diff mbox

[v3,38/52] IB/qib: Add qib_twsi.c

Message ID 20100507000211.3441.67028.stgit@chromite.mv.qlogic.com (mailing list archive)
State Accepted, archived
Headers show

Commit Message

Ralph Campbell May 7, 2010, 12:02 a.m. UTC
None
diff mbox

Patch

diff --git a/drivers/infiniband/hw/qib/qib_twsi.c b/drivers/infiniband/hw/qib/qib_twsi.c
new file mode 100644
index 0000000..6f31ca5
--- /dev/null
+++ b/drivers/infiniband/hw/qib/qib_twsi.c
@@ -0,0 +1,498 @@ 
+/*
+ * Copyright (c) 2006, 2007, 2008, 2009 QLogic Corporation. All rights reserved.
+ * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
+ *
+ * This software is available to you under a choice of one of two
+ * licenses.  You may choose to be licensed under the terms of the GNU
+ * General Public License (GPL) Version 2, available from the file
+ * COPYING in the main directory of this source tree, or the
+ * OpenIB.org BSD license below:
+ *
+ *     Redistribution and use in source and binary forms, with or
+ *     without modification, are permitted provided that the following
+ *     conditions are met:
+ *
+ *      - Redistributions of source code must retain the above
+ *        copyright notice, this list of conditions and the following
+ *        disclaimer.
+ *
+ *      - Redistributions in binary form must reproduce the above
+ *        copyright notice, this list of conditions and the following
+ *        disclaimer in the documentation and/or other materials
+ *        provided with the distribution.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include <linux/delay.h>
+#include <linux/pci.h>
+#include <linux/vmalloc.h>
+
+#include "qib.h"
+
+/*
+ * QLogic_IB "Two Wire Serial Interface" driver.
+ * Originally written for a not-quite-i2c serial eeprom, which is
+ * still used on some supported boards. Later boards have added a
+ * variety of other uses, most board-specific, so teh bit-boffing
+ * part has been split off to this file, while the other parts
+ * have been moved to chip-specific files.
+ *
+ * We have also dropped all pretense of fully generic (e.g. pretend
+ * we don't know whether '1' is the higher voltage) interface, as
+ * the restrictions of the generic i2c interface (e.g. no access from
+ * driver itself) make it unsuitable for this use.
+ */
+
+#define READ_CMD 1
+#define WRITE_CMD 0
+
+/**
+ * i2c_wait_for_writes - wait for a write
+ * @dd: the qlogic_ib device
+ *
+ * We use this instead of udelay directly, so we can make sure
+ * that previous register writes have been flushed all the way
+ * to the chip.  Since we are delaying anyway, the cost doesn't
+ * hurt, and makes the bit twiddling more regular
+ */
+static void i2c_wait_for_writes(struct qib_devdata *dd)
+{
+	/*
+	 * implicit read of EXTStatus is as good as explicit
+	 * read of scratch, if all we want to do is flush
+	 * writes.
+	 */
+	dd->f_gpio_mod(dd, 0, 0, 0);
+	rmb(); /* inlined, so prevent compiler reordering */
+}
+
+/*
+ * QSFP modules are allowed to hold SCL low for 500uSec. Allow twice that
+ * for "almost compliant" modules
+ */
+#define SCL_WAIT_USEC 1000
+
+/* BUF_WAIT is time bus must be free between STOP or ACK and to next START.
+ * Should be 20, but some chips need more.
+ */
+#define TWSI_BUF_WAIT_USEC 60
+
+static void scl_out(struct qib_devdata *dd, u8 bit)
+{
+	u32 mask;
+
+	udelay(1);
+
+	mask = 1UL << dd->gpio_scl_num;
+
+	/* SCL is meant to be bare-drain, so never set "OUT", just DIR */
+	dd->f_gpio_mod(dd, 0, bit ? 0 : mask, mask);
+
+	/*
+	 * Allow for slow slaves by simple
+	 * delay for falling edge, sampling on rise.
