diff mbox series

[v4,28/30] riscv: Documentation for landing pad / indirect branch tracking

Message ID 20240912231650.3740732-29-debug@rivosinc.com (mailing list archive)
State Superseded
Headers show
Series riscv control-flow integrity for usermode | expand

Checks

Context Check Description
conchuod/vmtest-fixes-PR fail merge-conflict
conchuod/vmtest-for-next-PR fail PR summary
conchuod/patch-28-test-1 fail .github/scripts/patches/tests/build_rv32_defconfig.sh took 109.88s
conchuod/patch-28-test-2 fail .github/scripts/patches/tests/build_rv64_clang_allmodconfig.sh took 926.73s
conchuod/patch-28-test-3 fail .github/scripts/patches/tests/build_rv64_gcc_allmodconfig.sh took 1141.57s
conchuod/patch-28-test-4 fail .github/scripts/patches/tests/build_rv64_nommu_k210_defconfig.sh took 18.07s
conchuod/patch-28-test-5 fail .github/scripts/patches/tests/build_rv64_nommu_virt_defconfig.sh took 19.78s
conchuod/patch-28-test-6 warning .github/scripts/patches/tests/checkpatch.sh took 0.52s
conchuod/patch-28-test-7 success .github/scripts/patches/tests/dtb_warn_rv64.sh took 40.74s
conchuod/patch-28-test-8 success .github/scripts/patches/tests/header_inline.sh took 0.01s
conchuod/patch-28-test-9 success .github/scripts/patches/tests/kdoc.sh took 0.57s
conchuod/patch-28-test-10 success .github/scripts/patches/tests/module_param.sh took 0.01s
conchuod/patch-28-test-11 success .github/scripts/patches/tests/verify_fixes.sh took 0.00s
conchuod/patch-28-test-12 success .github/scripts/patches/tests/verify_signedoff.sh took 0.04s

Commit Message

Deepak Gupta Sept. 12, 2024, 11:16 p.m. UTC
Adding documentation on landing pad aka indirect branch tracking on riscv
and kernel interfaces exposed so that user tasks can enable it.

Signed-off-by: Deepak Gupta <debug@rivosinc.com>
---
 Documentation/arch/riscv/zicfilp.rst | 104 +++++++++++++++++++++++++++
 1 file changed, 104 insertions(+)
 create mode 100644 Documentation/arch/riscv/zicfilp.rst

Comments

Bagas Sanjaya Sept. 16, 2024, 2:41 a.m. UTC | #1
On Thu, Sep 12, 2024 at 04:16:47PM -0700, Deepak Gupta wrote:
> Adding documentation on landing pad aka indirect branch tracking on riscv
> and kernel interfaces exposed so that user tasks can enable it.
> 
> Signed-off-by: Deepak Gupta <debug@rivosinc.com>
> ---
>  Documentation/arch/riscv/zicfilp.rst | 104 +++++++++++++++++++++++++++
>  1 file changed, 104 insertions(+)
>  create mode 100644 Documentation/arch/riscv/zicfilp.rst

Don't forget to add toctree entry:

---- >8 ----
diff --git a/Documentation/arch/riscv/index.rst b/Documentation/arch/riscv/index.rst
index eecf347ce84944..be7237b6968213 100644
--- a/Documentation/arch/riscv/index.rst
+++ b/Documentation/arch/riscv/index.rst
@@ -14,6 +14,7 @@ RISC-V architecture
     uabi
     vector
     cmodx
+    zicfilp

     features


> +Function pointers live in read-write memory and thus are susceptible to corruption
> +and allows an adversary to reach any program counter (PC) in address space. On
> +RISC-V zicfilp extension enforces a restriction on such indirect control transfers
> +
> +	- indirect control transfers must land on a landing pad instruction `lpad`.
> +	  There are two exception to this rule
> +		- rs1 = x1 or rs1 = x5, i.e. a return from a function and returns are
> +		  protected using shadow stack (see zicfiss.rst)
> +
> +		- rs1 = x7. On RISC-V compiler usually does below to reach function
> +		  which is beyond the offset possible J-type instruction.
> +
> +			"auipc x7, <imm>"
> +			"jalr (x7)"
> +
> +		  Such form of indirect control transfer are still immutable and don't rely
> +		  on memory and thus rs1=x7 is exempted from tracking and considered software
> +		  guarded jumps.

