diff mbox series

[v3,4/6] iotests: Add `vvfat` tests

Message ID d6d2dc42a4a044da000f3e3e593c1c79e106740c.1716717181.git.amjadsharafi10@gmail.com (mailing list archive)
State New, archived
Headers show
Series vvfat: Fix write bugs for large files and add iotests | expand

Commit Message

Amjad Alsharafi May 26, 2024, 9:56 a.m. UTC
Added several tests to verify the implementation of the vvfat driver.

We needed a way to interact with it, so created a basic `fat16.py` driver that handled writing correct sectors for us.

Signed-off-by: Amjad Alsharafi <amjadsharafi10@gmail.com>
---
 tests/qemu-iotests/check           |   2 +-
 tests/qemu-iotests/fat16.py        | 507 +++++++++++++++++++++++++++++
 tests/qemu-iotests/tests/vvfat     | 400 +++++++++++++++++++++++
 tests/qemu-iotests/tests/vvfat.out |   5 +
 4 files changed, 913 insertions(+), 1 deletion(-)
 create mode 100644 tests/qemu-iotests/fat16.py
 create mode 100755 tests/qemu-iotests/tests/vvfat
 create mode 100755 tests/qemu-iotests/tests/vvfat.out
diff mbox series

Patch

diff --git a/tests/qemu-iotests/check b/tests/qemu-iotests/check
index 56d88ca423..545f9ec7bd 100755
--- a/tests/qemu-iotests/check
+++ b/tests/qemu-iotests/check
@@ -84,7 +84,7 @@  def make_argparser() -> argparse.ArgumentParser:
     p.set_defaults(imgfmt='raw', imgproto='file')
 
     format_list = ['raw', 'bochs', 'cloop', 'parallels', 'qcow', 'qcow2',
-                   'qed', 'vdi', 'vpc', 'vhdx', 'vmdk', 'luks', 'dmg']
+                   'qed', 'vdi', 'vpc', 'vhdx', 'vmdk', 'luks', 'dmg', 'vvfat']
     g_fmt = p.add_argument_group(
         '  image format options',
         'The following options set the IMGFMT environment variable. '
diff --git a/tests/qemu-iotests/fat16.py b/tests/qemu-iotests/fat16.py
new file mode 100644
index 0000000000..6ac5508d8d
--- /dev/null
+++ b/tests/qemu-iotests/fat16.py
@@ -0,0 +1,507 @@ 
+# A simple FAT16 driver that is used to test the `vvfat` driver in QEMU.
+#
+# Copyright (C) 2024 Amjad Alsharafi <amjadsharafi10@gmail.com>
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program.  If not, see <http://www.gnu.org/licenses/>.
+
+from typing import List
+
+SECTOR_SIZE = 512
+DIRENTRY_SIZE = 32
+
+
+class MBR:
+    def __init__(self, data: bytes):
+        assert len(data) == 512
+        self.partition_table = []
+        for i in range(4):
+            partition = data[446 + i * 16 : 446 + (i + 1) * 16]
+            self.partition_table.append(
+                {
+                    "status": partition[0],
+                    "start_head": partition[1],
+                    "start_sector": partition[2] & 0x3F,
+                    "start_cylinder": ((partition[2] & 0xC0) << 2) | partition[3],
+                    "type": partition[4],
+                    "end_head": partition[5],
+                    "end_sector": partition[6] & 0x3F,
+                    "end_cylinder": ((partition[6] & 0xC0) << 2) | partition[7],
+                    "start_lba": int.from_bytes(partition[8:12], "little"),
+                    "size": int.from_bytes(partition[12:16], "little"),
+                }
+            )
+
+    def __str__(self):
+        return "\n".join(
+            [f"{i}: {partition}" for i, partition in enumerate(self.partition_table)]
+        )
+
+
+class FatBootSector:
+    def __init__(self, data: bytes):
+        assert len(data) == 512
+        self.bytes_per_sector = int.from_bytes(data[11:13], "little")
+        self.sectors_per_cluster = data[13]
+        self.reserved_sectors = int.from_bytes(data[14:16], "little")
+        self.fat_count = data[16]
+        self.root_entries = int.from_bytes(data[17:19], "little")
+        self.media_descriptor = data[21]
+        self.fat_size = int.from_bytes(data[22:24], "little")
+        self.sectors_per_fat = int.from_bytes(data[22:24], "little")
+        self.sectors_per_track = int.from_bytes(data[24:26], "little")
+        self.heads = int.from_bytes(data[26:28], "little")
+        self.hidden_sectors = int.from_bytes(data[28:32], "little")
+        self.total_sectors = int.from_bytes(data[32:36], "little")
+        self.drive_number = data[36]
+        self.volume_id = int.from_bytes(data[39:43], "little")
+        self.volume_label = data[43:54].decode("ascii").strip()
+        self.fs_type = data[54:62].decode("ascii").strip()
+
+    def root_dir_start(self):
+        """
+        Calculate the start sector of the root directory.
