diff mbox series

[v37,07/17] target/avr: Add instruction translation - Bit and Bit-test Instructions

Message ID 20191127175257.23480-8-mrolnik@gmail.com (mailing list archive)
State New, archived
Headers show
Series QEMU AVR 8 bit cores | expand

Commit Message

Michael Rolnik Nov. 27, 2019, 5:52 p.m. UTC
This includes:
    - LSR, ROR
    - ASR
    - SWAP
    - SBI, CBI
    - BST, BLD
    - BSET, BCLR

Signed-off-by: Michael Rolnik <mrolnik@gmail.com>
---
 target/avr/translate.c | 1123 ++++++++++++++++++++++++++++++++++++++++
 1 file changed, 1123 insertions(+)

Comments

Aleksandar Markovic Dec. 5, 2019, 12:28 p.m. UTC | #1
On Wednesday, November 27, 2019, Michael Rolnik <mrolnik@gmail.com> wrote:

> This includes:
>     - LSR, ROR
>     - ASR
>     - SWAP
>     - SBI, CBI
>     - BST, BLD
>     - BSET, BCLR
>
> Signed-off-by: Michael Rolnik <mrolnik@gmail.com>
> ---
>  target/avr/translate.c | 1123 ++++++++++++++++++++++++++++++++++++++++
>  1 file changed, 1123 insertions(+)
>
>
Hello, Michael

I said I am on vacation, and truly I am, but, fir the next version if the
series, I would like to ask you to extract "data transfer" instruction (as
defined in avr docs, MOV LD ST etc) from this patch, and create a new patch
for them - so that the patches follow the division from docs.