Sphinx reports new htmldocs warnings:

Documentation/arch/riscv/zicfilp.rst:30: ERROR: Unexpected indentation.
Documentation/arch/riscv/zicfilp.rst:96: ERROR: Unexpected indentation.	

I have to fix up the lists:

---- >8 ----
diff --git a/Documentation/arch/riscv/zicfilp.rst b/Documentation/arch/riscv/zicfilp.rst
index 23013ee711ac2c..c0fad1b5caa3d8 100644
--- a/Documentation/arch/riscv/zicfilp.rst
+++ b/Documentation/arch/riscv/zicfilp.rst
@@ -23,22 +23,24 @@ flow integrity (CFI) of the program.

 Function pointers live in read-write memory and thus are susceptible to corruption
 and allows an adversary to reach any program counter (PC) in address space. On
-RISC-V zicfilp extension enforces a restriction on such indirect control transfers
+RISC-V zicfilp extension enforces a restriction on such indirect control
+transfers:

-	- indirect control transfers must land on a landing pad instruction `lpad`.
-	  There are two exception to this rule
-		- rs1 = x1 or rs1 = x5, i.e. a return from a function and returns are
-		  protected using shadow stack (see zicfiss.rst)
+- indirect control transfers must land on a landing pad instruction `lpad`.
+  There are two exception to this rule:

-		- rs1 = x7. On RISC-V compiler usually does below to reach function
-		  which is beyond the offset possible J-type instruction.
+  - rs1 = x1 or rs1 = x5, i.e. a return from a function and returns are
+    protected using shadow stack (see zicfiss.rst)

-			"auipc x7, <imm>"
-			"jalr (x7)"
+  - rs1 = x7. On RISC-V compiler usually does below to reach function
+    which is beyond the offset possible J-type instruction.

-		  Such form of indirect control transfer are still immutable and don't rely
-		  on memory and thus rs1=x7 is exempted from tracking and considered software
-		  guarded jumps.
+      "auipc x7, <imm>"
+      "jalr (x7)"
+
+    Such form of indirect control transfer are still immutable and don't rely
+    on memory and thus rs1=x7 is exempted from tracking and considered software
+    guarded jumps.

 `lpad` instruction is pseudo of `auipc rd, <imm_20bit>` with `rd=x0`` and is a HINT
 nop. `lpad` instruction must be aligned on 4 byte boundary and compares 20 bit
@@ -92,10 +94,11 @@ to lock current settings.
 --------------------------------------------------

 Pertaining to indirect branch tracking, CPU raises software check exception in
-following conditions
-	- missing `lpad` after indirect call / jmp
-	- `lpad` not on 4 byte boundary
-	- `imm_20bit` embedded in `lpad` instruction doesn't match with `x7`
+following conditions:
+
+- missing `lpad` after indirect call / jmp
+- `lpad` not on 4 byte boundary
+- `imm_20bit` embedded in `lpad` instruction doesn't match with `x7`

 In all 3 cases, `*tval = 2` is captured and software check exception is raised
 (cause=18)


> +
> +`lpad` instruction is pseudo of `auipc rd, <imm_20bit>` with `rd=x0`` and is a HINT
> +nop. `lpad` instruction must be aligned on 4 byte boundary and compares 20 bit
> +immediate withx7. If `imm_20bit` == 0, CPU don't perform any comparision with x7. If
> +`imm_20bit` != 0, then `imm_20bit` must match x7 else CPU will raise
> +`software check exception` (cause=18)with `*tval = 2`.
> +

Also inline identifiers/keywords to be consistent with rest of riscv docs:

