@@ -60,6 +60,7 @@
pub mod prelude;
pub mod print;
pub mod rbtree;
+pub mod revocable;
pub mod security;
pub mod seq_file;
pub mod sizes;
new file mode 100644
@@ -0,0 +1,219 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Revocable objects.
+//!
+//! The [`Revocable`] type wraps other types and allows access to them to be revoked. The existence
+//! of a [`RevocableGuard`] ensures that objects remain valid.
+
+use crate::{bindings, prelude::*, sync::rcu, types::Opaque};
+use core::{
+ marker::PhantomData,
+ ops::Deref,
+ ptr::drop_in_place,
+ sync::atomic::{AtomicBool, Ordering},
+};
+
+/// An object that can become inaccessible at runtime.
+///
+/// Once access is revoked and all concurrent users complete (i.e., all existing instances of
+/// [`RevocableGuard`] are dropped), the wrapped object is also dropped.
+///
+/// # Examples
+///
+/// ```
+/// # use kernel::revocable::Revocable;
+///
+/// struct Example {
+/// a: u32,
+/// b: u32,
+/// }
+///
+/// fn add_two(v: &Revocable<Example>) -> Option<u32> {
+/// let guard = v.try_access()?;
+/// Some(guard.a + guard.b)
+/// }
+///
+/// let v = KBox::pin_init(Revocable::new(Example { a: 10, b: 20 }), GFP_KERNEL).unwrap();
+/// assert_eq!(add_two(&v), Some(30));
+/// v.revoke();
+/// assert_eq!(add_two(&v), None);
+/// ```
+///
+/// Sample example as above, but explicitly using the rcu read side lock.
+///
+/// ```
+/// # use kernel::revocable::Revocable;
+/// use kernel::sync::rcu;
+///
+/// struct Example {
+/// a: u32,
+/// b: u32,
+/// }
+///
+/// fn add_two(v: &Revocable<Example>) -> Option<u32> {
+/// let guard = rcu::read_lock();
+/// let e = v.try_access_with_guard(&guard)?;
+/// Some(e.a + e.b)
+/// }
+///
+/// let v = KBox::pin_init(Revocable::new(Example { a: 10, b: 20 }), GFP_KERNEL).unwrap();
+/// assert_eq!(add_two(&v), Some(30));
+/// v.revoke();
+/// assert_eq!(add_two(&v), None);
+/// ```
+#[pin_data(PinnedDrop)]
+pub struct Revocable<T> {
+ is_available: AtomicBool,
+ #[pin]
+ data: Opaque<T>,
+}
+
+// SAFETY: `Revocable` is `Send` if the wrapped object is also `Send`. This is because while the
+// functionality exposed by `Revocable` can be accessed from any thread/CPU, it is possible that
+// this isn't supported by the wrapped object.
+unsafe impl<T: Send> Send for Revocable<T> {}
+
+// SAFETY: `Revocable` is `Sync` if the wrapped object is both `Send` and `Sync`. We require `Send`
+// from the wrapped object as well because of `Revocable::revoke`, which can trigger the `Drop`
+// implementation of the wrapped object from an arbitrary thread.
+unsafe impl<T: Sync + Send> Sync for Revocable<T> {}
+
+impl<T> Revocable<T> {
+ /// Creates a new revocable instance of the given data.
+ pub fn new(data: impl PinInit<T>) -> impl PinInit<Self> {
+ pin_init!(Self {
+ is_available: AtomicBool::new(true),
+ data <- Opaque::pin_init(data),
+ })
+ }
+
+ /// Tries to access the revocable wrapped object.
+ ///
+ /// Returns `None` if the object has been revoked and is therefore no longer accessible.
+ ///
+ /// Returns a guard that gives access to the object otherwise; the object is guaranteed to
+ /// remain accessible while the guard is alive. In such cases, callers are not allowed to sleep
+ /// because another CPU may be waiting to complete the revocation of this object.
+ pub fn try_access(&self) -> Option<RevocableGuard<'_, T>> {
+ let guard = rcu::read_lock();
+ if self.is_available.load(Ordering::Relaxed) {
+ // Since `self.is_available` is true, data is initialised and has to remain valid
+ // because the RCU read side lock prevents it from being dropped.
+ Some(RevocableGuard::new(self.data.get(), guard))
+ } else {
+ None
+ }
+ }
+
+ /// Tries to access the revocable wrapped object.