Yours,
Aleksandar





> diff --git a/target/avr/translate.c b/target/avr/translate.c
> index 48a42c984a..dc6a1af2fc 100644
> --- a/target/avr/translate.c
> +++ b/target/avr/translate.c
> @@ -317,6 +317,15 @@ static void gen_goto_tb(DisasContext *ctx, int n,
> target_ulong dest)
>  }
>
>
> +static void gen_rshift_ZNVSf(TCGv R)
> +{
> +    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
> +    tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
> +    tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf);
> +    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
> +}
> +
> +
>  /*
>   *  Adds two registers without the C Flag and places the result in the
>   *  destination register Rd.
> @@ -1508,3 +1517,1117 @@ static bool trans_BRBS(DisasContext *ctx,
> arg_BRBS *a)
>      return true;
>  }
>
> +
> +/*
> + *  This instruction makes a copy of one register into another. The source
> + *  register Rr is left unchanged, while the destination register Rd is
> loaded
> + *  with a copy of Rr.
> + */
> +static bool trans_MOV(DisasContext *ctx, arg_MOV *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv Rr = cpu_r[a->rr];
> +
> +    tcg_gen_mov_tl(Rd, Rr);
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  This instruction makes a copy of one register pair into another
> register
> + *  pair. The source register pair Rr+1:Rr is left unchanged, while the
> + *  destination register pair Rd+1:Rd is loaded with a copy of Rr +
> 1:Rr.  This
> + *  instruction is not available in all devices. Refer to the device
> specific
> + *  instruction set summary.
> + */
> +static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a)
> +{
> +    if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) {
> +        return true;
> +    }
> +
> +    TCGv RdL = cpu_r[a->rd];
> +    TCGv RdH = cpu_r[a->rd + 1];
> +    TCGv RrL = cpu_r[a->rr];
> +    TCGv RrH = cpu_r[a->rr + 1];
> +
> +    tcg_gen_mov_tl(RdH, RrH);
> +    tcg_gen_mov_tl(RdL, RrL);
> +
> +    return true;
> +}
> +
> +
> +/*
> + * Loads an 8 bit constant directly to register 16 to 31.
> + */
> +static bool trans_LDI(DisasContext *ctx, arg_LDI *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    int imm = a->imm;
> +
> +    tcg_gen_movi_tl(Rd, imm);
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  Loads one byte from the data space to a register. For parts with SRAM,
> + *  the data space consists of the Register File, I/O memory and internal
> SRAM
> + *  (and external SRAM if applicable). For parts without SRAM, the data
> space
> + *  consists of the register file only. The EEPROM has a separate address
> space.
> + *  A 16-bit address must be supplied. Memory access is limited to the
> current
> + *  data segment of 64KB. The LDS instruction uses the RAMPD Register to
> access
> + *  memory above 64KB. To access another data segment in devices with
> more than
> + *  64KB data space, the RAMPD in register in the I/O area has to be
> changed.
> + *  This instruction is not available in all devices. Refer to the device
> + *  specific instruction set summary.
> + */
> +static bool trans_LDS(DisasContext *ctx, arg_LDS *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv addr = tcg_temp_new_i32();
> +    TCGv H = cpu_rampD;
> +    a->imm = next_word(ctx);
> +
> +    tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
> +    tcg_gen_shli_tl(addr, addr, 16);
> +    tcg_gen_ori_tl(addr, addr, a->imm);
> +
> +    gen_data_load(ctx, Rd, addr);
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  Loads one byte indirect from the data space to a register. For parts
> + *  with SRAM, the data space consists of the Register File, I/O memory
> and
> + *  internal SRAM (and external SRAM if applicable). For parts without
> SRAM, the
> + *  data space consists of the Register File only. In some parts the Flash
> + *  Memory has been mapped to the data space and can be read using this
> command.
> + *  The EEPROM has a separate address space.  The data location is
> pointed to by
> + *  the X (16 bits) Pointer Register in the Register File. Memory access
> is
> + *  limited to the current data segment of 64KB. To access another data
> segment
> + *  in devices with more than 64KB data space, the RAMPX in register in
> the I/O
> + *  area has to be changed.  The X-pointer Register can either be left
> unchanged
> + *  by the operation, or it can be post-incremented or predecremented.
> These
> + *  features are especially suited for accessing arrays, tables, and Stack
> + *  Pointer usage of the X-pointer Register. Note that only the low byte
> of the
> + *  X-pointer is updated in devices with no more than 256 bytes data
> space. For
> + *  such devices, the high byte of the pointer is not used by this
> instruction
> + *  and can be used for other purposes. The RAMPX Register in the I/O
> area is
> + *  updated in parts with more than 64KB data space or more than 64KB
> Program
> + *  memory, and the increment/decrement is added to the entire 24-bit
> address on
> + *  such devices.  Not all variants of this instruction is available in
> all
> + *  devices. Refer to the device specific instruction set summary.  In the
> + *  Reduced Core tinyAVR the LD instruction can be used to achieve the
> same
> + *  operation as LPM since the program memory is mapped to the data memory
> + *  space.
> + */
> +static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv addr = gen_get_xaddr();
> +
> +    gen_data_load(ctx, Rd, addr);
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv addr = gen_get_xaddr();
> +
> +    gen_data_load(ctx, Rd, addr);
> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
> +
> +    gen_set_xaddr(addr);
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv addr = gen_get_xaddr();
> +
> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
> +    gen_data_load(ctx, Rd, addr);
> +    gen_set_xaddr(addr);
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +static bool trans_STX1(DisasContext *ctx, arg_STX1 *a)
> +{
> +    TCGv Rd = cpu_r[a->rr];
> +    TCGv addr = gen_get_xaddr();
> +
> +    gen_data_store(ctx, Rd, addr);
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +static bool trans_STX2(DisasContext *ctx, arg_STX2 *a)
> +{
> +    TCGv Rd = cpu_r[a->rr];
> +    TCGv addr = gen_get_xaddr();
> +
> +    gen_data_store(ctx, Rd, addr);
> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
> +    gen_set_xaddr(addr);
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +static bool trans_STX3(DisasContext *ctx, arg_STX3 *a)
> +{
> +    TCGv Rd = cpu_r[a->rr];
> +    TCGv addr = gen_get_xaddr();
> +
> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
> +    gen_data_store(ctx, Rd, addr);
> +    gen_set_xaddr(addr);
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  Loads one byte indirect with or without displacement from the data
> space
> + *  to a register. For parts with SRAM, the data space consists of the
> Register
> + *  File, I/O memory and internal SRAM (and external SRAM if applicable).
> For
> + *  parts without SRAM, the data space consists of the Register File
> only. In
> + *  some parts the Flash Memory has been mapped to the data space and can
> be
> + *  read using this command. The EEPROM has a separate address space.
> The data
> + *  location is pointed to by the Y (16 bits) Pointer Register in the
> Register
> + *  File. Memory access is limited to the current data segment of 64KB. To
> + *  access another data segment in devices with more than 64KB data
> space, the
> + *  RAMPY in register in the I/O area has to be changed.  The Y-pointer
> Register
> + *  can either be left unchanged by the operation, or it can be
> post-incremented
> + *  or predecremented.  These features are especially suited for accessing
> + *  arrays, tables, and Stack Pointer usage of the Y-pointer Register.
> Note that
> + *  only the low byte of the Y-pointer is updated in devices with no more
> than
> + *  256 bytes data space. For such devices, the high byte of the pointer
> is not
> + *  used by this instruction and can be used for other purposes. The RAMPY
> + *  Register in the I/O area is updated in parts with more than 64KB data
> space
> + *  or more than 64KB Program memory, and the increment/decrement/
> displacement
> + *  is added to the entire 24-bit address on such devices.  Not all
> variants of
> + *  this instruction is available in all devices. Refer to the device
> specific
> + *  instruction set summary.  In the Reduced Core tinyAVR the LD
> instruction can
> + *  be used to achieve the same operation as LPM since the program memory
> is
> + *  mapped to the data memory space.
> + */
> +static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv addr = gen_get_yaddr();
> +
> +    gen_data_load(ctx, Rd, addr);
> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
> +
> +    gen_set_yaddr(addr);
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv addr = gen_get_yaddr();
> +
> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
> +    gen_data_load(ctx, Rd, addr);
> +    gen_set_yaddr(addr);
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv addr = gen_get_yaddr();
> +
> +    tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
> +    gen_data_load(ctx, Rd, addr);
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +static bool trans_STY2(DisasContext *ctx, arg_STY2 *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv addr = gen_get_yaddr();
> +
> +    gen_data_store(ctx, Rd, addr);
> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
> +    gen_set_yaddr(addr);
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +static bool trans_STY3(DisasContext *ctx, arg_STY3 *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv addr = gen_get_yaddr();
> +
> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
> +    gen_data_store(ctx, Rd, addr);
> +    gen_set_yaddr(addr);
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +static bool trans_STDY(DisasContext *ctx, arg_STDY *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv addr = gen_get_yaddr();
> +
> +    tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
> +    gen_data_store(ctx, Rd, addr);
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  Loads one byte indirect with or without displacement from the data
> space
> + *  to a register. For parts with SRAM, the data space consists of the
> Register
> + *  File, I/O memory and internal SRAM (and external SRAM if applicable).
> For
> + *  parts without SRAM, the data space consists of the Register File
> only. In
> + *  some parts the Flash Memory has been mapped to the data space and can
> be
> + *  read using this command. The EEPROM has a separate address space.
> The data
> + *  location is pointed to by the Z (16 bits) Pointer Register in the
> Register
> + *  File. Memory access is limited to the current data segment of 64KB. To
> + *  access another data segment in devices with more than 64KB data
> space, the
> + *  RAMPZ in register in the I/O area has to be changed.  The Z-pointer
> Register
> + *  can either be left unchanged by the operation, or it can be
> post-incremented
> + *  or predecremented.  These features are especially suited for Stack
> Pointer
> + *  usage of the Z-pointer Register, however because the Z-pointer
> Register can
> + *  be used for indirect subroutine calls, indirect jumps and table
> lookup, it
> + *  is often more convenient to use the X or Y-pointer as a dedicated
> Stack
> + *  Pointer. Note that only the low byte of the Z-pointer is updated in
> devices
> + *  with no more than 256 bytes data space. For such devices, the high
> byte of
> + *  the pointer is not used by this instruction and can be used for other
> + *  purposes. The RAMPZ Register in the I/O area is updated in parts with
> more
> + *  than 64KB data space or more than 64KB Program memory, and the
> + *  increment/decrement/displacement is added to the entire 24-bit
> address on
> + *  such devices.  Not all variants of this instruction is available in
> all
> + *  devices. Refer to the device specific instruction set summary.  In the
> + *  Reduced Core tinyAVR the LD instruction can be used to achieve the
> same
> + *  operation as LPM since the program memory is mapped to the data memory
> + *  space.  For using the Z-pointer for table lookup in Program memory
> see the
> + *  LPM and ELPM instructions.
> + */
> +static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv addr = gen_get_zaddr();
> +
> +    gen_data_load(ctx, Rd, addr);
> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
> +
> +    gen_set_zaddr(addr);
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv addr = gen_get_zaddr();
> +
> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
> +    gen_data_load(ctx, Rd, addr);
> +
> +    gen_set_zaddr(addr);
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv addr = gen_get_zaddr();
> +
> +    tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
> +    gen_data_load(ctx, Rd, addr);
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv addr = gen_get_zaddr();
> +
> +    gen_data_store(ctx, Rd, addr);
> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
> +
> +    gen_set_zaddr(addr);
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv addr = gen_get_zaddr();
> +
> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
> +    gen_data_store(ctx, Rd, addr);
> +
> +    gen_set_zaddr(addr);
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv addr = gen_get_zaddr();
> +
> +    tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
> +    gen_data_store(ctx, Rd, addr);
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +
> +/*
> + *  Stores one byte from a Register to the data space. For parts with
> SRAM,
> + *  the data space consists of the Register File, I/O memory and internal
> SRAM
> + *  (and external SRAM if applicable). For parts without SRAM, the data
> space
> + *  consists of the Register File only. The EEPROM has a separate address
> space.
> + *  A 16-bit address must be supplied. Memory access is limited to the
> current
> + *  data segment of 64KB. The STS instruction uses the RAMPD Register to
> access
> + *  memory above 64KB. To access another data segment in devices with
> more than
> + *  64KB data space, the RAMPD in register in the I/O area has to be
> changed.
> + *  This instruction is not available in all devices. Refer to the device
> + *  specific instruction set summary.
> + */
> +static bool trans_STS(DisasContext *ctx, arg_STS *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv addr = tcg_temp_new_i32();
> +    TCGv H = cpu_rampD;
> +    a->imm = next_word(ctx);
> +
> +    tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
> +    tcg_gen_shli_tl(addr, addr, 16);
> +    tcg_gen_ori_tl(addr, addr, a->imm);
> +
> +    gen_data_store(ctx, Rd, addr);
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  Loads one byte pointed to by the Z-register into the destination
> + *  register Rd. This instruction features a 100% space effective constant
> + *  initialization or constant data fetch. The Program memory is
> organized in
> + *  16-bit words while the Z-pointer is a byte address. Thus, the least
> + *  significant bit of the Z-pointer selects either low byte (ZLSB = 0)
> or high
> + *  byte (ZLSB = 1). This instruction can address the first 64KB (32K
> words) of
> + *  Program memory. The Zpointer Register can either be left unchanged by
> the
> + *  operation, or it can be incremented. The incrementation does not
> apply to
> + *  the RAMPZ Register.  Devices with Self-Programming capability can use
> the
> + *  LPM instruction to read the Fuse and Lock bit values.  Refer to the
> device
> + *  documentation for a detailed description.  The LPM instruction is not
> + *  available in all devices. Refer to the device specific instruction set
> + *  summary
> + */
> +static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a)
> +{
> +    if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
> +        return true;
> +    }
> +
> +    TCGv Rd = cpu_r[0];
> +    TCGv addr = tcg_temp_new_i32();
> +    TCGv H = cpu_r[31];
> +    TCGv L = cpu_r[30];
> +
> +    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
> +    tcg_gen_or_tl(addr, addr, L);
> +
> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a)
> +{
> +    if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
> +        return true;
> +    }
> +
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv addr = tcg_temp_new_i32();
> +    TCGv H = cpu_r[31];
> +    TCGv L = cpu_r[30];
> +
> +    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
> +    tcg_gen_or_tl(addr, addr, L);
> +
> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a)
> +{
> +    if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) {
> +        return true;
> +    }
> +
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv addr = tcg_temp_new_i32();
> +    TCGv H = cpu_r[31];
> +    TCGv L = cpu_r[30];
> +
> +    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
> +    tcg_gen_or_tl(addr, addr, L);
> +
> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
> +
> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