---- >8 ----
diff --git a/Documentation/arch/riscv/zicfilp.rst b/Documentation/arch/riscv/zicfilp.rst
index c0fad1b5caa3d8..b0a766098f2335 100644
--- a/Documentation/arch/riscv/zicfilp.rst
+++ b/Documentation/arch/riscv/zicfilp.rst
@@ -26,38 +26,38 @@ and allows an adversary to reach any program counter (PC) in address space. On
 RISC-V zicfilp extension enforces a restriction on such indirect control
 transfers:

-- indirect control transfers must land on a landing pad instruction `lpad`.
+- indirect control transfers must land on a landing pad instruction ``lpad``.
   There are two exception to this rule:

   - rs1 = x1 or rs1 = x5, i.e. a return from a function and returns are
     protected using shadow stack (see zicfiss.rst)

   - rs1 = x7. On RISC-V compiler usually does below to reach function
-    which is beyond the offset possible J-type instruction.
+    which is beyond the offset possible J-type instruction::

-      "auipc x7, <imm>"
-      "jalr (x7)"
+      auipc x7, <imm>
+      jalr (x7)

     Such form of indirect control transfer are still immutable and don't rely
     on memory and thus rs1=x7 is exempted from tracking and considered software
     guarded jumps.

-`lpad` instruction is pseudo of `auipc rd, <imm_20bit>` with `rd=x0`` and is a HINT
-nop. `lpad` instruction must be aligned on 4 byte boundary and compares 20 bit
-immediate withx7. If `imm_20bit` == 0, CPU don't perform any comparision with x7. If
-`imm_20bit` != 0, then `imm_20bit` must match x7 else CPU will raise
-`software check exception` (cause=18)with `*tval = 2`.
+``lpad`` instruction is pseudo of ``auipc rd, <imm_20bit>`` with ``rd=x0`` and
+is a HINT nop. ``lpad`` instruction must be aligned on 4 byte boundary and
+compares 20 bit immediate with x7. If ``imm_20bit`` == 0, CPU don't perform any
+comparision with x7. If ``imm_20bit`` != 0, then ``imm_20bit`` must match x7
+else CPU will raise software check exception (cause=18) with ``*tval = 2``.

 Compiler can generate a hash over function signatures and setup them (truncated
-to 20bit) in x7 at callsites and function prologues can have `lpad` with same
+to 20bit) in x7 at callsites and function prologues can have ``lpad`` with same
 function hash. This further reduces number of program counters a call site can
 reach.

 2. ELF and psABI
 -----------------

-Toolchain sets up `GNU_PROPERTY_RISCV_FEATURE_1_FCFI` for property
-`GNU_PROPERTY_RISCV_FEATURE_1_AND` in notes section of the object file.
+Toolchain sets up ``GNU_PROPERTY_RISCV_FEATURE_1_FCFI`` for property
+``GNU_PROPERTY_RISCV_FEATURE_1_AND`` in notes section of the object file.

 3. Linux enabling
 ------------------
@@ -70,25 +70,26 @@ indirect branch tracking for the program.
 4. prctl() enabling
 --------------------

-`PR_SET_INDIR_BR_LP_STATUS` / `PR_GET_INDIR_BR_LP_STATUS` /
-`PR_LOCK_INDIR_BR_LP_STATUS` are three prctls added to manage indirect branch
+``PR_SET_INDIR_BR_LP_STATUS`` / ``PR_GET_INDIR_BR_LP_STATUS`` /
+``PR_LOCK_INDIR_BR_LP_STATUS`` are three prctls added to manage indirect branch
 tracking. prctls are arch agnostic and returns -EINVAL on other arches.