+        """
+        return self.reserved_sectors + self.fat_count * self.sectors_per_fat
+
+    def root_dir_size(self):
+        """
+        Calculate the size of the root directory in sectors.
+        """
+        return (
+            self.root_entries * DIRENTRY_SIZE + self.bytes_per_sector - 1
+        ) // self.bytes_per_sector
+
+    def data_sector_start(self):
+        """
+        Calculate the start sector of the data region.
+        """
+        return self.root_dir_start() + self.root_dir_size()
+
+    def first_sector_of_cluster(self, cluster: int):
+        """
+        Calculate the first sector of the given cluster.
+        """
+        return self.data_sector_start() + (cluster - 2) * self.sectors_per_cluster
+
+    def cluster_bytes(self):
+        """
+        Calculate the number of bytes in a cluster.
+        """
+        return self.bytes_per_sector * self.sectors_per_cluster
+
+    def __str__(self):
+        return (
+            f"Bytes per sector: {self.bytes_per_sector}\n"
+            f"Sectors per cluster: {self.sectors_per_cluster}\n"
+            f"Reserved sectors: {self.reserved_sectors}\n"
+            f"FAT count: {self.fat_count}\n"
+            f"Root entries: {self.root_entries}\n"
+            f"Total sectors: {self.total_sectors}\n"
+            f"Media descriptor: {self.media_descriptor}\n"
+            f"Sectors per FAT: {self.sectors_per_fat}\n"
+            f"Sectors per track: {self.sectors_per_track}\n"
+            f"Heads: {self.heads}\n"
+            f"Hidden sectors: {self.hidden_sectors}\n"
+            f"Drive number: {self.drive_number}\n"
+            f"Volume ID: {self.volume_id}\n"
+            f"Volume label: {self.volume_label}\n"
+            f"FS type: {self.fs_type}\n"
+        )
+
+
+class FatDirectoryEntry:
+    def __init__(self, data: bytes, sector: int, offset: int):
+        self.name = data[0:8].decode("ascii").strip()
+        self.ext = data[8:11].decode("ascii").strip()
+        self.attributes = data[11]
+        self.reserved = data[12]
+        self.create_time_tenth = data[13]
+        self.create_time = int.from_bytes(data[14:16], "little")
+        self.create_date = int.from_bytes(data[16:18], "little")
+        self.last_access_date = int.from_bytes(data[18:20], "little")
+        high_cluster = int.from_bytes(data[20:22], "little")
+        self.last_mod_time = int.from_bytes(data[22:24], "little")
+        self.last_mod_date = int.from_bytes(data[24:26], "little")
+        low_cluster = int.from_bytes(data[26:28], "little")
+        self.cluster = (high_cluster << 16) | low_cluster
+        self.size_bytes = int.from_bytes(data[28:32], "little")
+
+        # extra (to help write back to disk)
+        self.sector = sector
+        self.offset = offset
+
+    def as_bytes(self) -> bytes:
+        return (
+            self.name.ljust(8, " ").encode("ascii")
+            + self.ext.ljust(3, " ").encode("ascii")
+            + self.attributes.to_bytes(1, "little")
+            + self.reserved.to_bytes(1, "little")
+            + self.create_time_tenth.to_bytes(1, "little")
+            + self.create_time.to_bytes(2, "little")
+            + self.create_date.to_bytes(2, "little")
+            + self.last_access_date.to_bytes(2, "little")
+            + (self.cluster >> 16).to_bytes(2, "little")
+            + self.last_mod_time.to_bytes(2, "little")
+            + self.last_mod_date.to_bytes(2, "little")
+            + (self.cluster & 0xFFFF).to_bytes(2, "little")
+            + self.size_bytes.to_bytes(4, "little")
+        )
+
+    def whole_name(self):
+        if self.ext:
+            return f"{self.name}.{self.ext}"
+        else:
+            return self.name
+
+    def __str__(self):
+        return (
+            f"Name: {self.name}\n"
+            f"Ext: {self.ext}\n"
+            f"Attributes: {self.attributes}\n"
+            f"Reserved: {self.reserved}\n"