> +
> +    tcg_gen_andi_tl(L, addr, 0xff);
> +
> +    tcg_gen_shri_tl(addr, addr, 8);
> +    tcg_gen_andi_tl(H, addr, 0xff);
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  Loads one byte pointed to by the Z-register and the RAMPZ Register in
> + *  the I/O space, and places this byte in the destination register Rd.
> This
> + *  instruction features a 100% space effective constant initialization or
> + *  constant data fetch. The Program memory is organized in 16-bit words
> while
> + *  the Z-pointer is a byte address. Thus, the least significant bit of
> the
> + *  Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1).
> This
> + *  instruction can address the entire Program memory space. The Z-pointer
> + *  Register can either be left unchanged by the operation, or it can be
> + *  incremented. The incrementation applies to the entire 24-bit
> concatenation
> + *  of the RAMPZ and Z-pointer Registers.  Devices with Self-Programming
> + *  capability can use the ELPM instruction to read the Fuse and Lock bit
> value.
> + *  Refer to the device documentation for a detailed description.  This
> + *  instruction is not available in all devices. Refer to the device
> specific
> + *  instruction set summary.
> + */
> +static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a)
> +{
> +    if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
> +        return true;
> +    }
> +
> +    TCGv Rd = cpu_r[0];
> +    TCGv addr = gen_get_zaddr();
> +
> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a)
> +{
> +    if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
> +        return true;
> +    }
> +
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv addr = gen_get_zaddr();
> +
> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a)
> +{
> +    if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) {
> +        return true;
> +    }
> +
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv addr = gen_get_zaddr();
> +
> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
> +
> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
> +
> +    gen_set_zaddr(addr);
> +
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  SPM can be used to erase a page in the Program memory, to write a page
> + *  in the Program memory (that is already erased), and to set Boot
> Loader Lock
> + *  bits. In some devices, the Program memory can be written one word at
> a time,
> + *  in other devices an entire page can be programmed simultaneously
> after first
> + *  filling a temporary page buffer. In all cases, the Program memory
> must be
> + *  erased one page at a time. When erasing the Program memory, the RAMPZ
> and
> + *  Z-register are used as page address. When writing the Program memory,
> the
> + *  RAMPZ and Z-register are used as page or word address, and the R1:R0
> + *  register pair is used as data(1). When setting the Boot Loader Lock
> bits,
> + *  the R1:R0 register pair is used as data. Refer to the device
> documentation
> + *  for detailed description of SPM usage. This instruction can address
> the
> + *  entire Program memory.  The SPM instruction is not available in all
> devices.
> + *  Refer to the device specific instruction set summary.  Note: 1. R1
> + *  determines the instruction high byte, and R0 determines the
> instruction low
> + *  byte.
> + */
> +static bool trans_SPM(DisasContext *ctx, arg_SPM *a)
> +{
> +    /* TODO */
> +    if (!avr_have_feature(ctx, AVR_FEATURE_SPM)) {
> +        return true;
> +    }
> +
> +    return true;
> +}
> +
> +
> +static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a)
> +{
> +    /* TODO */
> +    if (!avr_have_feature(ctx, AVR_FEATURE_SPMX)) {
> +        return true;
> +    }
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  Loads data from the I/O Space (Ports, Timers, Configuration Registers,
> + *  etc.) into register Rd in the Register File.
> + */
> +static bool trans_IN(DisasContext *ctx, arg_IN *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv port = tcg_const_i32(a->imm);
> +
> +    gen_helper_inb(Rd, cpu_env, port);
> +
> +    tcg_temp_free_i32(port);
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  Stores data from register Rr in the Register File to I/O Space (Ports,
> + *  Timers, Configuration Registers, etc.).
> + */
> +static bool trans_OUT(DisasContext *ctx, arg_OUT *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv port = tcg_const_i32(a->imm);
> +
> +    gen_helper_outb(cpu_env, port, Rd);
> +
> +    tcg_temp_free_i32(port);
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  This instruction stores the contents of register Rr on the STACK. The
> + *  Stack Pointer is post-decremented by 1 after the PUSH.  This
> instruction is
> + *  not available in all devices. Refer to the device specific
> instruction set
> + *  summary.
> + */
> +static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +
> +    gen_data_store(ctx, Rd, cpu_sp);
> +    tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  This instruction loads register Rd with a byte from the STACK. The
> Stack
> + *  Pointer is pre-incremented by 1 before the POP.  This instruction is
> not
> + *  available in all devices. Refer to the device specific instruction set
> + *  summary.
> + */
> +static bool trans_POP(DisasContext *ctx, arg_POP *a)
> +{
> +    /*
> +     * Using a temp to work around some strange behaviour:
> +     * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
> +     * gen_data_load(ctx, Rd, cpu_sp);
> +     * seems to cause the add to happen twice.
> +     * This doesn't happen if either the add or the load is removed.
> +     */
> +    TCGv t1 = tcg_temp_new_i32();
> +    TCGv Rd = cpu_r[a->rd];
> +
> +    tcg_gen_addi_tl(t1, cpu_sp, 1);
> +    gen_data_load(ctx, Rd, t1);
> +    tcg_gen_mov_tl(cpu_sp, t1);
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  Exchanges one byte indirect between register and data space.  The data
> + *  location is pointed to by the Z (16 bits) Pointer Register in the
> Register
> + *  File. Memory access is limited to the current data segment of 64KB. To
> + *  access another data segment in devices with more than 64KB data
> space, the
> + *  RAMPZ in register in the I/O area has to be changed.  The Z-pointer
> Register
> + *  is left unchanged by the operation. This instruction is especially
> suited
> + *  for writing/reading status bits stored in SRAM.
> + */
> +static bool trans_XCH(DisasContext *ctx, arg_XCH *a)
> +{
> +    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
> +        return true;
> +    }
> +
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv t0 = tcg_temp_new_i32();
> +    TCGv addr = gen_get_zaddr();
> +
> +    gen_data_load(ctx, t0, addr);
> +    gen_data_store(ctx, Rd, addr);
> +    tcg_gen_mov_tl(Rd, t0);
> +
> +    tcg_temp_free_i32(t0);
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  Load one byte indirect from data space to register and set bits in
> data
> + *  space specified by the register. The instruction can only be used
> towards
> + *  internal SRAM.  The data location is pointed to by the Z (16 bits)
> Pointer
> + *  Register in the Register File. Memory access is limited to the
> current data
> + *  segment of 64KB. To access another data segment in devices with more
> than
> + *  64KB data space, the RAMPZ in register in the I/O area has to be
> changed.
> + *  The Z-pointer Register is left unchanged by the operation. This
> instruction
> + *  is especially suited for setting status bits stored in SRAM.
> + */
> +static bool trans_LAS(DisasContext *ctx, arg_LAS *a)
> +{
> +    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
> +        return true;
> +    }
> +
> +    TCGv Rr = cpu_r[a->rd];
> +    TCGv addr = gen_get_zaddr();
> +    TCGv t0 = tcg_temp_new_i32();
> +    TCGv t1 = tcg_temp_new_i32();
> +
> +    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
> +    tcg_gen_or_tl(t1, t0, Rr);
> +
> +    tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
> +    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
> +
> +    tcg_temp_free_i32(t1);
> +    tcg_temp_free_i32(t0);
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  Load one byte indirect from data space to register and stores and
> clear
> + *  the bits in data space specified by the register. The instruction can
> + *  only be used towards internal SRAM.  The data location is pointed to
> by
> + *  the Z (16 bits) Pointer Register in the Register File. Memory access
> is
> + *  limited to the current data segment of 64KB. To access another data
> + *  segment in devices with more than 64KB data space, the RAMPZ in
> register
> + *  in the I/O area has to be changed.  The Z-pointer Register is left
> + *  unchanged by the operation. This instruction is especially suited for
> + *  clearing status bits stored in SRAM.
> + */
> +static bool trans_LAC(DisasContext *ctx, arg_LAC *a)
> +{
> +    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
> +        return true;
> +    }
> +
> +    TCGv Rr = cpu_r[a->rd];
> +    TCGv addr = gen_get_zaddr();
> +    TCGv t0 = tcg_temp_new_i32();
> +    TCGv t1 = tcg_temp_new_i32();
> +
> +    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
> +        /* t1 = t0 & (0xff - Rr) = t0 and ~Rr */
> +    tcg_gen_andc_tl(t1, t0, Rr);
> +
> +    tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
> +    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
> +
> +    tcg_temp_free_i32(t1);
> +    tcg_temp_free_i32(t0);
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  Load one byte indirect from data space to register and toggles bits in
> + *  the data space specified by the register.  The instruction can only
> be used
> + *  towards SRAM.  The data location is pointed to by the Z (16 bits)
> Pointer
> + *  Register in the Register File. Memory access is limited to the
> current data
> + *  segment of 64KB. To access another data segment in devices with more
> than
> + *  64KB data space, the RAMPZ in register in the I/O area has to be
> changed.
> + *  The Z-pointer Register is left unchanged by the operation. This
> instruction
> + *  is especially suited for changing status bits stored in SRAM.
> + */
> +static bool trans_LAT(DisasContext *ctx, arg_LAT *a)
> +{
> +    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
> +        return true;
> +    }
> +
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv addr = gen_get_zaddr();
> +    TCGv t0 = tcg_temp_new_i32();
> +    TCGv t1 = tcg_temp_new_i32();
> +
> +    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
> +    tcg_gen_xor_tl(t1, t0, Rd);
> +
> +    tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */
> +    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
> +
> +    tcg_temp_free_i32(t1);
> +    tcg_temp_free_i32(t0);
> +    tcg_temp_free_i32(addr);
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0
> is
> + *  loaded into the C Flag of the SREG. This operation effectively
> divides an
> + *  unsigned value by two. The C Flag can be used to round the result.
> + */
> +static bool trans_LSR(DisasContext *ctx, arg_LSR *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +
> +    tcg_gen_andi_tl(cpu_Cf, Rd, 1);
> +
> +    tcg_gen_shri_tl(Rd, Rd, 1);
> +
> +    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, Rd, 0); /* Zf = Rd == 0 */
> +    tcg_gen_movi_tl(cpu_Nf, 0);
> +    tcg_gen_mov_tl(cpu_Vf, cpu_Cf);
> +    tcg_gen_mov_tl(cpu_Sf, cpu_Vf);
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  Shifts all bits in Rd one place to the right. The C Flag is shifted
> into
> + *  bit 7 of Rd. Bit 0 is shifted into the C Flag.  This operation,
> combined
> + *  with ASR, effectively divides multi-byte signed values by two.
> Combined with
> + *  LSR it effectively divides multi-byte unsigned values by two. The
> Carry Flag
> + *  can be used to round the result.
> + */
> +static bool trans_ROR(DisasContext *ctx, arg_ROR *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv t0 = tcg_temp_new_i32();
> +
> +    tcg_gen_shli_tl(t0, cpu_Cf, 7);
> +    tcg_gen_andi_tl(cpu_Cf, Rd, 1);
> +    tcg_gen_shri_tl(Rd, Rd, 1);
> +    tcg_gen_or_tl(Rd, Rd, t0);
> +
> +    gen_rshift_ZNVSf(Rd);
> +
> +    tcg_temp_free_i32(t0);
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  Shifts all bits in Rd one place to the right. Bit 7 is held constant.
> Bit 0
> + *  is loaded into the C Flag of the SREG. This operation effectively
> divides a
> + *  signed value by two without changing its sign. The Carry Flag can be
> used to
> + *  round the result.
> + */
> +static bool trans_ASR(DisasContext *ctx, arg_ASR *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv t0 = tcg_temp_new_i32();
> +
> +    /* Cf */
> +    tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */
> +
> +    /* op */
> +    tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */
> +    tcg_gen_shri_tl(Rd, Rd, 1);
> +    tcg_gen_or_tl(Rd, Rd, t0);
> +
> +    gen_rshift_ZNVSf(Rd);
> +
> +    tcg_temp_free_i32(t0);
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  Swaps high and low nibbles in a register.
> + */
> +static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv t0 = tcg_temp_new_i32();
> +    TCGv t1 = tcg_temp_new_i32();
> +
> +    tcg_gen_andi_tl(t0, Rd, 0x0f);
> +    tcg_gen_shli_tl(t0, t0, 4);
> +    tcg_gen_andi_tl(t1, Rd, 0xf0);
> +    tcg_gen_shri_tl(t1, t1, 4);
> +    tcg_gen_or_tl(Rd, t0, t1);
> +
> +    tcg_temp_free_i32(t1);
> +    tcg_temp_free_i32(t0);
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  Sets a specified bit in an I/O Register. This instruction operates on
> + *  the lower 32 I/O Registers -- addresses 0-31.
> + */
> +static bool trans_SBI(DisasContext *ctx, arg_SBI *a)
> +{
> +    TCGv data = tcg_temp_new_i32();
> +    TCGv port = tcg_const_i32(a->reg);
> +
> +    gen_helper_inb(data, cpu_env, port);
> +    tcg_gen_ori_tl(data, data, 1 << a->bit);
> +    gen_helper_outb(cpu_env, port, data);
> +
> +    tcg_temp_free_i32(port);
> +    tcg_temp_free_i32(data);
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  Clears a specified bit in an I/O Register. This instruction operates
> on
> + *  the lower 32 I/O Registers -- addresses 0-31.
> + */
> +static bool trans_CBI(DisasContext *ctx, arg_CBI *a)
> +{
> +    TCGv data = tcg_temp_new_i32();
> +    TCGv port = tcg_const_i32(a->reg);
> +
> +    gen_helper_inb(data, cpu_env, port);
> +    tcg_gen_andi_tl(data, data, ~(1 << a->bit));
> +    gen_helper_outb(cpu_env, port, data);
> +
> +    tcg_temp_free_i32(data);
> +    tcg_temp_free_i32(port);
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  Stores bit b from Rd to the T Flag in SREG (Status Register).
> + */
> +static bool trans_BST(DisasContext *ctx, arg_BST *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +
> +    tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit);
> +    tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit);
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  Copies the T Flag in the SREG (Status Register) to bit b in register
> Rd.
> + */
> +static bool trans_BLD(DisasContext *ctx, arg_BLD *a)
> +{
> +    TCGv Rd = cpu_r[a->rd];
> +    TCGv t1 = tcg_temp_new_i32();
> +
> +    tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */
> +    tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */
> +    tcg_gen_or_tl(Rd, Rd, t1);
> +
> +    tcg_temp_free_i32(t1);
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  Sets a single Flag or bit in SREG.
> + */
> +static bool trans_BSET(DisasContext *ctx, arg_BSET *a)
> +{
> +    switch (a->bit) {
> +    case 0x00:
> +        tcg_gen_movi_tl(cpu_Cf, 0x01);
> +        break;
> +    case 0x01:
> +        tcg_gen_movi_tl(cpu_Zf, 0x01);
> +        break;
> +    case 0x02:
> +        tcg_gen_movi_tl(cpu_Nf, 0x01);
> +        break;
> +    case 0x03:
> +        tcg_gen_movi_tl(cpu_Vf, 0x01);
> +        break;
> +    case 0x04:
> +        tcg_gen_movi_tl(cpu_Sf, 0x01);
> +        break;
> +    case 0x05:
> +        tcg_gen_movi_tl(cpu_Hf, 0x01);
> +        break;
> +    case 0x06:
> +        tcg_gen_movi_tl(cpu_Tf, 0x01);
> +        break;
> +    case 0x07:
> +        tcg_gen_movi_tl(cpu_If, 0x01);
> +        break;
> +    }
> +
> +    return true;
> +}
> +
> +
> +/*
> + *  Clears a single Flag in SREG.
> + */
> +static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a)
> +{
> +    switch (a->bit) {
> +    case 0x00:
> +        tcg_gen_movi_tl(cpu_Cf, 0x00);
> +        break;
> +    case 0x01:
> +        tcg_gen_movi_tl(cpu_Zf, 0x00);
> +        break;
> +    case 0x02:
> +        tcg_gen_movi_tl(cpu_Nf, 0x00);
> +        break;
> +    case 0x03:
> +        tcg_gen_movi_tl(cpu_Vf, 0x00);
> +        break;
> +    case 0x04:
> +        tcg_gen_movi_tl(cpu_Sf, 0x00);
> +        break;
> +    case 0x05:
> +        tcg_gen_movi_tl(cpu_Hf, 0x00);
> +        break;
> +    case 0x06:
> +        tcg_gen_movi_tl(cpu_Tf, 0x00);
> +        break;
> +    case 0x07:
> +        tcg_gen_movi_tl(cpu_If, 0x00);
> +        break;
> +    }
> +
> +    return true;
> +}
> --
> 2.17.2 (Apple Git-113)
>
>
Michael Rolnik Dec. 5, 2019, 1:17 p.m. UTC | #2
I think they do follow the division in the docs.

