); + } + } + /* OK, we're relatively canonical... now we need to round */ + if (a.guard || a.round || a.sticky) { + float_raise(float_flag_inexact, fp_status); + switch (fp_status->float_rounding_mode) { + case float_round_to_zero: + /* Chop and we're done */ + break; + case float_round_up: + if (a.sign == 0) { + a.mant = int128_add(a.mant, int128_one()); + } + break; + case float_round_down: + if (a.sign != 0) { + a.mant = int128_add(a.mant, int128_one()); + } + break; + default: + if (a.round || a.sticky) { + /* round up if guard is 1, down if guard is zero */ + a.mant = int128_add(a.mant, int128_make64(a.guard)); + } else if (a.guard) { + /* exactly .5, round up if odd */ + a.mant = int128_add(a.mant, int128_and(a.mant, int128_one())); + } + break; + } + } + /* + * OK, now we might have carried all the way up. + * So we might need to shr once + * at least we know that the lsb should be zero if we rounded and + * got a carry out... + */ + if ((int128_getlo(a.mant) >> (DF_MANTBITS + 1)) != 0) { + a = accum_norm_right(a, 1); + } + /* Overflow? */ + if (a.exp >= DF_INF_EXP) { + /* Yep, inf result */ + float_raise(float_flag_overflow, fp_status); + float_raise(float_flag_inexact, fp_status); + switch (fp_status->float_rounding_mode) { + case float_round_to_zero: + return maxfinite_float64(a.sign); + case float_round_up: + if (a.sign == 0) { + return infinite_float64(a.sign); + } else { + return maxfinite_float64(a.sign); + } + case float_round_down: + if (a.sign != 0) { + return infinite_float64(a.sign); + } else { + return maxfinite_float64(a.sign); + } + default: + return infinite_float64(a.sign); + } + } + /* Underflow? */ + if (int128_getlo(a.mant) & (1ULL << DF_MANTBITS)) { + /* Leading one means: No, we're normal. So, we should be done... */ + Double ret; + ret.i = 0; + ret.sign = a.sign; + ret.exp = a.exp; + ret.mant = int128_getlo(a.mant); + return ret.i; + } + assert(a.exp == 1); + Double ret; + ret.i = 0; + ret.sign = a.sign; + ret.exp = 0; + ret.mant = int128_getlo(a.mant); + return ret.i; } -GEN_XF_ROUND(float64, DF_MANTBITS, DF_INF_EXP, Double) - float64 internal_mpyhh(float64 a, float64 b, unsigned long long int accumulated, float_status *fp_status)
This massive macro is now only used once. Expand it for use only by float64. Signed-off-by: Richard Henderson <richard.henderson@linaro.org> --- target/hexagon/fma_emu.c | 253 +++++++++++++++++++-------------------- 1 file changed, 125 insertions(+), 128 deletions(-)