+            f"Create time tenth: {self.create_time_tenth}\n"
+            f"Create time: {self.create_time}\n"
+            f"Create date: {self.create_date}\n"
+            f"Last access date: {self.last_access_date}\n"
+            f"Last mod time: {self.last_mod_time}\n"
+            f"Last mod date: {self.last_mod_date}\n"
+            f"Cluster: {self.cluster}\n"
+            f"Size: {self.size_bytes}\n"
+        )
+
+    def __repr__(self):
+        # convert to dict
+        return str(vars(self))
+
+
+class Fat16:
+    def __init__(
+        self,
+        start_sector: int,
+        size: int,
+        sector_reader: callable,
+        sector_writer: callable,
+    ):
+        self.start_sector = start_sector
+        self.size_in_sectors = size
+        self.sector_reader = sector_reader
+        self.sector_writer = sector_writer
+
+        self.boot_sector = FatBootSector(self.sector_reader(start_sector))
+
+        fat_size_in_sectors = self.boot_sector.fat_size * self.boot_sector.fat_count
+        self.fats = self.read_sectors(
+            self.boot_sector.reserved_sectors, fat_size_in_sectors
+        )
+        self.fats_dirty_sectors = set()
+
+    def read_sectors(self, start_sector: int, num_sectors: int) -> bytes:
+        return self.sector_reader(start_sector + self.start_sector, num_sectors)
+
+    def write_sectors(self, start_sector: int, data: bytes):
+        return self.sector_writer(start_sector + self.start_sector, data)
+
+    def directory_from_bytes(
+        self, data: bytes, start_sector: int
+    ) -> List[FatDirectoryEntry]:
+        """
+        Convert `bytes` into a list of `FatDirectoryEntry` objects.
+        Will ignore long file names.
+        Will stop when it encounters a 0x00 byte.
+        """
+
+        entries = []
+        for i in range(0, len(data), DIRENTRY_SIZE):
+            entry = data[i : i + DIRENTRY_SIZE]
+
+            current_sector = start_sector + (i // SECTOR_SIZE)
+            current_offset = i % SECTOR_SIZE
+
+            if entry[0] == 0:
+                break
+            elif entry[0] == 0xE5:
+                # Deleted file
+                continue
+
+            if entry[11] & 0xF == 0xF:
+                # Long file name
+                continue
+
+            entries.append(FatDirectoryEntry(entry, current_sector, current_offset))
+        return entries
+
+    def read_root_directory(self) -> List[FatDirectoryEntry]:
+        root_dir = self.read_sectors(
+            self.boot_sector.root_dir_start(), self.boot_sector.root_dir_size()
+        )
+        return self.directory_from_bytes(root_dir, self.boot_sector.root_dir_start())
+
+    def read_fat_entry(self, cluster: int) -> int:
+        """
+        Read the FAT entry for the given cluster.
+        """
+        fat_offset = cluster * 2  # FAT16
+        return int.from_bytes(self.fats[fat_offset : fat_offset + 2], "little")
+
+    def write_fat_entry(self, cluster: int, value: int):
+        """
+        Write the FAT entry for the given cluster.
+        """
+        fat_offset = cluster * 2
+        self.fats = (
+            self.fats[:fat_offset]
+            + value.to_bytes(2, "little")
+            + self.fats[fat_offset + 2 :]
+        )
+        self.fats_dirty_sectors.add(fat_offset // SECTOR_SIZE)
+    
+    def flush_fats(self):
+        """
+        Write the FATs back to the disk.
+        """
+        for sector in self.fats_dirty_sectors:
+            data = self.fats[sector * SECTOR_SIZE : (sector + 1) * SECTOR_SIZE]
+            sector = self.boot_sector.reserved_sectors + sector
+            self.write_sectors(sector, data)
+        self.fats_dirty_sectors = set()
+
+    def next_cluster(self, cluster: int) -> int | None:
+        """
+        Get the next cluster in the chain.
+        If its `None`, then its the last cluster.
+        The function will crash if the next cluster is `FREE` (unexpected) or invalid entry.