On Thu, Dec 5, 2019 at 2:28 PM Aleksandar Markovic <
aleksandar.m.mail@gmail.com> wrote:

>
>
> On Wednesday, November 27, 2019, Michael Rolnik <mrolnik@gmail.com> wrote:
>
>> This includes:
>>     - LSR, ROR
>>     - ASR
>>     - SWAP
>>     - SBI, CBI
>>     - BST, BLD
>>     - BSET, BCLR
>>
>> Signed-off-by: Michael Rolnik <mrolnik@gmail.com>
>> ---
>>  target/avr/translate.c | 1123 ++++++++++++++++++++++++++++++++++++++++
>>  1 file changed, 1123 insertions(+)
>>
>>
> Hello, Michael
>
> I said I am on vacation, and truly I am, but, fir the next version if the
> series, I would like to ask you to extract "data transfer" instruction (as
> defined in avr docs, MOV LD ST etc) from this patch, and create a new patch
> for them - so that the patches follow the division from docs.
>
> Yours,
> Aleksandar
>
>
>
>
>
>> diff --git a/target/avr/translate.c b/target/avr/translate.c
>> index 48a42c984a..dc6a1af2fc 100644
>> --- a/target/avr/translate.c
>> +++ b/target/avr/translate.c
>> @@ -317,6 +317,15 @@ static void gen_goto_tb(DisasContext *ctx, int n,
>> target_ulong dest)
>>  }
>>
>>
>> +static void gen_rshift_ZNVSf(TCGv R)
>> +{
>> +    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
>> +    tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
>> +    tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf);
>> +    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
>> +}
>> +
>> +
>>  /*
>>   *  Adds two registers without the C Flag and places the result in the
>>   *  destination register Rd.
>> @@ -1508,3 +1517,1117 @@ static bool trans_BRBS(DisasContext *ctx,
>> arg_BRBS *a)
>>      return true;
>>  }
>>
>> +
>> +/*
>> + *  This instruction makes a copy of one register into another. The
>> source
>> + *  register Rr is left unchanged, while the destination register Rd is
>> loaded
>> + *  with a copy of Rr.
>> + */
>> +static bool trans_MOV(DisasContext *ctx, arg_MOV *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv Rr = cpu_r[a->rr];
>> +
>> +    tcg_gen_mov_tl(Rd, Rr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  This instruction makes a copy of one register pair into another
>> register
>> + *  pair. The source register pair Rr+1:Rr is left unchanged, while the
>> + *  destination register pair Rd+1:Rd is loaded with a copy of Rr +
>> 1:Rr.  This
>> + *  instruction is not available in all devices. Refer to the device
>> specific
>> + *  instruction set summary.
>> + */
>> +static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv RdL = cpu_r[a->rd];
>> +    TCGv RdH = cpu_r[a->rd + 1];
>> +    TCGv RrL = cpu_r[a->rr];
>> +    TCGv RrH = cpu_r[a->rr + 1];
>> +
>> +    tcg_gen_mov_tl(RdH, RrH);
>> +    tcg_gen_mov_tl(RdL, RrL);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + * Loads an 8 bit constant directly to register 16 to 31.
>> + */
>> +static bool trans_LDI(DisasContext *ctx, arg_LDI *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    int imm = a->imm;
>> +
>> +    tcg_gen_movi_tl(Rd, imm);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  Loads one byte from the data space to a register. For parts with
>> SRAM,
>> + *  the data space consists of the Register File, I/O memory and
>> internal SRAM
>> + *  (and external SRAM if applicable). For parts without SRAM, the data
>> space
>> + *  consists of the register file only. The EEPROM has a separate
>> address space.
>> + *  A 16-bit address must be supplied. Memory access is limited to the
>> current
>> + *  data segment of 64KB. The LDS instruction uses the RAMPD Register to
>> access
>> + *  memory above 64KB. To access another data segment in devices with
>> more than
>> + *  64KB data space, the RAMPD in register in the I/O area has to be
>> changed.
>> + *  This instruction is not available in all devices. Refer to the device
>> + *  specific instruction set summary.
>> + */
>> +static bool trans_LDS(DisasContext *ctx, arg_LDS *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = tcg_temp_new_i32();
>> +    TCGv H = cpu_rampD;
>> +    a->imm = next_word(ctx);
>> +
>> +    tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
>> +    tcg_gen_shli_tl(addr, addr, 16);
>> +    tcg_gen_ori_tl(addr, addr, a->imm);
>> +
>> +    gen_data_load(ctx, Rd, addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  Loads one byte indirect from the data space to a register. For parts
>> + *  with SRAM, the data space consists of the Register File, I/O memory
>> and
>> + *  internal SRAM (and external SRAM if applicable). For parts without
>> SRAM, the
>> + *  data space consists of the Register File only. In some parts the
>> Flash
>> + *  Memory has been mapped to the data space and can be read using this
>> command.
>> + *  The EEPROM has a separate address space.  The data location is
>> pointed to by
>> + *  the X (16 bits) Pointer Register in the Register File. Memory access
>> is
>> + *  limited to the current data segment of 64KB. To access another data
>> segment
>> + *  in devices with more than 64KB data space, the RAMPX in register in
>> the I/O
>> + *  area has to be changed.  The X-pointer Register can either be left
>> unchanged
>> + *  by the operation, or it can be post-incremented or predecremented.
>> These
>> + *  features are especially suited for accessing arrays, tables, and
>> Stack
>> + *  Pointer usage of the X-pointer Register. Note that only the low byte
>> of the
>> + *  X-pointer is updated in devices with no more than 256 bytes data
>> space. For
>> + *  such devices, the high byte of the pointer is not used by this
>> instruction
>> + *  and can be used for other purposes. The RAMPX Register in the I/O
>> area is
>> + *  updated in parts with more than 64KB data space or more than 64KB
>> Program
>> + *  memory, and the increment/decrement is added to the entire 24-bit
>> address on
>> + *  such devices.  Not all variants of this instruction is available in
>> all
>> + *  devices. Refer to the device specific instruction set summary.  In
>> the
>> + *  Reduced Core tinyAVR the LD instruction can be used to achieve the
>> same
>> + *  operation as LPM since the program memory is mapped to the data
>> memory
>> + *  space.
>> + */
>> +static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_xaddr();
>> +
>> +    gen_data_load(ctx, Rd, addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_xaddr();
>> +
>> +    gen_data_load(ctx, Rd, addr);
>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>> +
>> +    gen_set_xaddr(addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_xaddr();
>> +
>> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>> +    gen_data_load(ctx, Rd, addr);
>> +    gen_set_xaddr(addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +static bool trans_STX1(DisasContext *ctx, arg_STX1 *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rr];
>> +    TCGv addr = gen_get_xaddr();
>> +
>> +    gen_data_store(ctx, Rd, addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +static bool trans_STX2(DisasContext *ctx, arg_STX2 *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rr];
>> +    TCGv addr = gen_get_xaddr();
>> +
>> +    gen_data_store(ctx, Rd, addr);
>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>> +    gen_set_xaddr(addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +static bool trans_STX3(DisasContext *ctx, arg_STX3 *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rr];
>> +    TCGv addr = gen_get_xaddr();
>> +
>> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>> +    gen_data_store(ctx, Rd, addr);
>> +    gen_set_xaddr(addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  Loads one byte indirect with or without displacement from the data
>> space
>> + *  to a register. For parts with SRAM, the data space consists of the
>> Register
>> + *  File, I/O memory and internal SRAM (and external SRAM if
>> applicable). For
>> + *  parts without SRAM, the data space consists of the Register File
>> only. In
>> + *  some parts the Flash Memory has been mapped to the data space and
>> can be
>> + *  read using this command. The EEPROM has a separate address space.
>> The data
>> + *  location is pointed to by the Y (16 bits) Pointer Register in the
>> Register
>> + *  File. Memory access is limited to the current data segment of 64KB.
>> To
>> + *  access another data segment in devices with more than 64KB data
>> space, the
>> + *  RAMPY in register in the I/O area has to be changed.  The Y-pointer
>> Register
>> + *  can either be left unchanged by the operation, or it can be
>> post-incremented
>> + *  or predecremented.  These features are especially suited for
>> accessing
>> + *  arrays, tables, and Stack Pointer usage of the Y-pointer Register.
>> Note that
>> + *  only the low byte of the Y-pointer is updated in devices with no
>> more than
>> + *  256 bytes data space. For such devices, the high byte of the pointer
>> is not
>> + *  used by this instruction and can be used for other purposes. The
>> RAMPY
>> + *  Register in the I/O area is updated in parts with more than 64KB
>> data space
>> + *  or more than 64KB Program memory, and the
>> increment/decrement/displacement
>> + *  is added to the entire 24-bit address on such devices.  Not all
>> variants of
>> + *  this instruction is available in all devices. Refer to the device
>> specific
>> + *  instruction set summary.  In the Reduced Core tinyAVR the LD
>> instruction can
>> + *  be used to achieve the same operation as LPM since the program
>> memory is
>> + *  mapped to the data memory space.
>> + */
>> +static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_yaddr();
>> +
>> +    gen_data_load(ctx, Rd, addr);
>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>> +
>> +    gen_set_yaddr(addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_yaddr();
>> +
>> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>> +    gen_data_load(ctx, Rd, addr);
>> +    gen_set_yaddr(addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_yaddr();
>> +
>> +    tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
>> +    gen_data_load(ctx, Rd, addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +static bool trans_STY2(DisasContext *ctx, arg_STY2 *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_yaddr();
>> +
>> +    gen_data_store(ctx, Rd, addr);
>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>> +    gen_set_yaddr(addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +static bool trans_STY3(DisasContext *ctx, arg_STY3 *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_yaddr();
>> +
>> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>> +    gen_data_store(ctx, Rd, addr);
>> +    gen_set_yaddr(addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +static bool trans_STDY(DisasContext *ctx, arg_STDY *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_yaddr();
>> +
>> +    tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
>> +    gen_data_store(ctx, Rd, addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  Loads one byte indirect with or without displacement from the data
>> space
>> + *  to a register. For parts with SRAM, the data space consists of the
>> Register
>> + *  File, I/O memory and internal SRAM (and external SRAM if
>> applicable). For
>> + *  parts without SRAM, the data space consists of the Register File
>> only. In
>> + *  some parts the Flash Memory has been mapped to the data space and
>> can be
>> + *  read using this command. The EEPROM has a separate address space.
>> The data
>> + *  location is pointed to by the Z (16 bits) Pointer Register in the
>> Register
>> + *  File. Memory access is limited to the current data segment of 64KB.
>> To
>> + *  access another data segment in devices with more than 64KB data
>> space, the
>> + *  RAMPZ in register in the I/O area has to be changed.  The Z-pointer
>> Register
>> + *  can either be left unchanged by the operation, or it can be
>> post-incremented
>> + *  or predecremented.  These features are especially suited for Stack
>> Pointer
>> + *  usage of the Z-pointer Register, however because the Z-pointer
>> Register can
>> + *  be used for indirect subroutine calls, indirect jumps and table
>> lookup, it
>> + *  is often more convenient to use the X or Y-pointer as a dedicated
>> Stack
>> + *  Pointer. Note that only the low byte of the Z-pointer is updated in
>> devices
>> + *  with no more than 256 bytes data space. For such devices, the high
>> byte of
>> + *  the pointer is not used by this instruction and can be used for other
>> + *  purposes. The RAMPZ Register in the I/O area is updated in parts
>> with more
>> + *  than 64KB data space or more than 64KB Program memory, and the
>> + *  increment/decrement/displacement is added to the entire 24-bit
>> address on
>> + *  such devices.  Not all variants of this instruction is available in
>> all
>> + *  devices. Refer to the device specific instruction set summary.  In
>> the
>> + *  Reduced Core tinyAVR the LD instruction can be used to achieve the
>> same
>> + *  operation as LPM since the program memory is mapped to the data
>> memory
>> + *  space.  For using the Z-pointer for table lookup in Program memory
>> see the
>> + *  LPM and ELPM instructions.
>> + */
>> +static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_zaddr();
>> +
>> +    gen_data_load(ctx, Rd, addr);
>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>> +
>> +    gen_set_zaddr(addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_zaddr();
>> +
>> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>> +    gen_data_load(ctx, Rd, addr);
>> +
>> +    gen_set_zaddr(addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_zaddr();
>> +
>> +    tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
>> +    gen_data_load(ctx, Rd, addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_zaddr();
>> +
>> +    gen_data_store(ctx, Rd, addr);
>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>> +
>> +    gen_set_zaddr(addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_zaddr();
>> +
>> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>> +    gen_data_store(ctx, Rd, addr);
>> +
>> +    gen_set_zaddr(addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_zaddr();
>> +
>> +    tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
>> +    gen_data_store(ctx, Rd, addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +
>> +/*
>> + *  Stores one byte from a Register to the data space. For parts with
>> SRAM,
>> + *  the data space consists of the Register File, I/O memory and
>> internal SRAM
>> + *  (and external SRAM if applicable). For parts without SRAM, the data
>> space
>> + *  consists of the Register File only. The EEPROM has a separate
>> address space.
>> + *  A 16-bit address must be supplied. Memory access is limited to the
>> current
>> + *  data segment of 64KB. The STS instruction uses the RAMPD Register to
>> access
>> + *  memory above 64KB. To access another data segment in devices with
>> more than
>> + *  64KB data space, the RAMPD in register in the I/O area has to be
>> changed.
>> + *  This instruction is not available in all devices. Refer to the device
>> + *  specific instruction set summary.
>> + */
>> +static bool trans_STS(DisasContext *ctx, arg_STS *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = tcg_temp_new_i32();
>> +    TCGv H = cpu_rampD;
>> +    a->imm = next_word(ctx);
>> +
>> +    tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
>> +    tcg_gen_shli_tl(addr, addr, 16);
>> +    tcg_gen_ori_tl(addr, addr, a->imm);
>> +
>> +    gen_data_store(ctx, Rd, addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  Loads one byte pointed to by the Z-register into the destination
>> + *  register Rd. This instruction features a 100% space effective
>> constant
>> + *  initialization or constant data fetch. The Program memory is
>> organized in
>> + *  16-bit words while the Z-pointer is a byte address. Thus, the least
>> + *  significant bit of the Z-pointer selects either low byte (ZLSB = 0)
>> or high
>> + *  byte (ZLSB = 1). This instruction can address the first 64KB (32K
>> words) of
>> + *  Program memory. The Zpointer Register can either be left unchanged
>> by the
>> + *  operation, or it can be incremented. The incrementation does not
>> apply to
>> + *  the RAMPZ Register.  Devices with Self-Programming capability can
>> use the
>> + *  LPM instruction to read the Fuse and Lock bit values.  Refer to the
>> device
>> + *  documentation for a detailed description.  The LPM instruction is not
>> + *  available in all devices. Refer to the device specific instruction
>> set
>> + *  summary
>> + */
>> +static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv Rd = cpu_r[0];
>> +    TCGv addr = tcg_temp_new_i32();
>> +    TCGv H = cpu_r[31];
>> +    TCGv L = cpu_r[30];
>> +
>> +    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
>> +    tcg_gen_or_tl(addr, addr, L);
>> +
>> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = tcg_temp_new_i32();
>> +    TCGv H = cpu_r[31];
>> +    TCGv L = cpu_r[30];
>> +
>> +    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