+	 */
+	if (!bit)
+		udelay(2);
+	else {
+		int rise_usec;
+		for (rise_usec = SCL_WAIT_USEC; rise_usec > 0; rise_usec -= 2) {
+			if (mask & dd->f_gpio_mod(dd, 0, 0, 0))
+				break;
+			udelay(2);
+		}
+		if (rise_usec <= 0)
+			qib_dev_err(dd, "SCL interface stuck low > %d uSec\n",
+				    SCL_WAIT_USEC);
+	}
+	i2c_wait_for_writes(dd);
+}
+
+static void sda_out(struct qib_devdata *dd, u8 bit)
+{
+	u32 mask;
+
+	mask = 1UL << dd->gpio_sda_num;
+
+	/* SDA is meant to be bare-drain, so never set "OUT", just DIR */
+	dd->f_gpio_mod(dd, 0, bit ? 0 : mask, mask);
+
+	i2c_wait_for_writes(dd);
+	udelay(2);
+}
+
+static u8 sda_in(struct qib_devdata *dd, int wait)
+{
+	int bnum;
+	u32 read_val, mask;
+
+	bnum = dd->gpio_sda_num;
+	mask = (1UL << bnum);
+	/* SDA is meant to be bare-drain, so never set "OUT", just DIR */
+	dd->f_gpio_mod(dd, 0, 0, mask);
+	read_val = dd->f_gpio_mod(dd, 0, 0, 0);
+	if (wait)
+		i2c_wait_for_writes(dd);
+	return (read_val & mask) >> bnum;
+}
+
+/**
+ * i2c_ackrcv - see if ack following write is true
+ * @dd: the qlogic_ib device
+ */
+static int i2c_ackrcv(struct qib_devdata *dd)
+{
+	u8 ack_received;
+
+	/* AT ENTRY SCL = LOW */
+	/* change direction, ignore data */
+	ack_received = sda_in(dd, 1);
+	scl_out(dd, 1);
+	ack_received = sda_in(dd, 1) == 0;
+	scl_out(dd, 0);
+	return ack_received;
+}
+
+static void stop_cmd(struct qib_devdata *dd);
+
+/**
+ * rd_byte - read a byte, sending STOP on last, else ACK
+ * @dd: the qlogic_ib device
+ *
+ * Returns byte shifted out of device
+ */
+static int rd_byte(struct qib_devdata *dd, int last)
+{
+	int bit_cntr, data;
+
+	data = 0;
+
+	for (bit_cntr = 7; bit_cntr >= 0; --bit_cntr) {
+		data <<= 1;
+		scl_out(dd, 1);
+		data |= sda_in(dd, 0);
+		scl_out(dd, 0);
+	}
+	if (last) {
+		scl_out(dd, 1);
+		stop_cmd(dd);
+	} else {
+		sda_out(dd, 0);
+		scl_out(dd, 1);
+		scl_out(dd, 0);
+		sda_out(dd, 1);
+	}
+	return data;
+}
+
+/**
+ * wr_byte - write a byte, one bit at a time
+ * @dd: the qlogic_ib device
+ * @data: the byte to write
+ *
+ * Returns 0 if we got the following ack, otherwise 1
+ */
+static int wr_byte(struct qib_devdata *dd, u8 data)
+{
+	int bit_cntr;
+	u8 bit;
+
+	for (bit_cntr = 7; bit_cntr >= 0; bit_cntr--) {
+		bit = (data >> bit_cntr) & 1;
+		sda_out(dd, bit);
+		scl_out(dd, 1);
+		scl_out(dd, 0);
+	}
+	return (!i2c_ackrcv(dd)) ? 1 : 0;
+}
+
+/*
+ * issue TWSI start sequence:
+ * (both clock/data high, clock high, data low while clock is high)
+ */
+static void start_seq(struct qib_devdata *dd)
+{
+	sda_out(dd, 1);
+	scl_out(dd, 1);
+	sda_out(dd, 0);
+	udelay(1);
+	scl_out(dd, 0);
+}
+
+/**
+ * stop_seq - transmit the stop sequence
+ * @dd: the qlogic_ib device
+ *
+ * (both clock/data low, clock high, data high while clock is high)
+ */
+static void stop_seq(struct qib_devdata *dd)
+{
+	scl_out(dd, 0);
+	sda_out(dd, 0);
+	scl_out(dd, 1);
+	sda_out(dd, 1);
+}
+
+/**
+ * stop_cmd - transmit the stop condition
+ * @dd: the qlogic_ib device
+ *
+ * (both clock/data low, clock high, data high while clock is high)
+ */
+static void stop_cmd(struct qib_devdata *dd)
+{
+	stop_seq(dd);
+	udelay(TWSI_BUF_WAIT_USEC);
+}
+
+/**
+ * qib_twsi_reset - reset I2C communication
+ * @dd: the qlogic_ib device
+ */
+
+int qib_twsi_reset(struct qib_devdata *dd)
+{
+	int clock_cycles_left = 9;
+	int was_high = 0;
+	u32 pins, mask;
+
+	/* Both SCL and SDA should be high. If not, there
+	 * is something wrong.