+        """
+        fat_entry = self.read_fat_entry(cluster)
+        if fat_entry == 0:
+            raise Exception("Unexpected: FREE cluster")
+        elif fat_entry == 1:
+            raise Exception("Unexpected: RESERVED cluster")
+        elif fat_entry >= 0xFFF8:
+            return None
+        elif fat_entry >= 0xFFF7:
+            raise Exception("Invalid FAT entry")
+        else:
+            return fat_entry
+    
+    def next_free_cluster(self) -> int:
+        """
+        Find the next free cluster.
+        """
+        # simple linear search
+        for i in range(2, 0xFFFF):
+            if self.read_fat_entry(i) == 0:
+                return i
+        raise Exception("No free clusters")
+
+    def read_cluster(self, cluster: int) -> bytes:
+        """
+        Read the cluster at the given cluster.
+        """
+        return self.read_sectors(
+            self.boot_sector.first_sector_of_cluster(cluster),
+            self.boot_sector.sectors_per_cluster,
+        )
+
+    def write_cluster(self, cluster: int, data: bytes):
+        """
+        Write the cluster at the given cluster.
+        """
+        assert len(data) == self.boot_sector.cluster_bytes()
+        return self.write_sectors(
+            self.boot_sector.first_sector_of_cluster(cluster),
+            data,
+        )
+
+    def read_directory(self, cluster: int) -> List[FatDirectoryEntry]:
+        """
+        Read the directory at the given cluster.
+        """
+        entries = []
+        while cluster is not None:
+            data = self.read_cluster(cluster)
+            entries.extend(
+                self.directory_from_bytes(
+                    data, self.boot_sector.first_sector_of_cluster(cluster)
+                )
+            )
+            cluster = self.next_cluster(cluster)
+        return entries
+
+    def update_direntry(self, entry: FatDirectoryEntry):
+        """
+        Write the directory entry back to the disk.
+        """
+        sector = self.read_sectors(entry.sector, 1)
+        sector = (
+            sector[: entry.offset]
+            + entry.as_bytes()
+            + sector[entry.offset + DIRENTRY_SIZE :]
+        )
+        self.write_sectors(entry.sector, sector)
+
+    def find_direntry(self, path: str) -> FatDirectoryEntry | None:
+        """
+        Find the directory entry for the given path.
+        """
+        assert path[0] == "/", "Path must start with /"
+
+        path = path[1:]  # remove the leading /
+        parts = path.split("/")
+        directory = self.read_root_directory()
+
+        current_entry = None
+
+        for i, part in enumerate(parts):
+            is_last = i == len(parts) - 1
+
+            for entry in directory:
+                if entry.whole_name() == part:
+                    current_entry = entry
+                    break
+            if current_entry is None:
+                return None
+
+            if is_last:
+                return current_entry
+            else:
+                if current_entry.attributes & 0x10 == 0:
+                    raise Exception(f"{current_entry.whole_name()} is not a directory")
+                else:
+                    directory = self.read_directory(current_entry.cluster)
+
+    def read_file(self, entry: FatDirectoryEntry) -> bytes:
+        """
+        Read the content of the file at the given path.
+        """
+        if entry is None:
+            return None
+        if entry.attributes & 0x10 != 0:
+            raise Exception(f"{entry.whole_name()} is a directory")
+
+        data = b""
+        cluster = entry.cluster
+        while cluster is not None and len(data) <= entry.size_bytes:
+            data += self.read_cluster(cluster)
+            cluster = self.next_cluster(cluster)
+        return data[: entry.size_bytes]
+
+    def truncate_file(self, entry: FatDirectoryEntry, new_size: int):
+        """
+        Truncate the file at the given path to the new size.