>> +    tcg_gen_or_tl(addr, addr, L);
>> +
>> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = tcg_temp_new_i32();
>> +    TCGv H = cpu_r[31];
>> +    TCGv L = cpu_r[30];
>> +
>> +    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
>> +    tcg_gen_or_tl(addr, addr, L);
>> +
>> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>> +
>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>> +
>> +    tcg_gen_andi_tl(L, addr, 0xff);
>> +
>> +    tcg_gen_shri_tl(addr, addr, 8);
>> +    tcg_gen_andi_tl(H, addr, 0xff);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  Loads one byte pointed to by the Z-register and the RAMPZ Register in
>> + *  the I/O space, and places this byte in the destination register Rd.
>> This
>> + *  instruction features a 100% space effective constant initialization
>> or
>> + *  constant data fetch. The Program memory is organized in 16-bit words
>> while
>> + *  the Z-pointer is a byte address. Thus, the least significant bit of
>> the
>> + *  Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB =
>> 1). This
>> + *  instruction can address the entire Program memory space. The
>> Z-pointer
>> + *  Register can either be left unchanged by the operation, or it can be
>> + *  incremented. The incrementation applies to the entire 24-bit
>> concatenation
>> + *  of the RAMPZ and Z-pointer Registers.  Devices with Self-Programming
>> + *  capability can use the ELPM instruction to read the Fuse and Lock
>> bit value.
>> + *  Refer to the device documentation for a detailed description.  This
>> + *  instruction is not available in all devices. Refer to the device
>> specific
>> + *  instruction set summary.
>> + */
>> +static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv Rd = cpu_r[0];
>> +    TCGv addr = gen_get_zaddr();
>> +
>> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_zaddr();
>> +
>> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_zaddr();
>> +
>> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>> +
>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>> +
>> +    gen_set_zaddr(addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  SPM can be used to erase a page in the Program memory, to write a
>> page
>> + *  in the Program memory (that is already erased), and to set Boot
>> Loader Lock
>> + *  bits. In some devices, the Program memory can be written one word at
>> a time,
>> + *  in other devices an entire page can be programmed simultaneously
>> after first
>> + *  filling a temporary page buffer. In all cases, the Program memory
>> must be
>> + *  erased one page at a time. When erasing the Program memory, the
>> RAMPZ and
>> + *  Z-register are used as page address. When writing the Program
>> memory, the
>> + *  RAMPZ and Z-register are used as page or word address, and the R1:R0
>> + *  register pair is used as data(1). When setting the Boot Loader Lock
>> bits,
>> + *  the R1:R0 register pair is used as data. Refer to the device
>> documentation
>> + *  for detailed description of SPM usage. This instruction can address
>> the
>> + *  entire Program memory.  The SPM instruction is not available in all
>> devices.
>> + *  Refer to the device specific instruction set summary.  Note: 1. R1
>> + *  determines the instruction high byte, and R0 determines the
>> instruction low
>> + *  byte.
>> + */
>> +static bool trans_SPM(DisasContext *ctx, arg_SPM *a)
>> +{
>> +    /* TODO */
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_SPM)) {
>> +        return true;
>> +    }
>> +
>> +    return true;
>> +}
>> +
>> +
>> +static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a)
>> +{
>> +    /* TODO */
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_SPMX)) {
>> +        return true;
>> +    }
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  Loads data from the I/O Space (Ports, Timers, Configuration
>> Registers,
>> + *  etc.) into register Rd in the Register File.
>> + */
>> +static bool trans_IN(DisasContext *ctx, arg_IN *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv port = tcg_const_i32(a->imm);
>> +
>> +    gen_helper_inb(Rd, cpu_env, port);
>> +
>> +    tcg_temp_free_i32(port);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  Stores data from register Rr in the Register File to I/O Space
>> (Ports,
>> + *  Timers, Configuration Registers, etc.).
>> + */
>> +static bool trans_OUT(DisasContext *ctx, arg_OUT *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv port = tcg_const_i32(a->imm);
>> +
>> +    gen_helper_outb(cpu_env, port, Rd);
>> +
>> +    tcg_temp_free_i32(port);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  This instruction stores the contents of register Rr on the STACK. The
>> + *  Stack Pointer is post-decremented by 1 after the PUSH.  This
>> instruction is
>> + *  not available in all devices. Refer to the device specific
>> instruction set
>> + *  summary.
>> + */
>> +static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +
>> +    gen_data_store(ctx, Rd, cpu_sp);
>> +    tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  This instruction loads register Rd with a byte from the STACK. The
>> Stack
>> + *  Pointer is pre-incremented by 1 before the POP.  This instruction is
>> not
>> + *  available in all devices. Refer to the device specific instruction
>> set
>> + *  summary.
>> + */
>> +static bool trans_POP(DisasContext *ctx, arg_POP *a)
>> +{
>> +    /*
>> +     * Using a temp to work around some strange behaviour:
>> +     * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
>> +     * gen_data_load(ctx, Rd, cpu_sp);
>> +     * seems to cause the add to happen twice.
>> +     * This doesn't happen if either the add or the load is removed.
>> +     */
>> +    TCGv t1 = tcg_temp_new_i32();
>> +    TCGv Rd = cpu_r[a->rd];
>> +
>> +    tcg_gen_addi_tl(t1, cpu_sp, 1);
>> +    gen_data_load(ctx, Rd, t1);
>> +    tcg_gen_mov_tl(cpu_sp, t1);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  Exchanges one byte indirect between register and data space.  The
>> data
>> + *  location is pointed to by the Z (16 bits) Pointer Register in the
>> Register
>> + *  File. Memory access is limited to the current data segment of 64KB.
>> To
>> + *  access another data segment in devices with more than 64KB data
>> space, the
>> + *  RAMPZ in register in the I/O area has to be changed.  The Z-pointer
>> Register
>> + *  is left unchanged by the operation. This instruction is especially
>> suited
>> + *  for writing/reading status bits stored in SRAM.
>> + */
>> +static bool trans_XCH(DisasContext *ctx, arg_XCH *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv t0 = tcg_temp_new_i32();
>> +    TCGv addr = gen_get_zaddr();
>> +
>> +    gen_data_load(ctx, t0, addr);
>> +    gen_data_store(ctx, Rd, addr);
>> +    tcg_gen_mov_tl(Rd, t0);
>> +
>> +    tcg_temp_free_i32(t0);
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  Load one byte indirect from data space to register and set bits in
>> data
>> + *  space specified by the register. The instruction can only be used
>> towards
>> + *  internal SRAM.  The data location is pointed to by the Z (16 bits)
>> Pointer
>> + *  Register in the Register File. Memory access is limited to the
>> current data
>> + *  segment of 64KB. To access another data segment in devices with more
>> than
>> + *  64KB data space, the RAMPZ in register in the I/O area has to be
>> changed.
>> + *  The Z-pointer Register is left unchanged by the operation. This
>> instruction
>> + *  is especially suited for setting status bits stored in SRAM.
>> + */
>> +static bool trans_LAS(DisasContext *ctx, arg_LAS *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv Rr = cpu_r[a->rd];
>> +    TCGv addr = gen_get_zaddr();
>> +    TCGv t0 = tcg_temp_new_i32();
>> +    TCGv t1 = tcg_temp_new_i32();
>> +
>> +    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
>> +    tcg_gen_or_tl(t1, t0, Rr);
>> +
>> +    tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
>> +    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
>> +
>> +    tcg_temp_free_i32(t1);
>> +    tcg_temp_free_i32(t0);
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  Load one byte indirect from data space to register and stores and
>> clear
>> + *  the bits in data space specified by the register. The instruction can
>> + *  only be used towards internal SRAM.  The data location is pointed to
>> by
>> + *  the Z (16 bits) Pointer Register in the Register File. Memory access
>> is
>> + *  limited to the current data segment of 64KB. To access another data
>> + *  segment in devices with more than 64KB data space, the RAMPZ in
>> register
>> + *  in the I/O area has to be changed.  The Z-pointer Register is left
>> + *  unchanged by the operation. This instruction is especially suited for
>> + *  clearing status bits stored in SRAM.
>> + */
>> +static bool trans_LAC(DisasContext *ctx, arg_LAC *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv Rr = cpu_r[a->rd];
>> +    TCGv addr = gen_get_zaddr();
>> +    TCGv t0 = tcg_temp_new_i32();
>> +    TCGv t1 = tcg_temp_new_i32();
>> +
>> +    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
>> +        /* t1 = t0 & (0xff - Rr) = t0 and ~Rr */
>> +    tcg_gen_andc_tl(t1, t0, Rr);
>> +
>> +    tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
>> +    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
>> +
>> +    tcg_temp_free_i32(t1);
>> +    tcg_temp_free_i32(t0);
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  Load one byte indirect from data space to register and toggles bits
>> in
>> + *  the data space specified by the register.  The instruction can only
>> be used
>> + *  towards SRAM.  The data location is pointed to by the Z (16 bits)
>> Pointer
>> + *  Register in the Register File. Memory access is limited to the
>> current data
>> + *  segment of 64KB. To access another data segment in devices with more
>> than
>> + *  64KB data space, the RAMPZ in register in the I/O area has to be
>> changed.
>> + *  The Z-pointer Register is left unchanged by the operation. This
>> instruction
>> + *  is especially suited for changing status bits stored in SRAM.
>> + */
>> +static bool trans_LAT(DisasContext *ctx, arg_LAT *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_zaddr();
>> +    TCGv t0 = tcg_temp_new_i32();
>> +    TCGv t1 = tcg_temp_new_i32();
>> +
>> +    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
>> +    tcg_gen_xor_tl(t1, t0, Rd);
>> +
>> +    tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */
>> +    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
>> +
>> +    tcg_temp_free_i32(t1);
>> +    tcg_temp_free_i32(t0);
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit
>> 0 is
>> + *  loaded into the C Flag of the SREG. This operation effectively
>> divides an
>> + *  unsigned value by two. The C Flag can be used to round the result.
>> + */
>> +static bool trans_LSR(DisasContext *ctx, arg_LSR *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +
>> +    tcg_gen_andi_tl(cpu_Cf, Rd, 1);
>> +
>> +    tcg_gen_shri_tl(Rd, Rd, 1);
>> +
>> +    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, Rd, 0); /* Zf = Rd == 0 */
>> +    tcg_gen_movi_tl(cpu_Nf, 0);
>> +    tcg_gen_mov_tl(cpu_Vf, cpu_Cf);
>> +    tcg_gen_mov_tl(cpu_Sf, cpu_Vf);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  Shifts all bits in Rd one place to the right. The C Flag is shifted
>> into
>> + *  bit 7 of Rd. Bit 0 is shifted into the C Flag.  This operation,
>> combined
>> + *  with ASR, effectively divides multi-byte signed values by two.
>> Combined with
>> + *  LSR it effectively divides multi-byte unsigned values by two. The
>> Carry Flag
>> + *  can be used to round the result.
>> + */
>> +static bool trans_ROR(DisasContext *ctx, arg_ROR *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv t0 = tcg_temp_new_i32();
>> +
>> +    tcg_gen_shli_tl(t0, cpu_Cf, 7);
>> +    tcg_gen_andi_tl(cpu_Cf, Rd, 1);
>> +    tcg_gen_shri_tl(Rd, Rd, 1);
>> +    tcg_gen_or_tl(Rd, Rd, t0);
>> +
>> +    gen_rshift_ZNVSf(Rd);
>> +
>> +    tcg_temp_free_i32(t0);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  Shifts all bits in Rd one place to the right. Bit 7 is held
>> constant. Bit 0
>> + *  is loaded into the C Flag of the SREG. This operation effectively
>> divides a
>> + *  signed value by two without changing its sign. The Carry Flag can be
>> used to
>> + *  round the result.
>> + */
>> +static bool trans_ASR(DisasContext *ctx, arg_ASR *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv t0 = tcg_temp_new_i32();
>> +
>> +    /* Cf */
>> +    tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */
>> +
>> +    /* op */
>> +    tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */
>> +    tcg_gen_shri_tl(Rd, Rd, 1);
>> +    tcg_gen_or_tl(Rd, Rd, t0);
>> +
>> +    gen_rshift_ZNVSf(Rd);
>> +
>> +    tcg_temp_free_i32(t0);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  Swaps high and low nibbles in a register.
>> + */
>> +static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv t0 = tcg_temp_new_i32();
>> +    TCGv t1 = tcg_temp_new_i32();
>> +
>> +    tcg_gen_andi_tl(t0, Rd, 0x0f);
>> +    tcg_gen_shli_tl(t0, t0, 4);
>> +    tcg_gen_andi_tl(t1, Rd, 0xf0);
>> +    tcg_gen_shri_tl(t1, t1, 4);
>> +    tcg_gen_or_tl(Rd, t0, t1);
>> +
>> +    tcg_temp_free_i32(t1);
>> +    tcg_temp_free_i32(t0);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  Sets a specified bit in an I/O Register. This instruction operates on
>> + *  the lower 32 I/O Registers -- addresses 0-31.
>> + */
>> +static bool trans_SBI(DisasContext *ctx, arg_SBI *a)
>> +{
>> +    TCGv data = tcg_temp_new_i32();
>> +    TCGv port = tcg_const_i32(a->reg);
>> +
>> +    gen_helper_inb(data, cpu_env, port);
>> +    tcg_gen_ori_tl(data, data, 1 << a->bit);
>> +    gen_helper_outb(cpu_env, port, data);
>> +
>> +    tcg_temp_free_i32(port);
>> +    tcg_temp_free_i32(data);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  Clears a specified bit in an I/O Register. This instruction operates
>> on
>> + *  the lower 32 I/O Registers -- addresses 0-31.
>> + */
>> +static bool trans_CBI(DisasContext *ctx, arg_CBI *a)
>> +{
>> +    TCGv data = tcg_temp_new_i32();
>> +    TCGv port = tcg_const_i32(a->reg);
>> +
>> +    gen_helper_inb(data, cpu_env, port);
>> +    tcg_gen_andi_tl(data, data, ~(1 << a->bit));
>> +    gen_helper_outb(cpu_env, port, data);
>> +
>> +    tcg_temp_free_i32(data);
>> +    tcg_temp_free_i32(port);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  Stores bit b from Rd to the T Flag in SREG (Status Register).
>> + */
>> +static bool trans_BST(DisasContext *ctx, arg_BST *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +
>> +    tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit);
>> +    tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  Copies the T Flag in the SREG (Status Register) to bit b in register
>> Rd.
>> + */
>> +static bool trans_BLD(DisasContext *ctx, arg_BLD *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv t1 = tcg_temp_new_i32();
>> +
>> +    tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */
>> +    tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */
>> +    tcg_gen_or_tl(Rd, Rd, t1);
>> +
>> +    tcg_temp_free_i32(t1);
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  Sets a single Flag or bit in SREG.
>> + */
>> +static bool trans_BSET(DisasContext *ctx, arg_BSET *a)
>> +{
>> +    switch (a->bit) {
>> +    case 0x00:
>> +        tcg_gen_movi_tl(cpu_Cf, 0x01);
>> +        break;
>> +    case 0x01:
>> +        tcg_gen_movi_tl(cpu_Zf, 0x01);
>> +        break;
>> +    case 0x02:
>> +        tcg_gen_movi_tl(cpu_Nf, 0x01);
>> +        break;
>> +    case 0x03:
>> +        tcg_gen_movi_tl(cpu_Vf, 0x01);
>> +        break;
>> +    case 0x04:
>> +        tcg_gen_movi_tl(cpu_Sf, 0x01);
>> +        break;
>> +    case 0x05:
>> +        tcg_gen_movi_tl(cpu_Hf, 0x01);
>> +        break;
>> +    case 0x06:
>> +        tcg_gen_movi_tl(cpu_Tf, 0x01);
>> +        break;
>> +    case 0x07:
>> +        tcg_gen_movi_tl(cpu_If, 0x01);
>> +        break;
>> +    }
>> +
>> +    return true;
>> +}
>> +
>> +
>> +/*
>> + *  Clears a single Flag in SREG.
>> + */
>> +static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a)
>> +{
>> +    switch (a->bit) {
>> +    case 0x00:
>> +        tcg_gen_movi_tl(cpu_Cf, 0x00);
>> +        break;
>> +    case 0x01:
>> +        tcg_gen_movi_tl(cpu_Zf, 0x00);
>> +        break;
>> +    case 0x02:
>> +        tcg_gen_movi_tl(cpu_Nf, 0x00);
>> +        break;
>> +    case 0x03:
>> +        tcg_gen_movi_tl(cpu_Vf, 0x00);
>> +        break;
>> +    case 0x04:
>> +        tcg_gen_movi_tl(cpu_Sf, 0x00);
>> +        break;
>> +    case 0x05:
>> +        tcg_gen_movi_tl(cpu_Hf, 0x00);
>> +        break;
>> +    case 0x06:
>> +        tcg_gen_movi_tl(cpu_Tf, 0x00);
>> +        break;
>> +    case 0x07:
>> +        tcg_gen_movi_tl(cpu_If, 0x00);
>> +        break;
>> +    }
>> +
>> +    return true;
>> +}
>> --
>> 2.17.2 (Apple Git-113)
>>
>>
Michael Rolnik Dec. 5, 2019, 1:28 p.m. UTC | #3
my mistake. Thanks. I will split it.