+	 */
+	mask = (1UL << dd->gpio_scl_num) | (1UL << dd->gpio_sda_num);
+
+	/*
+	 * Force pins to desired innocuous state.
+	 * This is the default power-on state with out=0 and dir=0,
+	 * So tri-stated and should be floating high (barring HW problems)
+	 */
+	dd->f_gpio_mod(dd, 0, 0, mask);
+
+	/*
+	 * Clock nine times to get all listeners into a sane state.
+	 * If SDA does not go high at any point, we are wedged.
+	 * One vendor recommends then issuing START followed by STOP.
+	 * we cannot use our "normal" functions to do that, because
+	 * if SCL drops between them, another vendor's part will
+	 * wedge, dropping SDA and keeping it low forever, at the end of
+	 * the next transaction (even if it was not the device addressed).
+	 * So our START and STOP take place with SCL held high.
+	 */
+	while (clock_cycles_left--) {
+		scl_out(dd, 0);
+		scl_out(dd, 1);
+		/* Note if SDA is high, but keep clocking to sync slave */
+		was_high |= sda_in(dd, 0);
+	}
+
+	if (was_high) {
+		/*
+		 * We saw a high, which we hope means the slave is sync'd.
+		 * Issue START, STOP, pause for T_BUF.
+		 */
+
+		pins = dd->f_gpio_mod(dd, 0, 0, 0);
+		if ((pins & mask) != mask)
+			qib_dev_err(dd, "GPIO pins not at rest: %d\n",
+				    pins & mask);
+		/* Drop SDA to issue START */
+		udelay(1); /* Guarantee .6 uSec setup */
+		sda_out(dd, 0);
+		udelay(1); /* Guarantee .6 uSec hold */
+		/* At this point, SCL is high, SDA low. Raise SDA for STOP */
+		sda_out(dd, 1);
+		udelay(TWSI_BUF_WAIT_USEC);
+	}
+
+	return !was_high;
+}
+
+#define QIB_TWSI_START 0x100
+#define QIB_TWSI_STOP 0x200
+
+/* Write byte to TWSI, optionally prefixed with START or suffixed with
+ * STOP.
+ * returns 0 if OK (ACK received), else != 0
+ */
+static int qib_twsi_wr(struct qib_devdata *dd, int data, int flags)
+{
+	int ret = 1;
+	if (flags & QIB_TWSI_START)
+		start_seq(dd);
+
+	ret = wr_byte(dd, data); /* Leaves SCL low (from i2c_ackrcv()) */
+
+	if (flags & QIB_TWSI_STOP)
+		stop_cmd(dd);
+	return ret;
+}
+
+/* Added functionality for IBA7220-based cards */
+#define QIB_TEMP_DEV 0x98
+
+/*
+ * qib_twsi_blk_rd
+ * Formerly called qib_eeprom_internal_read, and only used for eeprom,
+ * but now the general interface for data transfer from twsi devices.
+ * One vestige of its former role is that it recognizes a device
+ * QIB_TWSI_NO_DEV and does the correct operation for the legacy part,
+ * which responded to all TWSI device codes, interpreting them as
+ * address within device. On all other devices found on board handled by
+ * this driver, the device is followed by a one-byte "address" which selects
+ * the "register" or "offset" within the device from which data should
+ * be read.
+ */
+int qib_twsi_blk_rd(struct qib_devdata *dd, int dev, int addr,
+		    void *buffer, int len)
+{
+	int ret;
+	u8 *bp = buffer;
+
+	ret = 1;
+
+	if (dev == QIB_TWSI_NO_DEV) {
+		/* legacy not-really-I2C */
+		addr = (addr << 1) | READ_CMD;
+		ret = qib_twsi_wr(dd, addr, QIB_TWSI_START);
+	} else {
+		/* Actual I2C */
+		ret = qib_twsi_wr(dd, dev | WRITE_CMD, QIB_TWSI_START);
+		if (ret) {
+			stop_cmd(dd);
+			ret = 1;
+			goto bail;
+		}
+		/*
+		 * SFF spec claims we do _not_ stop after the addr
+		 * but simply issue a start with the "read" dev-addr.