+        """
+        if entry is None:
+            return Exception("entry is None")
+        if entry.attributes & 0x10 != 0:
+            raise Exception(f"{entry.whole_name()} is a directory")
+
+        def clusters_from_size(size: int):
+            return (size + self.boot_sector.cluster_bytes() - 1) // self.boot_sector.cluster_bytes()
+
+        
+        # First, allocate new FATs if we need to
+        required_clusters = clusters_from_size(new_size)
+        current_clusters = clusters_from_size(entry.size_bytes)
+
+        affected_clusters = set()
+
+        # Keep at least one cluster, easier to manage this way
+        if required_clusters == 0:
+            required_clusters = 1
+        if current_clusters == 0:
+            current_clusters = 1
+
+        if required_clusters > current_clusters:
+            # Allocate new clusters
+            cluster = entry.cluster
+            to_add = required_clusters
+            for _ in range(current_clusters - 1):
+                to_add -= 1
+                cluster = self.next_cluster(cluster)
+            assert required_clusters > 0, "No new clusters to allocate"
+            assert cluster is not None, "Cluster is None"
+            assert self.next_cluster(cluster) is None, "Cluster is not the last cluster"
+
+            # Allocate new clusters
+            for _ in range(to_add - 1):
+                new_cluster = self.next_free_cluster()
+                self.write_fat_entry(cluster, new_cluster)
+                self.write_fat_entry(new_cluster, 0xFFFF)
+                cluster = new_cluster
+            
+        elif required_clusters < current_clusters:
+            # Truncate the file
+            cluster = entry.cluster
+            for _ in range(required_clusters - 1):
+                cluster = self.next_cluster(cluster)
+            assert cluster is not None, "Cluster is None"
+
+            next_cluster = self.next_cluster(cluster)
+            # mark last as EOF
+            self.write_fat_entry(cluster, 0xFFFF)
+            # free the rest
+            while next_cluster is not None:
+                cluster = next_cluster
+                next_cluster = self.next_cluster(next_cluster)
+                self.write_fat_entry(cluster, 0)
+
+        self.flush_fats()
+
+        # verify number of clusters
+        cluster = entry.cluster
+        count = 0
+        while cluster is not None:
+            count += 1
+            affected_clusters.add(cluster)
+            cluster = self.next_cluster(cluster)
+        assert count == required_clusters, f"Expected {required_clusters} clusters, got {count}"
+
+        # update the size
+        entry.size_bytes = new_size
+        self.update_direntry(entry)
+
+        # trigger every affected cluster
+        for cluster in affected_clusters:
+            first_sector = self.boot_sector.first_sector_of_cluster(cluster)
+            first_sector_data = self.read_sectors(first_sector, 1)
+            self.write_sectors(first_sector, first_sector_data)
+
+    def write_file(self, entry: FatDirectoryEntry, data: bytes):
+        """
+        Write the content of the file at the given path.
+        """
+        if entry is None:
+            return Exception("entry is None")
+        if entry.attributes & 0x10 != 0:
+            raise Exception(f"{entry.whole_name()} is a directory")
+
+        data_len = len(data)
+
+        self.truncate_file(entry, data_len)
+
+        cluster = entry.cluster
+        while cluster is not None:
+            data_to_write = data[: self.boot_sector.cluster_bytes()]
+            last_data = False
+            if len(data_to_write) < self.boot_sector.cluster_bytes():
+                last_data = True
+                old_data = self.read_cluster(cluster)
+                data_to_write += old_data[len(data_to_write) :]
+
+            self.write_cluster(cluster, data_to_write)
+            data = data[self.boot_sector.cluster_bytes() :]
+            if len(data) == 0:
+                break
+            cluster = self.next_cluster(cluster)
+
+        assert len(data) == 0, "Data was not written completely, clusters missing"
diff --git a/tests/qemu-iotests/tests/vvfat b/tests/qemu-iotests/tests/vvfat
new file mode 100755
index 0000000000..e0e23d1ab8
--- /dev/null
+++ b/tests/qemu-iotests/tests/vvfat
@@ -0,0 +1,400 @@ 
+#!/usr/bin/env python3
+# group: rw vvfat
+#
+# Test vvfat driver implementation
+# Here, we use a simple FAT16 implementation and check the behavior of the vvfat driver.
+#
+# Copyright (C) 2024 Amjad Alsharafi <amjadsharafi10@gmail.com>
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program.  If not, see <http://www.gnu.org/licenses/>.
+
+import os, shutil
+import iotests
+from iotests import imgfmt, QMPTestCase
+from fat16 import MBR, Fat16, DIRENTRY_SIZE
+
+filesystem = os.path.join(iotests.test_dir, "filesystem")
+
+nbd_sock = iotests.file_path("nbd.sock", base_dir=iotests.sock_dir)
+nbd_uri = "nbd+unix:///disk?socket=" + nbd_sock
+
+SECTOR_SIZE = 512
+
+
+class TestVVFatDriver(QMPTestCase):
+    def setUp(self) -> None:
+        if os.path.exists(filesystem):
+            if os.path.isdir(filesystem):
+                shutil.rmtree(filesystem)
+            else:
+                print(f"Error: {filesystem} exists and is not a directory")
+                exit(1)
+        os.mkdir(filesystem)
+
+        # Add some text files to the filesystem
+        for i in range(10):
+            with open(os.path.join(filesystem, f"file{i}.txt"), "w") as f:
+                f.write(f"Hello, world! {i}\n")
+
+        # Add 2 large files, above the cluster size (8KB)
+        with open(os.path.join(filesystem, "large1.txt"), "wb") as f:
+            # write 'A' * 1KB, 'B' * 1KB, 'C' * 1KB, ...