On Thu, Dec 5, 2019 at 3:17 PM Michael Rolnik <mrolnik@gmail.com> wrote:

> I think they do follow the division in the docs.
>
> On Thu, Dec 5, 2019 at 2:28 PM Aleksandar Markovic <
> aleksandar.m.mail@gmail.com> wrote:
>
>>
>>
>> On Wednesday, November 27, 2019, Michael Rolnik <mrolnik@gmail.com>
>> wrote:
>>
>>> This includes:
>>>     - LSR, ROR
>>>     - ASR
>>>     - SWAP
>>>     - SBI, CBI
>>>     - BST, BLD
>>>     - BSET, BCLR
>>>
>>> Signed-off-by: Michael Rolnik <mrolnik@gmail.com>
>>> ---
>>>  target/avr/translate.c | 1123 ++++++++++++++++++++++++++++++++++++++++
>>>  1 file changed, 1123 insertions(+)
>>>
>>>
>> Hello, Michael
>>
>> I said I am on vacation, and truly I am, but, fir the next version if the
>> series, I would like to ask you to extract "data transfer" instruction (as
>> defined in avr docs, MOV LD ST etc) from this patch, and create a new patch
>> for them - so that the patches follow the division from docs.
>>
>> Yours,
>> Aleksandar
>>
>>
>>
>>
>>
>>> diff --git a/target/avr/translate.c b/target/avr/translate.c
>>> index 48a42c984a..dc6a1af2fc 100644
>>> --- a/target/avr/translate.c
>>> +++ b/target/avr/translate.c
>>> @@ -317,6 +317,15 @@ static void gen_goto_tb(DisasContext *ctx, int n,
>>> target_ulong dest)
>>>  }
>>>
>>>
>>> +static void gen_rshift_ZNVSf(TCGv R)
>>> +{
>>> +    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
>>> +    tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
>>> +    tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf);
>>> +    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
>>> +}
>>> +
>>> +
>>>  /*
>>>   *  Adds two registers without the C Flag and places the result in the
>>>   *  destination register Rd.
>>> @@ -1508,3 +1517,1117 @@ static bool trans_BRBS(DisasContext *ctx,
>>> arg_BRBS *a)
>>>      return true;
>>>  }
>>>
>>> +
>>> +/*
>>> + *  This instruction makes a copy of one register into another. The
>>> source
>>> + *  register Rr is left unchanged, while the destination register Rd is
>>> loaded
>>> + *  with a copy of Rr.
>>> + */
>>> +static bool trans_MOV(DisasContext *ctx, arg_MOV *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv Rr = cpu_r[a->rr];
>>> +
>>> +    tcg_gen_mov_tl(Rd, Rr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  This instruction makes a copy of one register pair into another
>>> register
>>> + *  pair. The source register pair Rr+1:Rr is left unchanged, while the
>>> + *  destination register pair Rd+1:Rd is loaded with a copy of Rr +
>>> 1:Rr.  This
>>> + *  instruction is not available in all devices. Refer to the device
>>> specific
>>> + *  instruction set summary.
>>> + */
>>> +static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a)
>>> +{
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    TCGv RdL = cpu_r[a->rd];
>>> +    TCGv RdH = cpu_r[a->rd + 1];
>>> +    TCGv RrL = cpu_r[a->rr];
>>> +    TCGv RrH = cpu_r[a->rr + 1];
>>> +
>>> +    tcg_gen_mov_tl(RdH, RrH);
>>> +    tcg_gen_mov_tl(RdL, RrL);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Loads an 8 bit constant directly to register 16 to 31.
>>> + */
>>> +static bool trans_LDI(DisasContext *ctx, arg_LDI *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    int imm = a->imm;
>>> +
>>> +    tcg_gen_movi_tl(Rd, imm);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Loads one byte from the data space to a register. For parts with
>>> SRAM,
>>> + *  the data space consists of the Register File, I/O memory and
>>> internal SRAM
>>> + *  (and external SRAM if applicable). For parts without SRAM, the data
>>> space
>>> + *  consists of the register file only. The EEPROM has a separate
>>> address space.
>>> + *  A 16-bit address must be supplied. Memory access is limited to the
>>> current
>>> + *  data segment of 64KB. The LDS instruction uses the RAMPD Register
>>> to access
>>> + *  memory above 64KB. To access another data segment in devices with
>>> more than
>>> + *  64KB data space, the RAMPD in register in the I/O area has to be
>>> changed.
>>> + *  This instruction is not available in all devices. Refer to the
>>> device
>>> + *  specific instruction set summary.
>>> + */
>>> +static bool trans_LDS(DisasContext *ctx, arg_LDS *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = tcg_temp_new_i32();
>>> +    TCGv H = cpu_rampD;
>>> +    a->imm = next_word(ctx);
>>> +
>>> +    tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
>>> +    tcg_gen_shli_tl(addr, addr, 16);
>>> +    tcg_gen_ori_tl(addr, addr, a->imm);
>>> +
>>> +    gen_data_load(ctx, Rd, addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Loads one byte indirect from the data space to a register. For parts
>>> + *  with SRAM, the data space consists of the Register File, I/O memory
>>> and
>>> + *  internal SRAM (and external SRAM if applicable). For parts without
>>> SRAM, the
>>> + *  data space consists of the Register File only. In some parts the
>>> Flash
>>> + *  Memory has been mapped to the data space and can be read using this
>>> command.
>>> + *  The EEPROM has a separate address space.  The data location is
>>> pointed to by
>>> + *  the X (16 bits) Pointer Register in the Register File. Memory
>>> access is
>>> + *  limited to the current data segment of 64KB. To access another data
>>> segment
>>> + *  in devices with more than 64KB data space, the RAMPX in register in
>>> the I/O
>>> + *  area has to be changed.  The X-pointer Register can either be left
>>> unchanged
>>> + *  by the operation, or it can be post-incremented or predecremented.
>>> These
>>> + *  features are especially suited for accessing arrays, tables, and
>>> Stack
>>> + *  Pointer usage of the X-pointer Register. Note that only the low
>>> byte of the
>>> + *  X-pointer is updated in devices with no more than 256 bytes data
>>> space. For
>>> + *  such devices, the high byte of the pointer is not used by this
>>> instruction
>>> + *  and can be used for other purposes. The RAMPX Register in the I/O
>>> area is
>>> + *  updated in parts with more than 64KB data space or more than 64KB
>>> Program
>>> + *  memory, and the increment/decrement is added to the entire 24-bit
>>> address on
>>> + *  such devices.  Not all variants of this instruction is available in
>>> all
>>> + *  devices. Refer to the device specific instruction set summary.  In
>>> the
>>> + *  Reduced Core tinyAVR the LD instruction can be used to achieve the
>>> same
>>> + *  operation as LPM since the program memory is mapped to the data
>>> memory
>>> + *  space.
>>> + */
>>> +static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_xaddr();
>>> +
>>> +    gen_data_load(ctx, Rd, addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_xaddr();
>>> +
>>> +    gen_data_load(ctx, Rd, addr);
>>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>>> +
>>> +    gen_set_xaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_xaddr();
>>> +
>>> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>>> +    gen_data_load(ctx, Rd, addr);
>>> +    gen_set_xaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_STX1(DisasContext *ctx, arg_STX1 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rr];
>>> +    TCGv addr = gen_get_xaddr();
>>> +
>>> +    gen_data_store(ctx, Rd, addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +static bool trans_STX2(DisasContext *ctx, arg_STX2 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rr];
>>> +    TCGv addr = gen_get_xaddr();
>>> +
>>> +    gen_data_store(ctx, Rd, addr);
>>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>>> +    gen_set_xaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +static bool trans_STX3(DisasContext *ctx, arg_STX3 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rr];
>>> +    TCGv addr = gen_get_xaddr();
>>> +
>>> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>>> +    gen_data_store(ctx, Rd, addr);
>>> +    gen_set_xaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Loads one byte indirect with or without displacement from the data
>>> space
>>> + *  to a register. For parts with SRAM, the data space consists of the
>>> Register
>>> + *  File, I/O memory and internal SRAM (and external SRAM if
>>> applicable). For
>>> + *  parts without SRAM, the data space consists of the Register File
>>> only. In
>>> + *  some parts the Flash Memory has been mapped to the data space and
>>> can be
>>> + *  read using this command. The EEPROM has a separate address space.
>>> The data
>>> + *  location is pointed to by the Y (16 bits) Pointer Register in the
>>> Register
>>> + *  File. Memory access is limited to the current data segment of 64KB.
>>> To
>>> + *  access another data segment in devices with more than 64KB data
>>> space, the
>>> + *  RAMPY in register in the I/O area has to be changed.  The Y-pointer
>>> Register
>>> + *  can either be left unchanged by the operation, or it can be
>>> post-incremented
>>> + *  or predecremented.  These features are especially suited for
>>> accessing
>>> + *  arrays, tables, and Stack Pointer usage of the Y-pointer Register.
>>> Note that
>>> + *  only the low byte of the Y-pointer is updated in devices with no
>>> more than
>>> + *  256 bytes data space. For such devices, the high byte of the
>>> pointer is not
>>> + *  used by this instruction and can be used for other purposes. The
>>> RAMPY
>>> + *  Register in the I/O area is updated in parts with more than 64KB
>>> data space
>>> + *  or more than 64KB Program memory, and the
>>> increment/decrement/displacement
>>> + *  is added to the entire 24-bit address on such devices.  Not all
>>> variants of
>>> + *  this instruction is available in all devices. Refer to the device
>>> specific
>>> + *  instruction set summary.  In the Reduced Core tinyAVR the LD
>>> instruction can
>>> + *  be used to achieve the same operation as LPM since the program
>>> memory is
>>> + *  mapped to the data memory space.
>>> + */
>>> +static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_yaddr();
>>> +
>>> +    gen_data_load(ctx, Rd, addr);
>>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>>> +
>>> +    gen_set_yaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_yaddr();
>>> +
>>> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>>> +    gen_data_load(ctx, Rd, addr);
>>> +    gen_set_yaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_yaddr();
>>> +
>>> +    tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
>>> +    gen_data_load(ctx, Rd, addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_STY2(DisasContext *ctx, arg_STY2 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_yaddr();
>>> +
>>> +    gen_data_store(ctx, Rd, addr);
>>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>>> +    gen_set_yaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_STY3(DisasContext *ctx, arg_STY3 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_yaddr();
>>> +
>>> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>>> +    gen_data_store(ctx, Rd, addr);
>>> +    gen_set_yaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_STDY(DisasContext *ctx, arg_STDY *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_yaddr();
>>> +
>>> +    tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
>>> +    gen_data_store(ctx, Rd, addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Loads one byte indirect with or without displacement from the data
>>> space
>>> + *  to a register. For parts with SRAM, the data space consists of the
>>> Register
>>> + *  File, I/O memory and internal SRAM (and external SRAM if
>>> applicable). For
>>> + *  parts without SRAM, the data space consists of the Register File
>>> only. In
>>> + *  some parts the Flash Memory has been mapped to the data space and
>>> can be
>>> + *  read using this command. The EEPROM has a separate address space.
>>> The data
>>> + *  location is pointed to by the Z (16 bits) Pointer Register in the
>>> Register
>>> + *  File. Memory access is limited to the current data segment of 64KB.
>>> To
>>> + *  access another data segment in devices with more than 64KB data
>>> space, the
>>> + *  RAMPZ in register in the I/O area has to be changed.  The Z-pointer
>>> Register
>>> + *  can either be left unchanged by the operation, or it can be
>>> post-incremented
>>> + *  or predecremented.  These features are especially suited for Stack
>>> Pointer
>>> + *  usage of the Z-pointer Register, however because the Z-pointer
>>> Register can
>>> + *  be used for indirect subroutine calls, indirect jumps and table
>>> lookup, it
>>> + *  is often more convenient to use the X or Y-pointer as a dedicated
>>> Stack
>>> + *  Pointer. Note that only the low byte of the Z-pointer is updated in
>>> devices
>>> + *  with no more than 256 bytes data space. For such devices, the high
>>> byte of
>>> + *  the pointer is not used by this instruction and can be used for
>>> other
>>> + *  purposes. The RAMPZ Register in the I/O area is updated in parts
>>> with more
>>> + *  than 64KB data space or more than 64KB Program memory, and the
>>> + *  increment/decrement/displacement is added to the entire 24-bit
>>> address on
>>> + *  such devices.  Not all variants of this instruction is available in
>>> all
>>> + *  devices. Refer to the device specific instruction set summary.  In
>>> the
>>> + *  Reduced Core tinyAVR the LD instruction can be used to achieve the
>>> same
>>> + *  operation as LPM since the program memory is mapped to the data
>>> memory
>>> + *  space.  For using the Z-pointer for table lookup in Program memory
>>> see the
>>> + *  LPM and ELPM instructions.
>>> + */
>>> +static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_zaddr();
>>> +
>>> +    gen_data_load(ctx, Rd, addr);
>>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>>> +
>>> +    gen_set_zaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_zaddr();
>>> +
>>> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>>> +    gen_data_load(ctx, Rd, addr);
>>> +
>>> +    gen_set_zaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_zaddr();
>>> +
>>> +    tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
>>> +    gen_data_load(ctx, Rd, addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_zaddr();
>>> +
>>> +    gen_data_store(ctx, Rd, addr);
>>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>>> +
>>> +    gen_set_zaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_zaddr();
>>> +
>>> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>>> +    gen_data_store(ctx, Rd, addr);
>>> +
>>> +    gen_set_zaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_zaddr();
>>> +
>>> +    tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
>>> +    gen_data_store(ctx, Rd, addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +
>>> +/*
>>> + *  Stores one byte from a Register to the data space. For parts with
>>> SRAM,
>>> + *  the data space consists of the Register File, I/O memory and
>>> internal SRAM
>>> + *  (and external SRAM if applicable). For parts without SRAM, the data
>>> space
>>> + *  consists of the Register File only. The EEPROM has a separate
>>> address space.
>>> + *  A 16-bit address must be supplied. Memory access is limited to the
>>> current
>>> + *  data segment of 64KB. The STS instruction uses the RAMPD Register
>>> to access
>>> + *  memory above 64KB. To access another data segment in devices with
>>> more than
>>> + *  64KB data space, the RAMPD in register in the I/O area has to be
>>> changed.
>>> + *  This instruction is not available in all devices. Refer to the
>>> device
>>> + *  specific instruction set summary.
>>> + */
>>> +static bool trans_STS(DisasContext *ctx, arg_STS *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = tcg_temp_new_i32();
>>> +    TCGv H = cpu_rampD;
>>> +    a->imm = next_word(ctx);
>>> +
>>> +    tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
>>> +    tcg_gen_shli_tl(addr, addr, 16);
>>> +    tcg_gen_ori_tl(addr, addr, a->imm);
>>> +
>>> +    gen_data_store(ctx, Rd, addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Loads one byte pointed to by the Z-register into the destination
>>> + *  register Rd. This instruction features a 100% space effective
>>> constant
>>> + *  initialization or constant data fetch. The Program memory is
>>> organized in
>>> + *  16-bit words while the Z-pointer is a byte address. Thus, the least
>>> + *  significant bit of the Z-pointer selects either low byte (ZLSB = 0)
>>> or high
>>> + *  byte (ZLSB = 1). This instruction can address the first 64KB (32K
>>> words) of
>>> + *  Program memory. The Zpointer Register can either be left unchanged
>>> by the
>>> + *  operation, or it can be incremented. The incrementation does not
>>> apply to
>>> + *  the RAMPZ Register.  Devices with Self-Programming capability can
>>> use the
>>> + *  LPM instruction to read the Fuse and Lock bit values.  Refer to the
>>> device
>>> + *  documentation for a detailed description.  The LPM instruction is
>>> not
>>> + *  available in all devices. Refer to the device specific instruction
>>> set
>>> + *  summary
>>> + */
>>> +static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a)
>>> +{
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    TCGv Rd = cpu_r[0];
>>> +    TCGv addr = tcg_temp_new_i32();
>>> +    TCGv H = cpu_r[31];
>>> +    TCGv L = cpu_r[30];
>>> +
>>> +    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
>>> +    tcg_gen_or_tl(addr, addr, L);
>>> +
>>> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a)
>>> +{
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = tcg_temp_new_i32();
>>> +    TCGv H = cpu_r[31];
>>> +    TCGv L = cpu_r[30];
>>> +
>>> +    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