+		 * Since we are implicitely waiting for ACK here,
+		 * we need t_buf (nominally 20uSec) before that start,
+		 * and cannot rely on the delay built in to the STOP
+		 */
+		ret = qib_twsi_wr(dd, addr, 0);
+		udelay(TWSI_BUF_WAIT_USEC);
+
+		if (ret) {
+			qib_dev_err(dd,
+				"Failed to write interface read addr %02X\n",
+				addr);
+			ret = 1;
+			goto bail;
+		}
+		ret = qib_twsi_wr(dd, dev | READ_CMD, QIB_TWSI_START);
+	}
+	if (ret) {
+		stop_cmd(dd);
+		ret = 1;
+		goto bail;
+	}
+
+	/*
+	 * block devices keeps clocking data out as long as we ack,
+	 * automatically incrementing the address. Some have "pages"
+	 * whose boundaries will not be crossed, but the handling
+	 * of these is left to the caller, who is in a better
+	 * position to know.
+	 */
+	while (len-- > 0) {
+		/*
+		 * Get and store data, sending ACK if length remaining,
+		 * else STOP
+		 */
+		*bp++ = rd_byte(dd, !len);
+	}
+
+	ret = 0;
+
+bail:
+	return ret;
+}
+
+/*
+ * qib_twsi_blk_wr
+ * Formerly called qib_eeprom_internal_write, and only used for eeprom,
+ * but now the general interface for data transfer to twsi devices.
+ * One vestige of its former role is that it recognizes a device
+ * QIB_TWSI_NO_DEV and does the correct operation for the legacy part,
+ * which responded to all TWSI device codes, interpreting them as
+ * address within device. On all other devices found on board handled by
+ * this driver, the device is followed by a one-byte "address" which selects
+ * the "register" or "offset" within the device to which data should
+ * be written.
+ */
+int qib_twsi_blk_wr(struct qib_devdata *dd, int dev, int addr,
+		    const void *buffer, int len)
+{
+	int sub_len;
+	const u8 *bp = buffer;
+	int max_wait_time, i;
+	int ret;
+	ret = 1;
+
+	while (len > 0) {
+		if (dev == QIB_TWSI_NO_DEV) {
+			if (qib_twsi_wr(dd, (addr << 1) | WRITE_CMD,
+					QIB_TWSI_START)) {
+				goto failed_write;
+			}
+		} else {
+			/* Real I2C */
+			if (qib_twsi_wr(dd, dev | WRITE_CMD, QIB_TWSI_START))
+				goto failed_write;
+			ret = qib_twsi_wr(dd, addr, 0);
+			if (ret) {
+				qib_dev_err(dd, "Failed to write interface"
+					    " write addr %02X\n", addr);
+				goto failed_write;
+			}
+		}
+
+		sub_len = min(len, 4);
+		addr += sub_len;
+		len -= sub_len;
+
+		for (i = 0; i < sub_len; i++)
+			if (qib_twsi_wr(dd, *bp++, 0))
+				goto failed_write;
+
+		stop_cmd(dd);
+
+		/*
+		 * Wait for write complete by waiting for a successful
+		 * read (the chip replies with a zero after the write
+		 * cmd completes, and before it writes to the eeprom.
+		 * The startcmd for the read will fail the ack until
+		 * the writes have completed.   We do this inline to avoid
+		 * the debug prints that are in the real read routine
+		 * if the startcmd fails.
+		 * We also use the proper device address, so it doesn't matter
+		 * whether we have real eeprom_dev. Legacy likes any address.
+		 */
+		max_wait_time = 100;
+		while (qib_twsi_wr(dd, dev | READ_CMD, QIB_TWSI_START)) {
+			stop_cmd(dd);
+			if (!--max_wait_time)
+				goto failed_write;
+		}
+		/* now read (and ignore) the resulting byte */
+		rd_byte(dd, 1);
+	}
+
+	ret = 0;
+	goto bail;
+
+failed_write:
+	stop_cmd(dd);
+	ret = 1;
+
+bail:
+	return ret;
+}