+            for i in range(8 * 2):  # two clusters
+                f.write(bytes([0x41 + i] * 1024))
+
+        with open(os.path.join(filesystem, "large2.txt"), "wb") as f:
+            # write 'A' * 1KB, 'B' * 1KB, 'C' * 1KB, ...
+            for i in range(8 * 3):  # 3 clusters
+                f.write(bytes([0x41 + i] * 1024))
+
+        self.vm = iotests.VM()
+
+        self.vm.add_blockdev(
+            self.vm.qmp_to_opts(
+                {
+                    "driver": imgfmt,
+                    "node-name": "disk",
+                    "rw": "true",
+                    "fat-type": "16",
+                    "dir": filesystem,
+                }
+            )
+        )
+
+        self.vm.launch()
+
+        self.vm.qmp_log("block-dirty-bitmap-add", **{"node": "disk", "name": "bitmap0"})
+
+        # attach nbd server
+        self.vm.qmp_log(
+            "nbd-server-start",
+            **{"addr": {"type": "unix", "data": {"path": nbd_sock}}},
+            filters=[],
+        )
+
+        self.vm.qmp_log(
+            "nbd-server-add",
+            **{"device": "disk", "writable": True, "bitmap": "bitmap0"},
+        )
+
+        self.qio = iotests.QemuIoInteractive("-f", "raw", nbd_uri)
+
+    def tearDown(self) -> None:
+        self.qio.close()
+        self.vm.shutdown()
+        # print(self.vm.get_log())
+        shutil.rmtree(filesystem)
+
+    def read_sectors(self, sector: int, num: int = 1) -> bytes:
+        """
+        Read `num` sectors starting from `sector` from the `disk`.
+        This uses `QemuIoInteractive` to read the sectors into `stdout` and then parse the output.
+        """
+        self.assertGreater(num, 0)
+        # The output contains the content of the sector in hex dump format
+        # We need to extract the content from it
+        output = self.qio.cmd(f"read -v {sector * SECTOR_SIZE} {num * SECTOR_SIZE}")
+        # Each row is 16 bytes long, and we are writing `num` sectors
+        rows = num * SECTOR_SIZE // 16
+        output_rows = output.split("\n")[:rows]
+
+        hex_content = "".join(
+            [(row.split(": ")[1]).split("  ")[0] for row in output_rows]
+        )
+        bytes_content = bytes.fromhex(hex_content)
+
+        self.assertEqual(len(bytes_content), num * SECTOR_SIZE)
+
+        return bytes_content
+
+    def write_sectors(self, sector: int, data: bytes):
+        """
+        Write `data` to the `disk` starting from `sector`.
+        This uses `QemuIoInteractive` to write the data into the disk.
+        """
+
+        self.assertGreater(len(data), 0)
+        self.assertEqual(len(data) % SECTOR_SIZE, 0)
+
+        temp_file = os.path.join(iotests.test_dir, "temp.bin")
+        with open(temp_file, "wb") as f:
+            f.write(data)
+
+        self.qio.cmd(f"write -s {temp_file} {sector * SECTOR_SIZE} {len(data)}")
+
+        os.remove(temp_file)
+
+    def init_fat16(self):
+        mbr = MBR(self.read_sectors(0))
+        return Fat16(
+            mbr.partition_table[0]["start_lba"],
+            mbr.partition_table[0]["size"],
+            self.read_sectors,
+            self.write_sectors,
+        )
+
+    # Tests
+
+    def test_fat_filesystem(self):
+        """
+        Test that vvfat produce a valid FAT16 and MBR sectors
+        """
+        mbr = MBR(self.read_sectors(0))
+
+        self.assertEqual(mbr.partition_table[0]["status"], 0x80)
+        self.assertEqual(mbr.partition_table[0]["type"], 6)
+
+        fat16 = Fat16(
+            mbr.partition_table[0]["start_lba"],
+            mbr.partition_table[0]["size"],
+            self.read_sectors,
+            self.write_sectors,
+        )
+        self.assertEqual(fat16.boot_sector.bytes_per_sector, 512)
+        self.assertEqual(fat16.boot_sector.volume_label, "QEMU VVFAT")
+
+    def test_read_root_directory(self):
+        """
+        Test the content of the root directory
+        """
+        fat16 = self.init_fat16()
+
+        root_dir = fat16.read_root_directory()
+
+        self.assertEqual(len(root_dir), 13)  # 12 + 1 special file
+
+        files = {
+            "QEMU VVF.AT": 0,  # special empty file
+            "FILE0.TXT": 16,
+            "FILE1.TXT": 16,
+            "FILE2.TXT": 16,
+            "FILE3.TXT": 16,
+            "FILE4.TXT": 16,
+            "FILE5.TXT": 16,
+            "FILE6.TXT": 16,
+            "FILE7.TXT": 16,
+            "FILE8.TXT": 16,
+            "FILE9.TXT": 16,
+            "LARGE1.TXT": 0x2000 * 2,
+            "LARGE2.TXT": 0x2000 * 3,
+        }
+
+        for entry in root_dir:
+            self.assertIn(entry.whole_name(), files)
+            self.assertEqual(entry.size_bytes, files[entry.whole_name()])
+
+    def test_direntry_as_bytes(self):
+        """
+        Test if we can convert Direntry back to bytes, so that we can write it back to the disk safely.