>>> +    tcg_gen_or_tl(addr, addr, L);
>>> +
>>> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a)
>>> +{
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = tcg_temp_new_i32();
>>> +    TCGv H = cpu_r[31];
>>> +    TCGv L = cpu_r[30];
>>> +
>>> +    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
>>> +    tcg_gen_or_tl(addr, addr, L);
>>> +
>>> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>>> +
>>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>>> +
>>> +    tcg_gen_andi_tl(L, addr, 0xff);
>>> +
>>> +    tcg_gen_shri_tl(addr, addr, 8);
>>> +    tcg_gen_andi_tl(H, addr, 0xff);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Loads one byte pointed to by the Z-register and the RAMPZ Register
>>> in
>>> + *  the I/O space, and places this byte in the destination register Rd.
>>> This
>>> + *  instruction features a 100% space effective constant initialization
>>> or
>>> + *  constant data fetch. The Program memory is organized in 16-bit
>>> words while
>>> + *  the Z-pointer is a byte address. Thus, the least significant bit of
>>> the
>>> + *  Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB =
>>> 1). This
>>> + *  instruction can address the entire Program memory space. The
>>> Z-pointer
>>> + *  Register can either be left unchanged by the operation, or it can be
>>> + *  incremented. The incrementation applies to the entire 24-bit
>>> concatenation
>>> + *  of the RAMPZ and Z-pointer Registers.  Devices with Self-Programming
>>> + *  capability can use the ELPM instruction to read the Fuse and Lock
>>> bit value.
>>> + *  Refer to the device documentation for a detailed description.  This
>>> + *  instruction is not available in all devices. Refer to the device
>>> specific
>>> + *  instruction set summary.
>>> + */
>>> +static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a)
>>> +{
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    TCGv Rd = cpu_r[0];
>>> +    TCGv addr = gen_get_zaddr();
>>> +
>>> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a)
>>> +{
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_zaddr();
>>> +
>>> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a)
>>> +{
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_zaddr();
>>> +
>>> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>>> +
>>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>>> +
>>> +    gen_set_zaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  SPM can be used to erase a page in the Program memory, to write a
>>> page
>>> + *  in the Program memory (that is already erased), and to set Boot
>>> Loader Lock
>>> + *  bits. In some devices, the Program memory can be written one word
>>> at a time,
>>> + *  in other devices an entire page can be programmed simultaneously
>>> after first
>>> + *  filling a temporary page buffer. In all cases, the Program memory
>>> must be
>>> + *  erased one page at a time. When erasing the Program memory, the
>>> RAMPZ and
>>> + *  Z-register are used as page address. When writing the Program
>>> memory, the
>>> + *  RAMPZ and Z-register are used as page or word address, and the R1:R0
>>> + *  register pair is used as data(1). When setting the Boot Loader Lock
>>> bits,
>>> + *  the R1:R0 register pair is used as data. Refer to the device
>>> documentation
>>> + *  for detailed description of SPM usage. This instruction can address
>>> the
>>> + *  entire Program memory.  The SPM instruction is not available in all
>>> devices.
>>> + *  Refer to the device specific instruction set summary.  Note: 1. R1
>>> + *  determines the instruction high byte, and R0 determines the
>>> instruction low
>>> + *  byte.
>>> + */
>>> +static bool trans_SPM(DisasContext *ctx, arg_SPM *a)
>>> +{
>>> +    /* TODO */
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_SPM)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a)
>>> +{
>>> +    /* TODO */
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_SPMX)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Loads data from the I/O Space (Ports, Timers, Configuration
>>> Registers,
>>> + *  etc.) into register Rd in the Register File.
>>> + */
>>> +static bool trans_IN(DisasContext *ctx, arg_IN *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv port = tcg_const_i32(a->imm);
>>> +
>>> +    gen_helper_inb(Rd, cpu_env, port);
>>> +
>>> +    tcg_temp_free_i32(port);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Stores data from register Rr in the Register File to I/O Space
>>> (Ports,
>>> + *  Timers, Configuration Registers, etc.).
>>> + */
>>> +static bool trans_OUT(DisasContext *ctx, arg_OUT *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv port = tcg_const_i32(a->imm);
>>> +
>>> +    gen_helper_outb(cpu_env, port, Rd);
>>> +
>>> +    tcg_temp_free_i32(port);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  This instruction stores the contents of register Rr on the STACK.
>>> The
>>> + *  Stack Pointer is post-decremented by 1 after the PUSH.  This
>>> instruction is
>>> + *  not available in all devices. Refer to the device specific
>>> instruction set
>>> + *  summary.
>>> + */
>>> +static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +
>>> +    gen_data_store(ctx, Rd, cpu_sp);
>>> +    tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  This instruction loads register Rd with a byte from the STACK. The
>>> Stack
>>> + *  Pointer is pre-incremented by 1 before the POP.  This instruction
>>> is not
>>> + *  available in all devices. Refer to the device specific instruction
>>> set
>>> + *  summary.
>>> + */
>>> +static bool trans_POP(DisasContext *ctx, arg_POP *a)
>>> +{
>>> +    /*
>>> +     * Using a temp to work around some strange behaviour:
>>> +     * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
>>> +     * gen_data_load(ctx, Rd, cpu_sp);
>>> +     * seems to cause the add to happen twice.
>>> +     * This doesn't happen if either the add or the load is removed.
>>> +     */
>>> +    TCGv t1 = tcg_temp_new_i32();
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +
>>> +    tcg_gen_addi_tl(t1, cpu_sp, 1);
>>> +    gen_data_load(ctx, Rd, t1);
>>> +    tcg_gen_mov_tl(cpu_sp, t1);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Exchanges one byte indirect between register and data space.  The
>>> data
>>> + *  location is pointed to by the Z (16 bits) Pointer Register in the
>>> Register
>>> + *  File. Memory access is limited to the current data segment of 64KB.
>>> To
>>> + *  access another data segment in devices with more than 64KB data
>>> space, the
>>> + *  RAMPZ in register in the I/O area has to be changed.  The Z-pointer
>>> Register
>>> + *  is left unchanged by the operation. This instruction is especially
>>> suited
>>> + *  for writing/reading status bits stored in SRAM.
>>> + */
>>> +static bool trans_XCH(DisasContext *ctx, arg_XCH *a)
>>> +{
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv t0 = tcg_temp_new_i32();
>>> +    TCGv addr = gen_get_zaddr();
>>> +
>>> +    gen_data_load(ctx, t0, addr);
>>> +    gen_data_store(ctx, Rd, addr);
>>> +    tcg_gen_mov_tl(Rd, t0);
>>> +
>>> +    tcg_temp_free_i32(t0);
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Load one byte indirect from data space to register and set bits in
>>> data
>>> + *  space specified by the register. The instruction can only be used
>>> towards
>>> + *  internal SRAM.  The data location is pointed to by the Z (16 bits)
>>> Pointer
>>> + *  Register in the Register File. Memory access is limited to the
>>> current data
>>> + *  segment of 64KB. To access another data segment in devices with
>>> more than
>>> + *  64KB data space, the RAMPZ in register in the I/O area has to be
>>> changed.
>>> + *  The Z-pointer Register is left unchanged by the operation. This
>>> instruction
>>> + *  is especially suited for setting status bits stored in SRAM.
>>> + */
>>> +static bool trans_LAS(DisasContext *ctx, arg_LAS *a)
>>> +{
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    TCGv Rr = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_zaddr();
>>> +    TCGv t0 = tcg_temp_new_i32();
>>> +    TCGv t1 = tcg_temp_new_i32();
>>> +
>>> +    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
>>> +    tcg_gen_or_tl(t1, t0, Rr);
>>> +
>>> +    tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
>>> +    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
>>> +
>>> +    tcg_temp_free_i32(t1);
>>> +    tcg_temp_free_i32(t0);
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Load one byte indirect from data space to register and stores and
>>> clear
>>> + *  the bits in data space specified by the register. The instruction
>>> can
>>> + *  only be used towards internal SRAM.  The data location is pointed
>>> to by
>>> + *  the Z (16 bits) Pointer Register in the Register File. Memory
>>> access is
>>> + *  limited to the current data segment of 64KB. To access another data
>>> + *  segment in devices with more than 64KB data space, the RAMPZ in
>>> register
>>> + *  in the I/O area has to be changed.  The Z-pointer Register is left
>>> + *  unchanged by the operation. This instruction is especially suited
>>> for
>>> + *  clearing status bits stored in SRAM.
>>> + */
>>> +static bool trans_LAC(DisasContext *ctx, arg_LAC *a)
>>> +{
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    TCGv Rr = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_zaddr();
>>> +    TCGv t0 = tcg_temp_new_i32();
>>> +    TCGv t1 = tcg_temp_new_i32();
>>> +
>>> +    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
>>> +        /* t1 = t0 & (0xff - Rr) = t0 and ~Rr */
>>> +    tcg_gen_andc_tl(t1, t0, Rr);
>>> +
>>> +    tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
>>> +    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
>>> +
>>> +    tcg_temp_free_i32(t1);
>>> +    tcg_temp_free_i32(t0);
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Load one byte indirect from data space to register and toggles bits
>>> in
>>> + *  the data space specified by the register.  The instruction can only
>>> be used
>>> + *  towards SRAM.  The data location is pointed to by the Z (16 bits)
>>> Pointer
>>> + *  Register in the Register File. Memory access is limited to the
>>> current data
>>> + *  segment of 64KB. To access another data segment in devices with
>>> more than
>>> + *  64KB data space, the RAMPZ in register in the I/O area has to be
>>> changed.
>>> + *  The Z-pointer Register is left unchanged by the operation. This
>>> instruction
>>> + *  is especially suited for changing status bits stored in SRAM.
>>> + */
>>> +static bool trans_LAT(DisasContext *ctx, arg_LAT *a)
>>> +{
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_zaddr();
>>> +    TCGv t0 = tcg_temp_new_i32();
>>> +    TCGv t1 = tcg_temp_new_i32();
>>> +
>>> +    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
>>> +    tcg_gen_xor_tl(t1, t0, Rd);
>>> +
>>> +    tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */
>>> +    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
>>> +
>>> +    tcg_temp_free_i32(t1);
>>> +    tcg_temp_free_i32(t0);
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit
>>> 0 is
>>> + *  loaded into the C Flag of the SREG. This operation effectively
>>> divides an
>>> + *  unsigned value by two. The C Flag can be used to round the result.
>>> + */
>>> +static bool trans_LSR(DisasContext *ctx, arg_LSR *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +
>>> +    tcg_gen_andi_tl(cpu_Cf, Rd, 1);
>>> +
>>> +    tcg_gen_shri_tl(Rd, Rd, 1);
>>> +
>>> +    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, Rd, 0); /* Zf = Rd == 0 */
>>> +    tcg_gen_movi_tl(cpu_Nf, 0);
>>> +    tcg_gen_mov_tl(cpu_Vf, cpu_Cf);
>>> +    tcg_gen_mov_tl(cpu_Sf, cpu_Vf);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Shifts all bits in Rd one place to the right. The C Flag is shifted
>>> into
>>> + *  bit 7 of Rd. Bit 0 is shifted into the C Flag.  This operation,
>>> combined
>>> + *  with ASR, effectively divides multi-byte signed values by two.
>>> Combined with
>>> + *  LSR it effectively divides multi-byte unsigned values by two. The
>>> Carry Flag
>>> + *  can be used to round the result.
>>> + */
>>> +static bool trans_ROR(DisasContext *ctx, arg_ROR *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv t0 = tcg_temp_new_i32();
>>> +
>>> +    tcg_gen_shli_tl(t0, cpu_Cf, 7);
>>> +    tcg_gen_andi_tl(cpu_Cf, Rd, 1);
>>> +    tcg_gen_shri_tl(Rd, Rd, 1);
>>> +    tcg_gen_or_tl(Rd, Rd, t0);
>>> +
>>> +    gen_rshift_ZNVSf(Rd);
>>> +
>>> +    tcg_temp_free_i32(t0);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Shifts all bits in Rd one place to the right. Bit 7 is held
>>> constant. Bit 0
>>> + *  is loaded into the C Flag of the SREG. This operation effectively
>>> divides a
>>> + *  signed value by two without changing its sign. The Carry Flag can
>>> be used to
>>> + *  round the result.
>>> + */
>>> +static bool trans_ASR(DisasContext *ctx, arg_ASR *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv t0 = tcg_temp_new_i32();
>>> +
>>> +    /* Cf */
>>> +    tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */
>>> +
>>> +    /* op */
>>> +    tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */
>>> +    tcg_gen_shri_tl(Rd, Rd, 1);
>>> +    tcg_gen_or_tl(Rd, Rd, t0);
>>> +
>>> +    gen_rshift_ZNVSf(Rd);
>>> +
>>> +    tcg_temp_free_i32(t0);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Swaps high and low nibbles in a register.
>>> + */
>>> +static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv t0 = tcg_temp_new_i32();
>>> +    TCGv t1 = tcg_temp_new_i32();
>>> +
>>> +    tcg_gen_andi_tl(t0, Rd, 0x0f);
>>> +    tcg_gen_shli_tl(t0, t0, 4);
>>> +    tcg_gen_andi_tl(t1, Rd, 0xf0);
>>> +    tcg_gen_shri_tl(t1, t1, 4);
>>> +    tcg_gen_or_tl(Rd, t0, t1);
>>> +
>>> +    tcg_temp_free_i32(t1);
>>> +    tcg_temp_free_i32(t0);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Sets a specified bit in an I/O Register. This instruction operates
>>> on
>>> + *  the lower 32 I/O Registers -- addresses 0-31.
>>> + */
>>> +static bool trans_SBI(DisasContext *ctx, arg_SBI *a)
>>> +{
>>> +    TCGv data = tcg_temp_new_i32();
>>> +    TCGv port = tcg_const_i32(a->reg);
>>> +
>>> +    gen_helper_inb(data, cpu_env, port);
>>> +    tcg_gen_ori_tl(data, data, 1 << a->bit);
>>> +    gen_helper_outb(cpu_env, port, data);
>>> +
>>> +    tcg_temp_free_i32(port);
>>> +    tcg_temp_free_i32(data);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Clears a specified bit in an I/O Register. This instruction
>>> operates on
>>> + *  the lower 32 I/O Registers -- addresses 0-31.
>>> + */
>>> +static bool trans_CBI(DisasContext *ctx, arg_CBI *a)
>>> +{
>>> +    TCGv data = tcg_temp_new_i32();
>>> +    TCGv port = tcg_const_i32(a->reg);
>>> +
>>> +    gen_helper_inb(data, cpu_env, port);
>>> +    tcg_gen_andi_tl(data, data, ~(1 << a->bit));
>>> +    gen_helper_outb(cpu_env, port, data);
>>> +
>>> +    tcg_temp_free_i32(data);
>>> +    tcg_temp_free_i32(port);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Stores bit b from Rd to the T Flag in SREG (Status Register).
>>> + */
>>> +static bool trans_BST(DisasContext *ctx, arg_BST *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +
>>> +    tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit);
>>> +    tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Copies the T Flag in the SREG (Status Register) to bit b in
>>> register Rd.
>>> + */
>>> +static bool trans_BLD(DisasContext *ctx, arg_BLD *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv t1 = tcg_temp_new_i32();
>>> +
>>> +    tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */
>>> +    tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */
>>> +    tcg_gen_or_tl(Rd, Rd, t1);
>>> +
>>> +    tcg_temp_free_i32(t1);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Sets a single Flag or bit in SREG.
>>> + */
>>> +static bool trans_BSET(DisasContext *ctx, arg_BSET *a)
>>> +{
>>> +    switch (a->bit) {
>>> +    case 0x00:
>>> +        tcg_gen_movi_tl(cpu_Cf, 0x01);
>>> +        break;
>>> +    case 0x01:
>>> +        tcg_gen_movi_tl(cpu_Zf, 0x01);
>>> +        break;
>>> +    case 0x02:
>>> +        tcg_gen_movi_tl(cpu_Nf, 0x01);
>>> +        break;
>>> +    case 0x03:
>>> +        tcg_gen_movi_tl(cpu_Vf, 0x01);
>>> +        break;
>>> +    case 0x04:
>>> +        tcg_gen_movi_tl(cpu_Sf, 0x01);
>>> +        break;
>>> +    case 0x05:
>>> +        tcg_gen_movi_tl(cpu_Hf, 0x01);
>>> +        break;
>>> +    case 0x06:
>>> +        tcg_gen_movi_tl(cpu_Tf, 0x01);
>>> +        break;
>>> +    case 0x07:
>>> +        tcg_gen_movi_tl(cpu_If, 0x01);
>>> +        break;
>>> +    }
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Clears a single Flag in SREG.
>>> + */
>>> +static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a)
>>> +{
>>> +    switch (a->bit) {
>>> +    case 0x00:
>>> +        tcg_gen_movi_tl(cpu_Cf, 0x00);
>>> +        break;
>>> +    case 0x01:
>>> +        tcg_gen_movi_tl(cpu_Zf, 0x00);
>>> +        break;
>>> +    case 0x02:
>>> +        tcg_gen_movi_tl(cpu_Nf, 0x00);
>>> +        break;
>>> +    case 0x03:
>>> +        tcg_gen_movi_tl(cpu_Vf, 0x00);
>>> +        break;
>>> +    case 0x04:
>>> +        tcg_gen_movi_tl(cpu_Sf, 0x00);
>>> +        break;
>>> +    case 0x05:
>>> +        tcg_gen_movi_tl(cpu_Hf, 0x00);
>>> +        break;
>>> +    case 0x06:
>>> +        tcg_gen_movi_tl(cpu_Tf, 0x00);
>>> +        break;
>>> +    case 0x07:
>>> +        tcg_gen_movi_tl(cpu_If, 0x00);
>>> +        break;
>>> +    }
>>> +
>>> +    return true;
>>> +}
>>> --
>>> 2.17.2 (Apple Git-113)
>>>
>>>
>
> --
> Best Regards,
> Michael Rolnik
>
diff mbox series