+ ///
+ /// Returns `None` if the object has been revoked and is therefore no longer accessible.
+ ///
+ /// Returns a shared reference to the object otherwise; the object is guaranteed to
+ /// remain accessible while the rcu read side guard is alive. In such cases, callers are not
+ /// allowed to sleep because another CPU may be waiting to complete the revocation of this
+ /// object.
+ pub fn try_access_with_guard<'a>(&'a self, _guard: &'a rcu::Guard) -> Option<&'a T> {
+ if self.is_available.load(Ordering::Relaxed) {
+ // SAFETY: Since `self.is_available` is true, data is initialised and has to remain
+ // valid because the RCU read side lock prevents it from being dropped.
+ Some(unsafe { &*self.data.get() })
+ } else {
+ None
+ }
+ }
+
+ /// # Safety
+ ///
+ /// Callers must ensure that there are no more concurrent users of the revocable object.
+ unsafe fn revoke_internal<const SYNC: bool>(&self) {
+ if self.is_available.swap(false, Ordering::Relaxed) {
+ if SYNC {
+ // SAFETY: Just an FFI call, there are no further requirements.
+ unsafe { bindings::synchronize_rcu() };
+ }
+
+ // SAFETY: We know `self.data` is valid because only one CPU can succeed the
+ // `compare_exchange` above that takes `is_available` from `true` to `false`.
+ unsafe { drop_in_place(self.data.get()) };
+ }
+ }
+
+ /// Revokes access to and drops the wrapped object.
+ ///
+ /// Access to the object is revoked immediately to new callers of [`Revocable::try_access`],
+ /// expecting that there are no concurrent users of the object.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that there are no more concurrent users of the revocable object.
+ pub unsafe fn revoke_nosync(&self) {
+ // SAFETY: By the safety requirement of this function, the caller ensures that nobody is
+ // accessing the data anymore and hence we don't have to wait for the grace period to
+ // finish.
+ unsafe { self.revoke_internal::<false>() }
+ }
+
+ /// Revokes access to and drops the wrapped object.
+ ///
+ /// Access to the object is revoked immediately to new callers of [`Revocable::try_access`].
+ ///
+ /// If there are concurrent users of the object (i.e., ones that called
+ /// [`Revocable::try_access`] beforehand and still haven't dropped the returned guard), this
+ /// function waits for the concurrent access to complete before dropping the wrapped object.
+ pub fn revoke(&self) {
+ // SAFETY: By passing `true` we ask `revoke_internal` to wait for the grace period to
+ // finish.
+ unsafe { self.revoke_internal::<true>() }
+ }
+}
+
+#[pinned_drop]
+impl<T> PinnedDrop for Revocable<T> {
+ fn drop(self: Pin<&mut Self>) {
+ // Drop only if the data hasn't been revoked yet (in which case it has already been
+ // dropped).
+ // SAFETY: We are not moving out of `p`, only dropping in place
+ let p = unsafe { self.get_unchecked_mut() };
+ if *p.is_available.get_mut() {
+ // SAFETY: We know `self.data` is valid because no other CPU has changed
+ // `is_available` to `false` yet, and no other CPU can do it anymore because this CPU
+ // holds the only reference (mutable) to `self` now.
+ unsafe { drop_in_place(p.data.get()) };
+ }
+ }
+}
+
+/// A guard that allows access to a revocable object and keeps it alive.
+///
+/// CPUs may not sleep while holding on to [`RevocableGuard`] because it's in atomic context
+/// holding the RCU read-side lock.
+///
+/// # Invariants
+///
+/// The RCU read-side lock is held while the guard is alive.
+pub struct RevocableGuard<'a, T> {
+ data_ref: *const T,
+ _rcu_guard: rcu::Guard,
+ _p: PhantomData<&'a ()>,
+}
+
+impl<T> RevocableGuard<'_, T> {
+ fn new(data_ref: *const T, rcu_guard: rcu::Guard) -> Self {
+ Self {
+ data_ref,
+ _rcu_guard: rcu_guard,
+ _p: PhantomData,
+ }
+ }
+}
+
+impl<T> Deref for RevocableGuard<'_, T> {
+ type Target = T;
+
+ fn deref(&self) -> &Self::Target {
+ // SAFETY: By the type invariants, we hold the rcu read-side lock, so the object is
+ // guaranteed to remain valid.
+ unsafe { &*self.data_ref }
+ }
+}