+        """
+        fat16 = self.init_fat16()
+
+        root_dir = fat16.read_root_directory()
+        first_entry_bytes = fat16.read_sectors(fat16.boot_sector.root_dir_start(), 1)
+        # The first entry won't be deleted, so we can compare it with the first entry in the root directory
+        self.assertEqual(root_dir[0].as_bytes(), first_entry_bytes[:DIRENTRY_SIZE])
+
+    def test_read_files(self):
+        """
+        Test reading the content of the files
+        """
+        fat16 = self.init_fat16()
+
+        for i in range(10):
+            file = fat16.find_direntry(f"/FILE{i}.TXT")
+            self.assertIsNotNone(file)
+            self.assertEqual(
+                fat16.read_file(file), f"Hello, world! {i}\n".encode("ascii")
+            )
+
+        # test large files
+        large1 = fat16.find_direntry("/LARGE1.TXT")
+        with open(os.path.join(filesystem, "large1.txt"), "rb") as f:
+            self.assertEqual(fat16.read_file(large1), f.read())
+
+        large2 = fat16.find_direntry("/LARGE2.TXT")
+        self.assertIsNotNone(large2)
+        with open(os.path.join(filesystem, "large2.txt"), "rb") as f:
+            self.assertEqual(fat16.read_file(large2), f.read())
+
+    def test_write_file_same_content_direct(self):
+        """
+        Similar to `test_write_file_in_same_content`, but we write the file directly clusters
+        and thus we don't go through the modification of direntry.
+        """
+        fat16 = self.init_fat16()
+
+        file = fat16.find_direntry("/FILE0.TXT")
+        self.assertIsNotNone(file)
+
+        data = fat16.read_cluster(file.cluster)
+        fat16.write_cluster(file.cluster, data)
+
+        with open(os.path.join(filesystem, "file0.txt"), "rb") as f:
+            self.assertEqual(fat16.read_file(file), f.read())
+
+    def test_write_file_in_same_content(self):
+        """
+        Test writing the same content to the file back to it
+        """
+        fat16 = self.init_fat16()
+
+        file = fat16.find_direntry("/FILE0.TXT")
+        self.assertIsNotNone(file)
+
+        self.assertEqual(fat16.read_file(file), b"Hello, world! 0\n")
+
+        fat16.write_file(file, b"Hello, world! 0\n")
+
+        self.assertEqual(fat16.read_file(file), b"Hello, world! 0\n")
+
+        with open(os.path.join(filesystem, "file0.txt"), "rb") as f:
+            self.assertEqual(f.read(), b"Hello, world! 0\n")
+
+    def test_modify_content_same_clusters(self):
+        """
+        Test modifying the content of the file without changing the number of clusters
+        """
+        fat16 = self.init_fat16()
+
+        file = fat16.find_direntry("/FILE0.TXT")
+        self.assertIsNotNone(file)
+
+        new_content = b"Hello, world! Modified\n"
+        self.assertEqual(fat16.read_file(file), b"Hello, world! 0\n")
+
+        fat16.write_file(file, new_content)
+
+        self.assertEqual(fat16.read_file(file), new_content)
+        with open(os.path.join(filesystem, "file0.txt"), "rb") as f:
+            self.assertEqual(f.read(), new_content)
+
+    def test_truncate_file_same_clusters_less(self):
+        """
+        Test truncating the file without changing number of clusters
+        Test decreasing the file size
+        """
+        fat16 = self.init_fat16()
+
+        file = fat16.find_direntry("/FILE0.TXT")
+        self.assertIsNotNone(file)
+
+        self.assertEqual(fat16.read_file(file), b"Hello, world! 0\n")
+
+        fat16.truncate_file(file, 5)
+
+        new_content = fat16.read_file(file)
+
+        self.assertEqual(new_content, b"Hello")
+