Patch

diff --git a/target/avr/translate.c b/target/avr/translate.c
index 48a42c984a..dc6a1af2fc 100644
--- a/target/avr/translate.c
+++ b/target/avr/translate.c
@@ -317,6 +317,15 @@  static void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest)
 }
 
 
+static void gen_rshift_ZNVSf(TCGv R)
+{
+    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
+    tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
+    tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf);
+    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+}
+
+
 /*
  *  Adds two registers without the C Flag and places the result in the
  *  destination register Rd.
@@ -1508,3 +1517,1117 @@  static bool trans_BRBS(DisasContext *ctx, arg_BRBS *a)
     return true;
 }
 
+
+/*
+ *  This instruction makes a copy of one register into another. The source
+ *  register Rr is left unchanged, while the destination register Rd is loaded
+ *  with a copy of Rr.
+ */
+static bool trans_MOV(DisasContext *ctx, arg_MOV *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv Rr = cpu_r[a->rr];
+
+    tcg_gen_mov_tl(Rd, Rr);
+
+    return true;
+}
+
+
+/*
+ *  This instruction makes a copy of one register pair into another register
+ *  pair. The source register pair Rr+1:Rr is left unchanged, while the
+ *  destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr.  This
+ *  instruction is not available in all devices. Refer to the device specific
+ *  instruction set summary.
+ */
+static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a)
+{
+    if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) {
+        return true;
+    }
+
+    TCGv RdL = cpu_r[a->rd];
+    TCGv RdH = cpu_r[a->rd + 1];
+    TCGv RrL = cpu_r[a->rr];
+    TCGv RrH = cpu_r[a->rr + 1];
+
+    tcg_gen_mov_tl(RdH, RrH);
+    tcg_gen_mov_tl(RdL, RrL);
+
+    return true;
+}
+
+
+/*
+ * Loads an 8 bit constant directly to register 16 to 31.
+ */
+static bool trans_LDI(DisasContext *ctx, arg_LDI *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    int imm = a->imm;
+
+    tcg_gen_movi_tl(Rd, imm);
+
+    return true;
+}
+
+
+/*
+ *  Loads one byte from the data space to a register. For parts with SRAM,
+ *  the data space consists of the Register File, I/O memory and internal SRAM
+ *  (and external SRAM if applicable). For parts without SRAM, the data space
+ *  consists of the register file only. The EEPROM has a separate address space.
+ *  A 16-bit address must be supplied. Memory access is limited to the current
+ *  data segment of 64KB. The LDS instruction uses the RAMPD Register to access
+ *  memory above 64KB. To access another data segment in devices with more than
+ *  64KB data space, the RAMPD in register in the I/O area has to be changed.
+ *  This instruction is not available in all devices. Refer to the device
+ *  specific instruction set summary.
+ */
+static bool trans_LDS(DisasContext *ctx, arg_LDS *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_rampD;
+    a->imm = next_word(ctx);
+
+    tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
+    tcg_gen_shli_tl(addr, addr, 16);
+    tcg_gen_ori_tl(addr, addr, a->imm);
+
+    gen_data_load(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+/*
+ *  Loads one byte indirect from the data space to a register. For parts
+ *  with SRAM, the data space consists of the Register File, I/O memory and
+ *  internal SRAM (and external SRAM if applicable). For parts without SRAM, the
+ *  data space consists of the Register File only. In some parts the Flash
+ *  Memory has been mapped to the data space and can be read using this command.
+ *  The EEPROM has a separate address space.  The data location is pointed to by
+ *  the X (16 bits) Pointer Register in the Register File. Memory access is
+ *  limited to the current data segment of 64KB. To access another data segment
+ *  in devices with more than 64KB data space, the RAMPX in register in the I/O
+ *  area has to be changed.  The X-pointer Register can either be left unchanged
+ *  by the operation, or it can be post-incremented or predecremented.  These
+ *  features are especially suited for accessing arrays, tables, and Stack
+ *  Pointer usage of the X-pointer Register. Note that only the low byte of the
+ *  X-pointer is updated in devices with no more than 256 bytes data space. For
+ *  such devices, the high byte of the pointer is not used by this instruction
+ *  and can be used for other purposes. The RAMPX Register in the I/O area is
+ *  updated in parts with more than 64KB data space or more than 64KB Program
+ *  memory, and the increment/decrement is added to the entire 24-bit address on
+ *  such devices.  Not all variants of this instruction is available in all
+ *  devices. Refer to the device specific instruction set summary.  In the
+ *  Reduced Core tinyAVR the LD instruction can be used to achieve the same
+ *  operation as LPM since the program memory is mapped to the data memory
+ *  space.
+ */
+static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv addr = gen_get_xaddr();
+
+    gen_data_load(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv addr = gen_get_xaddr();
+
+    gen_data_load(ctx, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+    gen_set_xaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv addr = gen_get_xaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+    gen_data_load(ctx, Rd, addr);
+    gen_set_xaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+static bool trans_STX1(DisasContext *ctx, arg_STX1 *a)
+{
+    TCGv Rd = cpu_r[a->rr];
+    TCGv addr = gen_get_xaddr();
+
+    gen_data_store(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+static bool trans_STX2(DisasContext *ctx, arg_STX2 *a)
+{
+    TCGv Rd = cpu_r[a->rr];
+    TCGv addr = gen_get_xaddr();
+
+    gen_data_store(ctx, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+    gen_set_xaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+static bool trans_STX3(DisasContext *ctx, arg_STX3 *a)
+{
+    TCGv Rd = cpu_r[a->rr];
+    TCGv addr = gen_get_xaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+    gen_data_store(ctx, Rd, addr);
+    gen_set_xaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+/*
+ *  Loads one byte indirect with or without displacement from the data space
+ *  to a register. For parts with SRAM, the data space consists of the Register
+ *  File, I/O memory and internal SRAM (and external SRAM if applicable). For
+ *  parts without SRAM, the data space consists of the Register File only. In
+ *  some parts the Flash Memory has been mapped to the data space and can be
+ *  read using this command. The EEPROM has a separate address space.  The data
+ *  location is pointed to by the Y (16 bits) Pointer Register in the Register
+ *  File. Memory access is limited to the current data segment of 64KB. To
+ *  access another data segment in devices with more than 64KB data space, the
+ *  RAMPY in register in the I/O area has to be changed.  The Y-pointer Register
+ *  can either be left unchanged by the operation, or it can be post-incremented
+ *  or predecremented.  These features are especially suited for accessing
+ *  arrays, tables, and Stack Pointer usage of the Y-pointer Register. Note that
+ *  only the low byte of the Y-pointer is updated in devices with no more than
+ *  256 bytes data space. For such devices, the high byte of the pointer is not
+ *  used by this instruction and can be used for other purposes. The RAMPY
+ *  Register in the I/O area is updated in parts with more than 64KB data space
+ *  or more than 64KB Program memory, and the increment/decrement/displacement
+ *  is added to the entire 24-bit address on such devices.  Not all variants of
+ *  this instruction is available in all devices. Refer to the device specific
+ *  instruction set summary.  In the Reduced Core tinyAVR the LD instruction can
+ *  be used to achieve the same operation as LPM since the program memory is
+ *  mapped to the data memory space.
+ */
+static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv addr = gen_get_yaddr();
+
+    gen_data_load(ctx, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+    gen_set_yaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv addr = gen_get_yaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+    gen_data_load(ctx, Rd, addr);
+    gen_set_yaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv addr = gen_get_yaddr();
+
+    tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
+    gen_data_load(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+static bool trans_STY2(DisasContext *ctx, arg_STY2 *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv addr = gen_get_yaddr();
+
+    gen_data_store(ctx, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+    gen_set_yaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+static bool trans_STY3(DisasContext *ctx, arg_STY3 *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv addr = gen_get_yaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+    gen_data_store(ctx, Rd, addr);
+    gen_set_yaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+static bool trans_STDY(DisasContext *ctx, arg_STDY *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv addr = gen_get_yaddr();
+
+    tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
+    gen_data_store(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+/*
+ *  Loads one byte indirect with or without displacement from the data space
+ *  to a register. For parts with SRAM, the data space consists of the Register
+ *  File, I/O memory and internal SRAM (and external SRAM if applicable). For
+ *  parts without SRAM, the data space consists of the Register File only. In
+ *  some parts the Flash Memory has been mapped to the data space and can be
+ *  read using this command. The EEPROM has a separate address space.  The data
+ *  location is pointed to by the Z (16 bits) Pointer Register in the Register
+ *  File. Memory access is limited to the current data segment of 64KB. To
+ *  access another data segment in devices with more than 64KB data space, the
+ *  RAMPZ in register in the I/O area has to be changed.  The Z-pointer Register
+ *  can either be left unchanged by the operation, or it can be post-incremented
+ *  or predecremented.  These features are especially suited for Stack Pointer
+ *  usage of the Z-pointer Register, however because the Z-pointer Register can
+ *  be used for indirect subroutine calls, indirect jumps and table lookup, it
+ *  is often more convenient to use the X or Y-pointer as a dedicated Stack
+ *  Pointer. Note that only the low byte of the Z-pointer is updated in devices
+ *  with no more than 256 bytes data space. For such devices, the high byte of
+ *  the pointer is not used by this instruction and can be used for other
+ *  purposes. The RAMPZ Register in the I/O area is updated in parts with more
+ *  than 64KB data space or more than 64KB Program memory, and the
+ *  increment/decrement/displacement is added to the entire 24-bit address on
+ *  such devices.  Not all variants of this instruction is available in all
+ *  devices. Refer to the device specific instruction set summary.  In the
+ *  Reduced Core tinyAVR the LD instruction can be used to achieve the same
+ *  operation as LPM since the program memory is mapped to the data memory
+ *  space.  For using the Z-pointer for table lookup in Program memory see the
+ *  LPM and ELPM instructions.
+ */
+static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv addr = gen_get_zaddr();
+
+    gen_data_load(ctx, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+    gen_data_load(ctx, Rd, addr);
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
+    gen_data_load(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv addr = gen_get_zaddr();
+
+    gen_data_store(ctx, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+    gen_data_store(ctx, Rd, addr);
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
+    gen_data_store(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+
+/*
+ *  Stores one byte from a Register to the data space. For parts with SRAM,
+ *  the data space consists of the Register File, I/O memory and internal SRAM
+ *  (and external SRAM if applicable). For parts without SRAM, the data space
+ *  consists of the Register File only. The EEPROM has a separate address space.
+ *  A 16-bit address must be supplied. Memory access is limited to the current
+ *  data segment of 64KB. The STS instruction uses the RAMPD Register to access
+ *  memory above 64KB. To access another data segment in devices with more than
+ *  64KB data space, the RAMPD in register in the I/O area has to be changed.
+ *  This instruction is not available in all devices. Refer to the device
+ *  specific instruction set summary.
+ */
+static bool trans_STS(DisasContext *ctx, arg_STS *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_rampD;
+    a->imm = next_word(ctx);
+
+    tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
+    tcg_gen_shli_tl(addr, addr, 16);
+    tcg_gen_ori_tl(addr, addr, a->imm);
+
+    gen_data_store(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+/*
+ *  Loads one byte pointed to by the Z-register into the destination
+ *  register Rd. This instruction features a 100% space effective constant
+ *  initialization or constant data fetch. The Program memory is organized in
+ *  16-bit words while the Z-pointer is a byte address. Thus, the least
+ *  significant bit of the Z-pointer selects either low byte (ZLSB = 0) or high
+ *  byte (ZLSB = 1). This instruction can address the first 64KB (32K words) of
+ *  Program memory. The Zpointer Register can either be left unchanged by the
+ *  operation, or it can be incremented. The incrementation does not apply to
+ *  the RAMPZ Register.  Devices with Self-Programming capability can use the
+ *  LPM instruction to read the Fuse and Lock bit values.  Refer to the device
+ *  documentation for a detailed description.  The LPM instruction is not
+ *  available in all devices. Refer to the device specific instruction set
+ *  summary
+ */
+static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a)
+{
+    if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
+        return true;
+    }
+
+    TCGv Rd = cpu_r[0];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_r[31];
+    TCGv L = cpu_r[30];
+
+    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
+    tcg_gen_or_tl(addr, addr, L);
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a)
+{
+    if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
+        return true;
+    }
+
+    TCGv Rd = cpu_r[a->rd];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_r[31];
+    TCGv L = cpu_r[30];
+
+    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
+    tcg_gen_or_tl(addr, addr, L);
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a)
+{
+    if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) {
+        return true;
+    }
+
+    TCGv Rd = cpu_r[a->rd];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_r[31];
+    TCGv L = cpu_r[30];
+
+    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
+    tcg_gen_or_tl(addr, addr, L);
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+    tcg_gen_andi_tl(L, addr, 0xff);
+
+    tcg_gen_shri_tl(addr, addr, 8);
+    tcg_gen_andi_tl(H, addr, 0xff);
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+/*
+ *  Loads one byte pointed to by the Z-register and the RAMPZ Register in
+ *  the I/O space, and places this byte in the destination register Rd. This
+ *  instruction features a 100% space effective constant initialization or
+ *  constant data fetch. The Program memory is organized in 16-bit words while
+ *  the Z-pointer is a byte address. Thus, the least significant bit of the
+ *  Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). This
+ *  instruction can address the entire Program memory space. The Z-pointer
+ *  Register can either be left unchanged by the operation, or it can be
+ *  incremented. The incrementation applies to the entire 24-bit concatenation
+ *  of the RAMPZ and Z-pointer Registers.  Devices with Self-Programming
+ *  capability can use the ELPM instruction to read the Fuse and Lock bit value.
+ *  Refer to the device documentation for a detailed description.  This
+ *  instruction is not available in all devices. Refer to the device specific
+ *  instruction set summary.
+ */
+static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a)
+{
+    if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
+        return true;
+    }
+
+    TCGv Rd = cpu_r[0];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a)
+{
+    if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
+        return true;
+    }
+
+    TCGv Rd = cpu_r[a->rd];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a)
+{
+    if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) {
+        return true;
+    }
+
+    TCGv Rd = cpu_r[a->rd];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+/*
+ *  SPM can be used to erase a page in the Program memory, to write a page
+ *  in the Program memory (that is already erased), and to set Boot Loader Lock
+ *  bits. In some devices, the Program memory can be written one word at a time,
+ *  in other devices an entire page can be programmed simultaneously after first
+ *  filling a temporary page buffer. In all cases, the Program memory must be
+ *  erased one page at a time. When erasing the Program memory, the RAMPZ and
+ *  Z-register are used as page address. When writing the Program memory, the
+ *  RAMPZ and Z-register are used as page or word address, and the R1:R0
+ *  register pair is used as data(1). When setting the Boot Loader Lock bits,
+ *  the R1:R0 register pair is used as data. Refer to the device documentation
+ *  for detailed description of SPM usage. This instruction can address the
+ *  entire Program memory.  The SPM instruction is not available in all devices.
+ *  Refer to the device specific instruction set summary.  Note: 1. R1
+ *  determines the instruction high byte, and R0 determines the instruction low
+ *  byte.
+ */
+static bool trans_SPM(DisasContext *ctx, arg_SPM *a)
+{
+    /* TODO */
+    if (!avr_have_feature(ctx, AVR_FEATURE_SPM)) {
+        return true;
+    }
+
+    return true;
+}
+
+
+static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a)
+{
+    /* TODO */
+    if (!avr_have_feature(ctx, AVR_FEATURE_SPMX)) {
+        return true;
+    }
+
+    return true;
+}
+
+
+/*
+ *  Loads data from the I/O Space (Ports, Timers, Configuration Registers,
+ *  etc.) into register Rd in the Register File.
+ */
+static bool trans_IN(DisasContext *ctx, arg_IN *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv port = tcg_const_i32(a->imm);
+
+    gen_helper_inb(Rd, cpu_env, port);
+
+    tcg_temp_free_i32(port);
+
+    return true;
+}
+
+
+/*
+ *  Stores data from register Rr in the Register File to I/O Space (Ports,
+ *  Timers, Configuration Registers, etc.).
+ */
+static bool trans_OUT(DisasContext *ctx, arg_OUT *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv port = tcg_const_i32(a->imm);
+
+    gen_helper_outb(cpu_env, port, Rd);
+
+    tcg_temp_free_i32(port);
+
+    return true;
+}
+
+
+/*
+ *  This instruction stores the contents of register Rr on the STACK. The
+ *  Stack Pointer is post-decremented by 1 after the PUSH.  This instruction is
+ *  not available in all devices. Refer to the device specific instruction set
+ *  summary.
+ */
+static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+
+    gen_data_store(ctx, Rd, cpu_sp);
+    tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+    return true;
+}
+
+
+/*
+ *  This instruction loads register Rd with a byte from the STACK. The Stack
+ *  Pointer is pre-incremented by 1 before the POP.  This instruction is not
+ *  available in all devices. Refer to the device specific instruction set
+ *  summary.
+ */
+static bool trans_POP(DisasContext *ctx, arg_POP *a)
+{
+    /*
+     * Using a temp to work around some strange behaviour:
+     * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+     * gen_data_load(ctx, Rd, cpu_sp);
+     * seems to cause the add to happen twice.
+     * This doesn't happen if either the add or the load is removed.
+     */
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv Rd = cpu_r[a->rd];
+
+    tcg_gen_addi_tl(t1, cpu_sp, 1);
+    gen_data_load(ctx, Rd, t1);
+    tcg_gen_mov_tl(cpu_sp, t1);
+
+    return true;
+}
+
+
+/*
+ *  Exchanges one byte indirect between register and data space.  The data
+ *  location is pointed to by the Z (16 bits) Pointer Register in the Register
+ *  File. Memory access is limited to the current data segment of 64KB. To
+ *  access another data segment in devices with more than 64KB data space, the
+ *  RAMPZ in register in the I/O area has to be changed.  The Z-pointer Register
+ *  is left unchanged by the operation. This instruction is especially suited
+ *  for writing/reading status bits stored in SRAM.
+ */
+static bool trans_XCH(DisasContext *ctx, arg_XCH *a)
+{
+    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
+        return true;
+    }
+
+    TCGv Rd = cpu_r[a->rd];
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv addr = gen_get_zaddr();
+
+    gen_data_load(ctx, t0, addr);
+    gen_data_store(ctx, Rd, addr);
+    tcg_gen_mov_tl(Rd, t0);
+
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+/*
+ *  Load one byte indirect from data space to register and set bits in data
+ *  space specified by the register. The instruction can only be used towards
+ *  internal SRAM.  The data location is pointed to by the Z (16 bits) Pointer
+ *  Register in the Register File. Memory access is limited to the current data
+ *  segment of 64KB. To access another data segment in devices with more than
+ *  64KB data space, the RAMPZ in register in the I/O area has to be changed.
+ *  The Z-pointer Register is left unchanged by the operation. This instruction
+ *  is especially suited for setting status bits stored in SRAM.
+ */
+static bool trans_LAS(DisasContext *ctx, arg_LAS *a)
+{
+    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
+        return true;
+    }
+
+    TCGv Rr = cpu_r[a->rd];
+    TCGv addr = gen_get_zaddr();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
+    tcg_gen_or_tl(t1, t0, Rr);
+
+    tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
+    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+/*
+ *  Load one byte indirect from data space to register and stores and clear
+ *  the bits in data space specified by the register. The instruction can
+ *  only be used towards internal SRAM.  The data location is pointed to by
+ *  the Z (16 bits) Pointer Register in the Register File. Memory access is
+ *  limited to the current data segment of 64KB. To access another data
+ *  segment in devices with more than 64KB data space, the RAMPZ in register
+ *  in the I/O area has to be changed.  The Z-pointer Register is left
+ *  unchanged by the operation. This instruction is especially suited for
+ *  clearing status bits stored in SRAM.
+ */
+static bool trans_LAC(DisasContext *ctx, arg_LAC *a)
+{
+    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
+        return true;
+    }
+
+    TCGv Rr = cpu_r[a->rd];
+    TCGv addr = gen_get_zaddr();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
+        /* t1 = t0 & (0xff - Rr) = t0 and ~Rr */
+    tcg_gen_andc_tl(t1, t0, Rr);
+
+    tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
+    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+/*
+ *  Load one byte indirect from data space to register and toggles bits in
+ *  the data space specified by the register.  The instruction can only be used
+ *  towards SRAM.  The data location is pointed to by the Z (16 bits) Pointer
+ *  Register in the Register File. Memory access is limited to the current data
+ *  segment of 64KB. To access another data segment in devices with more than
+ *  64KB data space, the RAMPZ in register in the I/O area has to be changed.
+ *  The Z-pointer Register is left unchanged by the operation. This instruction
+ *  is especially suited for changing status bits stored in SRAM.
+ */
+static bool trans_LAT(DisasContext *ctx, arg_LAT *a)
+{
+    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
+        return true;
+    }
+
+    TCGv Rd = cpu_r[a->rd];
+    TCGv addr = gen_get_zaddr();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
+    tcg_gen_xor_tl(t1, t0, Rd);
+
+    tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */
+    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(addr);
+
+    return true;
+}
+
+
+/*
+ *  Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is
+ *  loaded into the C Flag of the SREG. This operation effectively divides an
+ *  unsigned value by two. The C Flag can be used to round the result.
+ */
+static bool trans_LSR(DisasContext *ctx, arg_LSR *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+
+    tcg_gen_andi_tl(cpu_Cf, Rd, 1);
+
+    tcg_gen_shri_tl(Rd, Rd, 1);
+
+    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, Rd, 0); /* Zf = Rd == 0 */
+    tcg_gen_movi_tl(cpu_Nf, 0);
+    tcg_gen_mov_tl(cpu_Vf, cpu_Cf);
+    tcg_gen_mov_tl(cpu_Sf, cpu_Vf);
+
+    return true;
+}
+
+
+/*
+ *  Shifts all bits in Rd one place to the right. The C Flag is shifted into
+ *  bit 7 of Rd. Bit 0 is shifted into the C Flag.  This operation, combined
+ *  with ASR, effectively divides multi-byte signed values by two. Combined with
+ *  LSR it effectively divides multi-byte unsigned values by two. The Carry Flag
+ *  can be used to round the result.
+ */
+static bool trans_ROR(DisasContext *ctx, arg_ROR *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv t0 = tcg_temp_new_i32();
+
+    tcg_gen_shli_tl(t0, cpu_Cf, 7);
+    tcg_gen_andi_tl(cpu_Cf, Rd, 1);
+    tcg_gen_shri_tl(Rd, Rd, 1);
+    tcg_gen_or_tl(Rd, Rd, t0);
+
+    gen_rshift_ZNVSf(Rd);
+
+    tcg_temp_free_i32(t0);
+
+    return true;
+}
+
+
+/*
+ *  Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0
+ *  is loaded into the C Flag of the SREG. This operation effectively divides a
+ *  signed value by two without changing its sign. The Carry Flag can be used to
+ *  round the result.
+ */
+static bool trans_ASR(DisasContext *ctx, arg_ASR *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv t0 = tcg_temp_new_i32();
+
+    /* Cf */
+    tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */
+
+    /* op */
+    tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */
+    tcg_gen_shri_tl(Rd, Rd, 1);
+    tcg_gen_or_tl(Rd, Rd, t0);
+
+    gen_rshift_ZNVSf(Rd);
+
+    tcg_temp_free_i32(t0);
+
+    return true;
+}
+
+
+/*
+ *  Swaps high and low nibbles in a register.
+ */
+static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    tcg_gen_andi_tl(t0, Rd, 0x0f);
+    tcg_gen_shli_tl(t0, t0, 4);
+    tcg_gen_andi_tl(t1, Rd, 0xf0);
+    tcg_gen_shri_tl(t1, t1, 4);
+    tcg_gen_or_tl(Rd, t0, t1);
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+
+    return true;
+}
+
+
+/*
+ *  Sets a specified bit in an I/O Register. This instruction operates on
+ *  the lower 32 I/O Registers -- addresses 0-31.
+ */
+static bool trans_SBI(DisasContext *ctx, arg_SBI *a)
+{
+    TCGv data = tcg_temp_new_i32();
+    TCGv port = tcg_const_i32(a->reg);
+
+    gen_helper_inb(data, cpu_env, port);
+    tcg_gen_ori_tl(data, data, 1 << a->bit);
+    gen_helper_outb(cpu_env, port, data);
+
+    tcg_temp_free_i32(port);
+    tcg_temp_free_i32(data);
+
+    return true;
+}
+
+
+/*
+ *  Clears a specified bit in an I/O Register. This instruction operates on
+ *  the lower 32 I/O Registers -- addresses 0-31.
+ */
+static bool trans_CBI(DisasContext *ctx, arg_CBI *a)
+{
+    TCGv data = tcg_temp_new_i32();
+    TCGv port = tcg_const_i32(a->reg);
+
+    gen_helper_inb(data, cpu_env, port);
+    tcg_gen_andi_tl(data, data, ~(1 << a->bit));
+    gen_helper_outb(cpu_env, port, data);
+
+    tcg_temp_free_i32(data);
+    tcg_temp_free_i32(port);
+
+    return true;
+}
+
+
+/*
+ *  Stores bit b from Rd to the T Flag in SREG (Status Register).
+ */
+static bool trans_BST(DisasContext *ctx, arg_BST *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+
+    tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit);
+    tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit);
+
+    return true;
+}
+
+
+/*
+ *  Copies the T Flag in the SREG (Status Register) to bit b in register Rd.
+ */
+static bool trans_BLD(DisasContext *ctx, arg_BLD *a)
+{
+    TCGv Rd = cpu_r[a->rd];
+    TCGv t1 = tcg_temp_new_i32();
+
+    tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */
+    tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */
+    tcg_gen_or_tl(Rd, Rd, t1);
+
+    tcg_temp_free_i32(t1);
+
+    return true;
+}
+
+
+/*
+ *  Sets a single Flag or bit in SREG.
+ */
+static bool trans_BSET(DisasContext *ctx, arg_BSET *a)
+{
+    switch (a->bit) {
+    case 0x00:
+        tcg_gen_movi_tl(cpu_Cf, 0x01);
+        break;
+    case 0x01:
+        tcg_gen_movi_tl(cpu_Zf, 0x01);
+        break;
+    case 0x02:
+        tcg_gen_movi_tl(cpu_Nf, 0x01);
+        break;
+    case 0x03:
+        tcg_gen_movi_tl(cpu_Vf, 0x01);
+        break;
+    case 0x04:
+        tcg_gen_movi_tl(cpu_Sf, 0x01);
+        break;
+    case 0x05:
+        tcg_gen_movi_tl(cpu_Hf, 0x01);
+        break;
+    case 0x06:
+        tcg_gen_movi_tl(cpu_Tf, 0x01);
+        break;
+    case 0x07:
+        tcg_gen_movi_tl(cpu_If, 0x01);
+        break;
+    }
+
+    return true;
+}
+
+
+/*
+ *  Clears a single Flag in SREG.
+ */
+static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a)
+{
+    switch (a->bit) {
+    case 0x00:
+        tcg_gen_movi_tl(cpu_Cf, 0x00);
+        break;
+    case 0x01:
+        tcg_gen_movi_tl(cpu_Zf, 0x00);
+        break;
+    case 0x02:
+        tcg_gen_movi_tl(cpu_Nf, 0x00);
+        break;
+    case 0x03:
+        tcg_gen_movi_tl(cpu_Vf, 0x00);
+        break;
+    case 0x04:
+        tcg_gen_movi_tl(cpu_Sf, 0x00);
+        break;
+    case 0x05:
+        tcg_gen_movi_tl(cpu_Hf, 0x00);
+        break;
+    case 0x06:
+        tcg_gen_movi_tl(cpu_Tf, 0x00);
+        break;
+    case 0x07:
+        tcg_gen_movi_tl(cpu_If, 0x00);
+        break;
+    }
+
+    return true;
+}