-`PR_SET_INDIR_BR_LP_STATUS`: If arg1 `PR_INDIR_BR_LP_ENABLE` and if CPU supports
-`zicfilp` then kernel will enabled indirect branch tracking for the task.
-Dynamic loader can issue this `prctl` once it has determined that all the objects
-loaded in address space support indirect branch tracking. Additionally if there is
-a `dlopen` to an object which wasn't compiled with `zicfilp`, dynamic loader can
-issue this prctl with arg1 set to 0 (i.e. `PR_INDIR_BR_LP_ENABLE` being clear)
+``PR_SET_INDIR_BR_LP_STATUS``: If arg1 ``PR_INDIR_BR_LP_ENABLE`` and if CPU
+supports ``zicfilp`` then kernel will enabled indirect branch tracking for the
+task. Dynamic loader can issue this ``prctl`` once it has determined that all
+the objects loaded in address space support indirect branch tracking.
+Additionally if there is a ``dlopen`` to an object which wasn't compiled with
+``zicfilp``, dynamic loader can issue this prctl with arg1 set to 0 (i.e.
+``PR_INDIR_BR_LP_ENABLE`` being clear)

-`PR_GET_INDIR_BR_LP_STATUS`: Returns current status of indirect branch tracking.
-If enabled it'll return `PR_INDIR_BR_LP_ENABLE`
+``PR_GET_INDIR_BR_LP_STATUS``: Returns current status of indirect branch
+tracking. If enabled it'll return ``PR_INDIR_BR_LP_ENABLE``

-`PR_LOCK_INDIR_BR_LP_STATUS`: Locks current status of indirect branch tracking on
-the task. User space may want to run with strict security posture and wouldn't want
-loading of objects without `zicfilp` support in it and thus would want to disallow
-disabling of indirect branch tracking. In that case user space can use this prctl
-to lock current settings.
+``PR_LOCK_INDIR_BR_LP_STATUS``: Locks current status of indirect branch
+tracking on the task. User space may want to run with strict security posture
+and wouldn't want loading of objects without ``zicfilp`` support in it and thus
+would want to disallow disabling of indirect branch tracking. In that case user
+space can use this prctl to lock current settings.

 5. violations related to indirect branch tracking
 --------------------------------------------------
@@ -96,12 +97,12 @@ to lock current settings.
 Pertaining to indirect branch tracking, CPU raises software check exception in
 following conditions:

-- missing `lpad` after indirect call / jmp
-- `lpad` not on 4 byte boundary
-- `imm_20bit` embedded in `lpad` instruction doesn't match with `x7`
+- missing ``lpad`` after indirect call / jmp
+- ``lpad`` not on 4 byte boundary
+- ``imm_20bit`` embedded in ``lpad`` instruction doesn't match with x7

-In all 3 cases, `*tval = 2` is captured and software check exception is raised
+In all 3 cases, ``*tval = 2`` is captured and software check exception is raised
 (cause=18)

-Linux kernel will treat this as `SIGSEV`` with code = `SEGV_CPERR` and follow
+Linux kernel will treat this as ``SIGSEV`` with code = ``SEGV_CPERR`` and follow
 normal course of signal delivery.