+        with open(os.path.join(filesystem, "file0.txt"), "rb") as f:
+            self.assertEqual(f.read(), new_content)
+
+    def test_truncate_file_same_clusters_more(self):
+        """
+        Test truncating the file without changing number of clusters
+        Test increase the file size
+        """
+        fat16 = self.init_fat16()
+
+        file = fat16.find_direntry("/FILE0.TXT")
+        self.assertIsNotNone(file)
+
+        self.assertEqual(fat16.read_file(file), b"Hello, world! 0\n")
+
+        fat16.truncate_file(file, 20)
+
+        new_content = fat16.read_file(file)
+
+        # random pattern will be appended to the file, and its not always the same
+        self.assertEqual(new_content[:16], b"Hello, world! 0\n")
+        self.assertEqual(len(new_content), 20)
+
+        with open(os.path.join(filesystem, "file0.txt"), "rb") as f:
+            self.assertEqual(f.read(), new_content)
+    
+    def test_write_large_file(self):
+        """
+        Test writing a large file
+        """
+        fat16 = self.init_fat16()
+
+        file = fat16.find_direntry("/LARGE1.TXT")
+        self.assertIsNotNone(file)
+
+        # The content of LARGE1 is A * 1KB, B * 1KB, C * 1KB, ..., P * 1KB
+        # Lets change it to be Z * 1KB, Y * 1KB, X * 1KB, ..., K * 1KB
+        # without changing the number of clusters or filesize
+        new_content = b"".join([bytes([0x5A - i] * 1024) for i in range(16)])
+
+        fat16.write_file(file, new_content)
+
+        with open(os.path.join(filesystem, "large1.txt"), "rb") as f:
+            self.assertEqual(f.read(), new_content)
+    
+    def test_truncate_file_change_clusters_less(self):
+        """
+        Test truncating a file by reducing the number of clusters
+        """
+        fat16 = self.init_fat16()
+
+        file = fat16.find_direntry("/LARGE1.TXT")
+        self.assertIsNotNone(file)
+
+        fat16.truncate_file(file, 1)
+
+        self.assertEqual(fat16.read_file(file), b"A")
+
+        with open(os.path.join(filesystem, "large1.txt"), "rb") as f:
+            self.assertEqual(f.read(), b"A")
+
+    
+    def test_write_file_change_clusters_less(self):
+        """
+        Test truncating a file by reducing the number of clusters
+        """
+        fat16 = self.init_fat16()
+
+        file = fat16.find_direntry("/LARGE2.TXT")
+        self.assertIsNotNone(file)
+
+        new_content = b"Hello, world! This was a large file\n"
+        new_content = b"Z" * 8 * 1024 * 2
+
+        fat16.write_file(file, new_content)
+
+        with open(os.path.join(filesystem, "large2.txt"), "rb") as f:
+            self.assertEqual(f.read(), new_content)
+    
+    def test_write_file_change_clusters_more(self):
+        """
+        Test truncating a file by increasing the number of clusters
+        """
+        fat16 = self.init_fat16()
+
+        file = fat16.find_direntry("/LARGE2.TXT")
+        self.assertIsNotNone(file)
+
+        new_content = b"Z" * 8 * 1024 * 4
+
+        fat16.write_file(file, new_content)
+
+        with open(os.path.join(filesystem, "large2.txt"), "rb") as f:
+            self.assertEqual(f.read(), new_content)
+    
+
+
+if __name__ == "__main__":
+    # This is a specific test for vvfat driver
+    iotests.main(supported_fmts=["vvfat"], supported_protocols=["file"])
diff --git a/tests/qemu-iotests/tests/vvfat.out b/tests/qemu-iotests/tests/vvfat.out
new file mode 100755
index 0000000000..fa16b5ccef
--- /dev/null
+++ b/tests/qemu-iotests/tests/vvfat.out
@@ -0,0 +1,5 @@ 
+.............
+----------------------------------------------------------------------
+Ran 13 tests
+
+OK