Thanks.
diff mbox series

Patch

diff --git a/Documentation/arch/riscv/zicfilp.rst b/Documentation/arch/riscv/zicfilp.rst
new file mode 100644
index 000000000000..23013ee711ac
--- /dev/null
+++ b/Documentation/arch/riscv/zicfilp.rst
@@ -0,0 +1,104 @@ 
+.. SPDX-License-Identifier: GPL-2.0
+
+:Author: Deepak Gupta <debug@rivosinc.com>
+:Date:   12 January 2024
+
+====================================================
+Tracking indirect control transfers on RISC-V Linux
+====================================================
+
+This document briefly describes the interface provided to userspace by Linux
+to enable indirect branch tracking for user mode applications on RISV-V
+
+1. Feature Overview
+--------------------
+
+Memory corruption issues usually result in to crashes, however when in hands of
+an adversary and if used creatively can result into variety security issues.
+
+One of those security issues can be code re-use attacks on program where adversary
+can use corrupt function pointers and chain them together to perform jump oriented
+programming (JOP) or call oriented programming (COP) and thus compromising control
+flow integrity (CFI) of the program.
+
+Function pointers live in read-write memory and thus are susceptible to corruption
+and allows an adversary to reach any program counter (PC) in address space. On
+RISC-V zicfilp extension enforces a restriction on such indirect control transfers
+
+	- indirect control transfers must land on a landing pad instruction `lpad`.
+	  There are two exception to this rule
+		- rs1 = x1 or rs1 = x5, i.e. a return from a function and returns are
+		  protected using shadow stack (see zicfiss.rst)
+
+		- rs1 = x7. On RISC-V compiler usually does below to reach function
+		  which is beyond the offset possible J-type instruction.
+
+			"auipc x7, <imm>"
+			"jalr (x7)"
+
+		  Such form of indirect control transfer are still immutable and don't rely
+		  on memory and thus rs1=x7 is exempted from tracking and considered software
+		  guarded jumps.
+
+`lpad` instruction is pseudo of `auipc rd, <imm_20bit>` with `rd=x0`` and is a HINT
+nop. `lpad` instruction must be aligned on 4 byte boundary and compares 20 bit
+immediate withx7. If `imm_20bit` == 0, CPU don't perform any comparision with x7. If
+`imm_20bit` != 0, then `imm_20bit` must match x7 else CPU will raise
+`software check exception` (cause=18)with `*tval = 2`.
+
+Compiler can generate a hash over function signatures and setup them (truncated
+to 20bit) in x7 at callsites and function prologues can have `lpad` with same
+function hash. This further reduces number of program counters a call site can
+reach.
+
+2. ELF and psABI
+-----------------
+
+Toolchain sets up `GNU_PROPERTY_RISCV_FEATURE_1_FCFI` for property
+`GNU_PROPERTY_RISCV_FEATURE_1_AND` in notes section of the object file.
+
+3. Linux enabling
+------------------
+
+User space programs can have multiple shared objects loaded in its address space
+and it's a difficult task to make sure all the dependencies have been compiled
+with support of indirect branch. Thus it's left to dynamic loader to enable
+indirect branch tracking for the program.
+
+4. prctl() enabling
+--------------------
+
+`PR_SET_INDIR_BR_LP_STATUS` / `PR_GET_INDIR_BR_LP_STATUS` /
+`PR_LOCK_INDIR_BR_LP_STATUS` are three prctls added to manage indirect branch
+tracking. prctls are arch agnostic and returns -EINVAL on other arches.
+
+`PR_SET_INDIR_BR_LP_STATUS`: If arg1 `PR_INDIR_BR_LP_ENABLE` and if CPU supports
+`zicfilp` then kernel will enabled indirect branch tracking for the task.
+Dynamic loader can issue this `prctl` once it has determined that all the objects
+loaded in address space support indirect branch tracking. Additionally if there is
+a `dlopen` to an object which wasn't compiled with `zicfilp`, dynamic loader can
+issue this prctl with arg1 set to 0 (i.e. `PR_INDIR_BR_LP_ENABLE` being clear)
+
+`PR_GET_INDIR_BR_LP_STATUS`: Returns current status of indirect branch tracking.
+If enabled it'll return `PR_INDIR_BR_LP_ENABLE`
+
+`PR_LOCK_INDIR_BR_LP_STATUS`: Locks current status of indirect branch tracking on
+the task. User space may want to run with strict security posture and wouldn't want
+loading of objects without `zicfilp` support in it and thus would want to disallow
+disabling of indirect branch tracking. In that case user space can use this prctl
+to lock current settings.
+
+5. violations related to indirect branch tracking
+--------------------------------------------------
+
+Pertaining to indirect branch tracking, CPU raises software check exception in
+following conditions
+	- missing `lpad` after indirect call / jmp
+	- `lpad` not on 4 byte boundary
+	- `imm_20bit` embedded in `lpad` instruction doesn't match with `x7`
+
+In all 3 cases, `*tval = 2` is captured and software check exception is raised
+(cause=18)
+
+Linux kernel will treat this as `SIGSEV`` with code = `SEGV_CPERR` and follow
+normal course of signal delivery.